首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
This study investigates turbulent flow, based on high Reynolds number, downstream of a prosthetic heart valve using both laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). Until now, LDV has been the more commonly used tool in investigating the flow characteristics associated with mechanical heart valves. The LDV technique allows point by point velocity measurements and provides enough statistical information to quantify turbulent structure. The main drawback of this technique is the time consuming nature of the data acquisition process in order to assess an entire flow field area. Another technique now used in fluid dynamics studies is the PIV measurement technique. This technique allows spatial and temporal measurement of the entire flow field. Using this technique, the instantaneous and average velocity flow fields can be investigated for different positions. This paper presents a comparison of PIV two-dimensional measurements to LDV measurements, performed under steady flow conditions, for a measurement plane parallel to the leaflets of a St. Jude Medical (SJM) bileaflet valve. Comparisons of mean velocity obtained by the two techniques are in good agreement except for where there is instability in the flow. For second moment quantities the comparisons were less agreeable. This suggests that the PIV technique has sufficient temporal and spatial resolution to estimate mean velocity depending on the degree of instability in the flow and also provides sufficient images needed to duplicate mean flow but not for higher moment turbulence quantities such as maximum turbulent shear stress. © 2000 Biomedical Engineering Society. PAC00: 8719Uv, 4262Be, 8780-y  相似文献   

2.
An experimental investigation was conducted to determine the velocity fields, magnitudes of shear stresses, and regions of stagnation of a jellyfish valve and a St. Vincent tilting-disk valve using laser Doppler anemometry (LDA). All experiments were performed in vitro and at steady volumetric flow rates of 15 and 261/min (representing peak systole). The St. Vincent valve flow field was very unsymmetrical in the measurement plane that spanned the major and minor outflow regions of the valve and persisted at least to 1D downstream. For both flow rates tested, a stagnation region was always observed just behind the occluder. The maximum axial velocity was in the major outflow side and reached 2.54 m/s for peak systole flow of 261/min. Moreover, in the immediate vicinity of the valve and for both flow rates tested, turbulence intensities and velocity gradients were higher in the minor outflow region than in the major outflow region. However, as the flow progressed downstream, the opposite was observed, with large peak velocity in the major outflow. The maximum shear stress across the St. Vincent valve occurred in the minor outflow region and increased from 30 to 60N/m2 as the flow rate increased from 15 to 261/min. In the core of the larger jet, the shear stresses were very small (0–3N/m2). The flow at the edges of the jellyfish valve membrane, 10 mm (0.5D) downstream from the ring valve, consisted of two nearly symmetric jets in the vicinity of the tube wall. The maximum axial velocity in these jet regions increased from 1.7 to 2.5 m/s as the flow rates increased from 15 to 261/min. Pressure effects due to the oscillation of the membrane of the jellyfish valve appear to generate high shear stress in the immediate vicinity of the jellyfish valve (0.5D downstream). The values of shear stress were 0–27 N/m2 for a flow of 151/min and 3–109 N/m2 for a flow of 261/min. However, as the flow progresses downstream, shear stresses decay rapidly and return to the upstream undisturbed level at about 4D downstream, but at a slower rate than the RMS axial velocities. In general, for all operating flow conditions tested here, the jellyfish valve performed better than the St. Vincent valve when velocity and shear stress distributions are compared at locations more than 0.5D downstream from the valve.  相似文献   

3.
Our group is currently developing a pneumatic ventricular assist device (PVAD). In this study, in order to select the optimal bileaflet valve for our PVAD, three kinds of bileaflet valve were installed and the flow was visualized downstream of the outlet valve using the particle image velocimetry (PIV) method. To carry out flow visualization inside the blood pump and near the valve, we designed a model pump that had the same configuration as our PVAD. The three bileaflet valves tested were a 21-mm ATS valve, a 21-mm St. Jude valve, and a 21-mm Sorin Bicarbon valve. The mechanical heart valves were mounted at the aortic position of the model pump and the flow was visualized by using the PIV method. The maximum flow velocity was measured at three distances (0, 10, and 30 mm) from the valve plane. The maximum flow velocity of the Sorin Bicarbon valve was less than that of the other two valves; however, it decreased slightly with increasing distance it the X-Y plane in all three valves. Although different bileaflet valves are very similar in design, the geometry of the leaflet is an important factor when selecting a mechanical heart valve for use in an artificial heart.  相似文献   

