首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duchenne and Becker muscular dystrophy (DMD and BMD) are caused by mutations in the dystrophin gene. Large rearrangements in the gene are found in about two-thirds of DMD patients, with approximately 60% carrying deletions and 5-10% carrying duplications. Most of the remaining 30-35% of patients are expected to have small nucleotide substitutions, insertions, or deletions. To detect these subtle changes within the coding and splice site determining sequences of the dystrophin gene, we established a semiautomated denaturing gradient gel electrophoresis (DGGE) mutation scanning system. The DGGE scan covers the dystrophin gene with 95 amplicons, PCRed either individually or in a multiplex setup. PCR and pooling were performed semiautomatically, using a pipetting robot and 384-well plates, enabling concurrent amplification of DNA of four patients in one run. Amplification of individual fragments was performed using one PCR program. The products were pooled just before gel loading; DGGE requires only a single gel condition. Validation was performed using DNA samples harboring 39 known DMD variants, all of which could be readily detected. DGGE mutation scanning was applied to analyze 135 DMD/BMD patients and potential DMD carriers without large deletions or duplications. In DNA from 25 out of 44 DMD patients (57%) and from 5 out of 39 BMD patients (13%), we identified clear pathogenic changes. All mutations were different, with the exception of one DMD mutation, which occurred twice. In DNA from 10 out of 44 potential DMD carriers, including four obligate carriers, we detected causative changes, including one pathogenic change in every obligate carrier. In addition to these pathogenic changes, we detected 15 unique unclassified variants, i.e., changes for which a pathogenic nature is uncertain.  相似文献   

2.
Utilizing a heteroduplex method, we screened the dystrophin exon 43–45 region for point mutations, including small deletions and insertions. The method depends upon the formation of a heteroduplex between wild-type and mutant DNA PCR products. DNA specimens from one hundred and four DMD patients without detected deletions or duplications were multiplexed amplified for exons 43, 44, and 45. The PCR products were mixed with the PCR products from nonaffected controls, electrophoresed, and examined for the presence of altered mobility heteroduplex bands. An exon 44 nonsense mutation in two DMD brothers and a common intron 44 polymorphism were identified using this approach. Although the exon 44–45 region is a hotspot for deletion breakpoints, it does not appear to be prone to point mutations. The technique is extremely useful for screening several exons simultaneously and it allowed us to screen a large number of patients. © 1993 Wiley-Liss, Inc.  相似文献   

3.
非缺失/重复型Duchenne肌营养不良症患者的致病点突变分析   总被引:4,自引:1,他引:4  
目的检测非缺失/重复突变型Duchenne肌营养不良症(Duchenne muscular dystrophy,DMD)的致病点突变。方法对6个家系的6个无关DMD男性患者的DMD基因的79个外显子及5′-3′-非翻译序列进行PER扩增,产物通过变性高效液相色谱(denaturing high performance liquid chromatography,DHPLC)技术进行突变筛查。结果6例非缺失/重复突变型Duchenne肌营养不良症患者,检测出了5例患者的致病点突变,即697-698insGT,C616T,G1255T,C4279T和C2302T。第1个点突变引起移码突变,后4个致病点突变引起翻译的提前终止,最终导致Duchenne肌营养不良症。患者3除致病点突变外,在第39内含子还发现1个T5586+61A点突变;患者5还检测出了一个位于第8外显子的错义突变;而没有检出致病点突变的患者6,发现了2个外显子突变及2个内含子序列点突变,即C2168+13T、G5234A、C5280T和5740-13dupG。所有检出的突变有7个点突变未见报道。结论变性高效液相色谱技术结合测序,可用于检测DMD患者的点突变.该方法具有准确,灵敏的特点。  相似文献   

4.
An analysis of mutations was performed in 141 Duchenne muscular dystrophy (DMD) patients previously found to be negative for large deletions by standard multiplex PCR assays. Comprehensive mutation scanning of all coding exons, adjacent intronic splice regions, and promoter sequences was performed by DOVAM-S, a robotically enhanced, high throughput method that detects essentially all point mutations. Samples negative for point mutations were further analyzed for duplications by multiplex amplifiable probe hybridization (MAPH). Presumptive causative mutations were detected in 90% of the patients (70% protein truncating point mutations, 13% duplications, and 7% deletions not detected by the standard multiplex screening method). A total of 40 of the mutations are putatively novel. Most duplications involve multiple exons with an average and median size of about 160 and 153 kb, respectively. This is the first analysis of the absolute and relative rates of point mutations in the dystrophin gene. Relative to microdeletions (0.68 x 10(-9) per bp per generation), transitions at CpG dinucleotides are enhanced 150-fold while complex indels, the least common mutation type, are less frequent than microdeletions by a factor of five. The frequency of microdeletions and microinsertions at mononucleotide repeats increases exponentially with length. When compared to the well-studied human factor IX gene (F9), the results are similar, with two exceptions: a hotspot of mutation in the dystrophin gene (c.8713C>T/p.R2905X) at a CpG dinucleotide and an altered size distribution of microdeletions. The hotspot reflects a difference in the underlying pattern of mutation, while the altered size distribution of microdeletions reflects certain abundant sequence motifs within the dystrophin coding sequence (relative to factor IX).  相似文献   