4.
The turbulence generated downstream from an aortic Ionescu-Shiley bioprosthesis has been investigated in vitro with both steady and pulsatile flow; Instantaneous point velocities were measured using laser-Doppler anemometry (LDA) at numerous preselected locations in the flow. The mean and RMS velocities from these data at each location were then used to estimate the laminar and turbulent shear in the bulk flow as a function of radial position on a cross-section of the flow system downstream from the mounted prosthesis. Estimated total shear stresses were found in the bulk flow that were of sufficient magnitude to possibly cause haemolysis and initiate platelet chemical-release reactions. For steady flow and at peak pulsatile flow, maximum total shear stresses were estimated to be 120 N m−2 and 100 N m−2, respectively, over more than 5 per cent of the flow cross-section. The spatial distribution of the elevated shear stresses correlates well with the valve superstructure. It is concluded that these elevated stresses are a direct consequence of the notable flow constriction generated by the valve’s fully opened leaflets. deceased  相似文献   

5.
Laser-Doppler anemometry is relatively new technique which is used for measuring velocity fields. It has major applications in the field ofin vitro biofluid mechanics. The laser-Doppler anemometers have many advantages compared with the traditional hot-wire or hot-film anemometers which are still mainly used in studies of biofluid mechanics. A laser-Doppler anemometer (I.d.a) system which can be used to measurein vitro velocity and shear-stress profiles in the vicinity of prosthetic heart valves is described. Accurate velocity measurements in the vicinity of prosthetic heart valves are very scarce, and the use of I.d.a systems will facilitate acquisition of these data.  相似文献   

6.
Velocity measurements were made in vitro using laser Doppler anemometry (LDA) downstream from an lonescu-Shiley (IS) bioprosthetic aortic heart valve. Velocity measurements were made in both steady and pulsatile flow. A systematic, flow mapping approach to the measurement methodology showed that the IS valve generated a large jetlike flow constriction. The acceleration ratio, defined as the maximum mean velocity for the IS valve divided by that for no valve obstructing the flow, was as high as 2·4 for steady flow and 2·6 for pulsatile flow. It was concluded that the IS valve generated a flow quite unlike that observed by other in vestigators for the natural human aortic valve, after which the leaflet design of the IS valve was modelled. In addition, a comparative analysis of steady and pulsatile results was undertaken. It was found that the pulsatile flow results for the systolic ejection interval could be divided into three phases, denoted early, mid, and late systole, as defined by the flow structure at the data plane location. Only during midsystole were the pulsatile flow results approximated by the steady flow results. Also, it was found that the magnitude of the flow disturbance measured in steady flow tended to be an upper bound on that measured for pulsatile flow.  相似文献   

7.
Computational fluid dynamic techniques are used to construct a mathematical model for turbulent blood flow through a disk-type prosthetic heart valve in the aortic position. The TEACH computer code is used to solve the k-6 turbulence model numerically over the axisymmetric flow field of the valve during systole. Stream function, mean axial velocity profiles, turbulent shear stresses and wall shear stress distributions are computed for Reynolds numbers between ReD=600 and 10 000 (corresponding to steady flow rates of 2·63 lmin−1 and 43·89lmin−1, respectively). The location, length and maximum reverse flow velocities of separated, flow regions are presented and compared with experimental observations. The largest computed mean axial velocities are 4·4 to 4·8 times the inflow velocity and occur near the downstream corner of the sewing ring. The maximum wall shear stress computed is 229·7 Nm−2 at the upstream corner of the disk occluder for ReD=10000. The location of maximum walls shear stress occurs at the downstream corner of the sewing ring for ReD≤2000. Turbulent shear stresses of up to 380·7 Nm−2 are computed in the region between the sewing ring and the disk occluder for the physiological Reynolds number ReD=6054. The numerical solutions are shown to compare favourably with available experimental measurements.  相似文献   

8.
This study documents the superior hemodynamics of a novel coupled sequential anastomoses (SQA) graft design in comparison with the routine conventional end-to-side (ETS) anastomoses in coronary artery bypass grafts (CABG). The flow fields inside three polydimethylsiloxane (PDMS) models of coronary artery bypass grafts, including the coupled SQA graft design, a conventional ETS anastomosis, and a parallel side-to-side (STS) anastomosis, are investigated under pulsatile flow conditions using particle image velocimetry (PIV). The velocity field and distributions of wall shear stress (WSS) in the models are studied and compared with each other. The measurement results and WSS distributions, computed from the near wall velocity gradients reveal that the novel coupled SQA design provides: (i) a uniform and smooth flow at its ETS anastomosis, without any stagnation point on the artery bed and vortex formation in the heel region of the ETS anastomosis within the coronary artery; (ii) more favorable WSS distribution; and (iii) a spare route for the blood flow to the coronary artery, to avoid re-operation in case of re-stenosis in either of the anastomoses. This in vitro investigation complements the previous computational studies of blood flow in this coupled SQA design, and is another necessary step taken toward the clinical application of this novel design. At this point and prior to the clinical adoption of this novel design, in vivo animal trials are warranted, in order to investigate the biological effects and overall performance of this anastomotic configuration in vivo.  相似文献   

9.
The existence of swirling flow phenomena is frequently observed in arterial vessels, but information on the fluid-dynamic roles of swirling flow is still lacking. In this study, the effects of pulsatile swirling inlet flows with various swirling intensities on the flow field in a stenosis model are experimentally investigated using a particle image velocimetry velocity field measurement technique. A pulsatile pump provides cyclic pulsating inlet flow and spiral inserts with two different helical pitches (10D and 10/3D) induce swirling flow in the stenosed channel. Results show that the pulsatile swirling flow has various beneficial effects by reducing the negative wall shear stress, the oscillatory shear index, and the flow reverse coefficient at the post-stenosis channel. Temporal variations of vorticity fields show that the short propagation length of the jet flow and the early breakout of turbulent flow are initiated as the swirling flow disturbs the symmetric development of the shear layer. In addition, the overall energy dissipation rate of the flow is suppressed by the swirling component of the flow. The results will be helpful for elucidating the hemodynamic characteristics of atherosclerosis and discovering better diagnostic procedures and clinical treatments.  相似文献   

10.
目的 借助粒子图像测速(particle image velocimetry, PIV)技术对密闭离体动物眼球后房注水引发的眼内慢流动过程进行流动显示,计算不同时刻的流场,探讨测量眼内低速流动流场的PIV实验方案,为生理状态下眼内房水低速流动的流场测量提供实验基础。方法 在离体眼球相对密闭的条件下,当微量注射泵按照0.2、0.4、0.6、0.8、1.0、1.5 mL/min的速率驱动液体入眼球时,即可满足眼内液体形成缓慢流动的需求。向离体兔眼后房内均匀注入一定浓度、粒径为10 μm的荧光粒子溶液,在眼球前房的正中额状面给予激光片光照射,以获得眼球前房正中额状面清晰的粒子图像。PIV系统记录并计算眼内液体的流动情况。结果 向密闭的离体兔眼后房内均匀注入液体时,观察到液体先充满后房及瞳孔所在区域、之后绕过瞳孔缘进入到眼前房的流动规律,该规律与房水在生理条件下的理论流动过程一致。分析粒子图像,得到密闭眼球内几毫米每秒数量级的速度矢量。结论 眼内低速流动液体的流场可以用PIV方法进行测量,从而使生理状态下眼内房水慢流场的实验测量成为可能,有助于实验研究生理或病理条件下眼内房水的复杂流动;为房水流场的数值模拟计算提供实验验证,也可为眼内病变时角膜内皮细胞、虹膜表面、晶体的剪切力损伤提供新的诊疗思路。  相似文献   