5.
目的利用多重连接依赖探针PCR扩增技术检测Duchenne肌营养不良症(Duchenne muscular dystrophy,DMD)患者及其可能的女性携带者的dystrophin基因的缺失、重复突变。方法利用多重连接依赖探针PCR扩增对32例DMD患者及其27个可能的女性携带者的dystrophin基因缺失、重复进行检测。结果32个先证者中,共检测出了24例DMI)患者具有一个或多个外显子的缺失,l例DMD患者具有重复突变,l例患者为第19外显子的无义突变(R768X),6例没有检测出缺失、重复突变的先证者可能是点突变所致。17个先证者的18位女性亲属具有和先证者相同的缺失、重复突变。结论多重连接依赖探针PCR扩增技术可用于检测DMD基因的缺失、重复突变,可以检测DMD基因女性携带者的基因杂合情况,在检测DMD基因缺失和重复方面,具有一定的应用价值。  相似文献   

6.
Two thirds of the Duchenne muscular dystrophy population haveeither gene deletions or duplications. The nondeletion/duplicationcases are most likely the result of point mutations or smalldeletions and duplications that cannot be easily identifiedby current strategies. The major obstacle in identifying smallmutations is due to the large size of the dystrophin gene. Weselectively screened 5 DMD exons containing CpG dinucleotidesin 110 DMD patients without detectable deletions or duplications.Nonsenses mutations are frequently due to a C- to -T transitionwithin a CG dinucleotide pair. To screen for the nonsense mutations,we used the heteroduplex method. Utilizing this approach, weidentified 2 different nonsense mutations and a single basedeletion all occurring in exon 19. This is the first reportof a clustering of small mutations in the the dystrophin gene.  相似文献   

7.
The dystrophinopathies, which include Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy, are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene (DMD). Approximately 70% of mutations causing DMD/BMD are deletions or duplications and the remainder are point mutations. Current clinical diagnostic strategies have limits of resolution that make detection of small DMD deletions and duplications difficult to identify. We developed an oligonucleotide-based array comparative genomic hybridization (array-CGH) platform for the enhanced identification of deletions and duplications in the DMD gene. Using this platform, 39 previously characterized patient samples were analyzed, resulting in the accurate identification of 38 out of 39 rearrangements. Array-CGH did not identify a 191-bp deletion partially involving exon 19 that created a junction fragment detectable by Southern hybridization. To further evaluate the sensitivity and specificity of this array, we performed concurrent blinded analyses by conventional methodologies and array-CGH of 302 samples submitted to our clinical laboratory for DMD deletion/duplication testing. Results obtained on the array-CGH platform were concordant with conventional methodologies in 300 cases, including 69 with clinically-significant rearrangements. In addition, the oligonucleotide array-CGH platform detected two duplications that conventional methods failed to identify. Five copy-number variations (CNVs) were identified; small size and location within introns predict the benign nature of these CNVs with negligible effect on gene function. These results demonstrate the utility of this array-CGH platform in detecting submicroscopic copy-number changes involving the DMD gene, as well as providing more precise breakpoint identification at high-resolution and with improved sensitivity.  相似文献   

8.
9.
Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene affecting approximately 1 in 3,500 males. The human dystrophin gene spans>2,200 kb, or roughly 0.1% of the genome, and is composed of 79 exons. The mutational spectrum of disease-causing alleles, including exonic copy number variations (CNVs), is complex. Deletions account for approximately 65% of DMD mutations and 85% of BMD mutations. Duplications occur in approximately 6 to 10% of males with either DMD or BMD. The remaining 30 to 35% of mutations consist of small deletions, insertions, point mutations, or splicing mutations, most of which introduce a premature stop codon. Laboratory analysis of dystrophin can be used to confirm a clinical diagnosis of DMD, characterize the type of dystrophin mutation, and perform prenatal testing and carrier testing for females. Current dystrophin diagnostic assays involve a variety of methodologies, including multiplex PCR, Southern blot analysis, multiplex ligation-dependent probe amplification (MLPA), detection of virtually all mutations-SSCP (DOVAM-S), and single condition amplification/internal primer sequencing (SCAIP); however, these methods are time-consuming, laborious, and do not accurately detect duplication mutations in the dystrophin gene. Furthermore, carrier testing in females is often difficult when a related affected male is unavailable. Here we describe the development, design, validation, and implementation of a high-resolution comparative genomic hybridization (CGH) microarray-based approach capable of accurately detecting both deletions and duplications in the dystrophin gene. This assay can be readily adopted by clinical molecular testing laboratories and represents a rapid, cost-effective approach for screening a large gene, such as dystrophin.  相似文献   