11.
Thrombus formation and hemolysis have both been linked to the dynamic flow characteristics of heart valve prostheses. To enhance our understanding of the flow characteristics past the mitral position of a jellyfish (JF) valve in the left ventricle under physiological pulsatile flow conditions, in vitro laser Doppler anemometry (LDA) measurements were carried out. The hydrodynamic performance of the JF valve was compared with that of a Bjork-Shiley tilting-disk valve (BS mono). The results indicated that both valves created disturbed flow fields and turbulence shear stress levels in the immediate vicinity and up to 1D (diameter of the valvering) downstream from the valve that were capable of causing lethal damage to blood elements. At a location further downstream, the JF valve showed better hydrodynamic performance than the BS in terms of back flow properties and velocity and turbulence stress characteristics. However, any imperfection in the manufacturing of the valve structure, particularly membrane thickness, adversely affected the performance of the JF valve.  相似文献   

12.
目的针对人体上呼吸道气流运动形成涡结构、流动分流、二次流等特点,研制基于粒子图像测速(particle image velocimetry, PIV)技术的人体上呼吸道流场测量实验装置,为开展人体上呼吸道流场特性实验研究提供平台。方法 基于完整人体上呼吸道医学扫描图像制备透明的实物模型,通过选择合适的气路系统,结合二维PIV系统搭建整套实验装置,并利用该装置对人体上呼吸道流场速度进行初步实验,将实验结果和数值仿真结果进行对比。结果呼吸流量为30 L/min稳态呼吸模式下,实验装置测得的气流在口腔上部有涡结构的形成,口腔下部贴近舌苔上部及口腔中部的气流速度较高,其他部位气流速度较低,与数值仿真结果较为一致。结论 基于PIV技术的人体上呼吸道流场测量实验装置合理可行,运行可靠,可用于人体上呼吸道内气流组织形式和涡量分布等测量,并能够实现对数值仿真的验证。  相似文献   

13.
研究旨在建立和调试体外圆管狭窄模型 ,使之能够配合粒子成像流速仪 (PIV)进行狭窄下游流动分离区速度、湍流切应力的检测和压力传感器的压力检测。采用粒子成像流速仪和压力传感器 ,对模型狭窄下游定常流湍流场速度、湍流切应力和压力进行定量检测 ,初步认识流动分离区速度、切应力和压力的分布特征。实验模型能够较好地配合 PIV和压力传感器进行流动分离区速度、湍流切应力和压力的定量检测 ;圆管狭窄下游流动分离区边壁局部存在明显的低速度、低压力和低切应力分布。  相似文献   

14.
Blood flow in an artery is closely related to atherosclerosis progression. Hemodynamic environments influence platelet activation, aggregation, and rupture of atherosclerotic plaque. The existence of swirling flow components in an artery is frequently observed under in vivo conditions. However, the fluid-dynamic roles of spiral flow are not fully understood to date. In this study, the spiral blood flow effect in an axisymmetric stenosis model was experimentally investigated using particle image velocimetry velocity field measurement technique and streakline flow visualization. Spiral inserts with two different helical pitches (10D and 10/3D) were installed upstream of the stenosis to induce swirling flows. Results show that the spiral flow significantly reduces the length of recirculation flow and provokes early breakout of turbulent transition, but variation of swirling intensity does not induce significant changes of turbulence intensity. The present results about the spiral flow effects through the stenosis will contribute in achieving better understanding of the hemodynamic characteristics of atherosclerosis and in discovering better diagnosis procedures and clinical treatments.  相似文献   

15.
目的选择硅胶管流动腔的前、后负荷,模拟生理脉动流条件下动脉内皮细胞所承受的切应力和周向应力环境。方法利用在体脉动血流切应力和周向应力波形,在求得硅胶管流动腔几何和力学特性的情况下,反向求解硅胶管流动腔内径、压力和流量波形;根据所求得的压力和流量波形,确定出硅胶管流动腔的后负荷(即输入阻抗)条件;利用冯忠刚等提出的三弹性腔九元件集中参数模型模拟该后负荷,并求出各元件参数。结果三弹性腔九元件集中参数模型模拟出的输入阻抗模和幅角与目标输入阻抗模和幅角能较好的吻合。结论该方法为选择合适的硅胶管流动腔前、后负荷,构建能较真实再现动脉脉动血流切应力和周向应力环境的硅胶管流动腔系统提供了一定的理论依据。  相似文献   

16.
Dynamic particle image velocimetry (PIV) was applied to the study of the flow field associated with prosthetic heart valves. The results were compared with those of laser Doppler anemometry (LDA). Anatomically and antianatomically oriented Jyros (JR) and St. Jude Medical (SJM) valves were compared in the mitral position to study the effects of valve design on the downstream flow field. The experimental program used a dynamic PIV system utilizing high-speed, high-resolution video to map the true time-resolved velocity field inside the simulated ventricle. This system was complemented by a study using the more traditional LDA system for comparison. Based on the experimental data, the following general conclusions can be made. High-resolution dynamic PIV can capture true chronological changes in the velocity and turbulence fields. It also produces very detailed velocity and turbulence information comparable to the LDA results. In the vertical measuring plane that passes both the center of the aortic and mitral valves (A-A section), the two valves (the SJM and the JR) show distinct circulatory flow patterns when the valve is installed in the antianatomical orientation. Small differences in valve design can generate noticeable differences, particularly during the accelerating flow phase. The SJM valve maintains a relatively high velocity through the central orifice; the curved leaflets of the JR valve generate higher velocities with a divergent flow during the accelerating and peak flow phases. In the velocity field directly below the mitral valve and normal to the previous measuring plane (B-B section), where characteristic differences in valve design will be visible, symmetrical twin circulations were observed because of the divergent nature of the flow generated by the two inclined half-disks installed in the antianatomical orientation. The SJM valve, with a central downward flow near the valve, is contrasted with the JR valve, which has a peripheral downward circulation with higher, turbulent stresses.  相似文献   

17.
In this study,in vitro velocity measurements in the near vicinity of a Björk-Shiley aortic valve, one of the more commonly used aortic valve prostheses, were made using a laser-Doppler anemometer. The velocity measurements identified a zone of stagnation, about 20 mm wide, immediately downstream from the fully open disc. The measurements also showed that the flow through the valve was divided into two unequal regions, namely, the major and minor outflow regions. Because of the low flow in the minor outflow region, the shear stresses along the perimeter of the valve in that region were considerably lower than the shear stresses along the sewing ring of the major outflow region. Pathologic studies of nine recovered Björk-Shiley aortic valves indicated varying amounts of thrombus formation on the outflow face of the disc and excess growth of endothelial tissue along the perimeter of the minor outflow region. If the large stagnation zone and the relatively low shear in the minor outflow region which were observed in thein vitro measurements also existin vivo, they could lead to the clinically observed thrombus formation and tissue overgrowth, respectively.  相似文献   

18.
目的研究不对称入口速度剖面对动脉粥样硬化易发部位壁面切应力的影响。方法建立颈动脉TF-AHCB数值模型,设置不对称速度剖面入口条件,用CFD作数值模拟。计算不同时相、不同入口条件下的颈动脉窦流场和壁面切应力分布,分析与动脉粥样硬化有关的流场特征和切应力特征。结果入口速度剖面偏斜可以增加颈动脉窦壁面低切应力区面积,提高切应力梯度。结论不对称入口速度剖面可能是诱发动脉粥样硬化发生的一个危险因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号