10.
In a survey of 454 families with patients affected with Duchenne muscular dystrophy (DMD) we have found 4 genealogies with 2 or more affected patients who were related through paternal lines. In 1 of these families, 2 affected cousins showed different DNA deletions suggesting 2 independent mutations; in the other 2, in which only the propositus could be studied DNA deletions were also detected in the dystrophin gene. In the last one, with 3 affected patients, no DNA deletions were detected but immunohistochemical study of muscle biopsies showed a negative dystrophin pattern typical of DMD. Although one of these families might have occurred by chance, the probability of finding the other 3 in our sample of families with DMD patients constitutes a rare event. It is suggested that other mechanisms, such as the presence of transposable elements in other sites of the genome, could be responsible in some families, for a greater predisposition for the occurrence of pathogenic deletions, duplications or mutations.  相似文献   

11.
12.
Straightforward detectable Duchenne muscular dystrophy (DMD) gene rearrangements, such as deletions or duplications involving an entire exon or more, are involved in about 70% of dystrophinopathies. In the remaining 30% a variety of point mutations or "small" mutations are suspected. Due to their diversity and to the large size and complexity of the DMD gene, these point mutations are difficult to detect. To overcome this diagnostic issue, we developed and optimized a routine muscle biopsy-based diagnostic strategy. The mutation detection rate is almost as high as 100% and mutations were identified in all patients for whom the diagnosis of DMD and Becker muscular dystrophy (BMD) was clinically suspected and further supported by the detection on Western blot of quantitative and/or qualitative dystrophin protein abnormalities. Here we report a total of 124 small mutations including 11 nonsense and frameshift mutations detected in BMD patients. In addition to a comprehensive assessment of muscular phenotypes that takes into account consequences of mutations on the expression of the dystrophin mRNA and protein, we provide and discuss genomic, mRNA, and protein data that pinpoint molecular mechanisms underlying BMD phenotypes associated with nonsense and frameshift mutations.  相似文献   

13.
Duchenne and Becker muscular dystrophies (DMD/BMD) are causedby mutations in the human dystrophin gene. About two-thirdsof DMD/BMD patients exhibit gross rearrangements in the genewhereas the mutations in the remaining one third are thoughtto be point mutations or minor structural lesions. By meansof various progressive PCR-based techniques hitherto a numberof point mutations has been described that in most cases shouldcause premature translational termination. These data indicatea particular functional importance for the C-termlnal regionof dystrophin and consequently for its gene products Dp 71 andDp 116. To screen for mlcroheterogeneities in this gene regionwe applied PCR-SSCP analysis to exons 60 – 79 of twenty-sixDMD/BMD patients without detectable deletions. The study identifiedseven point mutations and one intron polymorphism. Six pointmutations, found in DMD patients, should cause premature translationaltermination. One point mutation, identified in a BMD patient,results in an amino acid exchange. Five of the DMD patientsbearing a point mutation are mentally retarded suggesting thata disruption of the translational reading frame in the C-terminalregion is associated with this clinical finding in DMD cases.Therefore our data raise the possibility, that Dp 71 and/orDp 116, the C-termlnal translational products of dystrophin,may be causally involved in cases of mental retardation thatare associated with DMD.  相似文献   

14.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

15.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

16.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

17.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

18.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

19.
目的 应用多重PCR和多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)技术检测Duchenne/Becker肌营养不良症(Duchenne/Becker muscular dystrophy,DMD/BMD)患者、携带者并应用于产前诊断.方法 首先采用多重PCR对临床诊断为DMD/BMD的患者检测DMD基因的26个外显子,未查到缺失突变者和可能的携带者采用MLPA检测全部79个外显子是否有缺失或重复突变.对产前诊断病例,用PCR法检测缺失突变,用MLPA法检测重复突变.结果 多重PCR对22例患者的DMD基因的26个外显子检测.13例有缺失突变.未查到常见缺失突变的9例患者经MLPA检测DMD基因的全部79个外显子,3例为重复突变、1例为单个第18外显子缺失、其他5例未查到缺失和重复突变.16例携带者中,3例有家族史,其中2例检出突变;13例为检测到突变的散发病例患儿的母亲,有8例检测到突变.产前诊断9个胎儿(其中双胎1例),2例胎儿有突变,引产后核实无误;7例胎儿未检测到突变,现均已分娩.结论 多重PCR可检出92.86%的缺失突变并可用于缺失突变的产前诊断,因其简便、可靠、价廉可作为临床上DMD/BMD基因诊断的初选.MLPA可用于多重PCR未检测到缺失突变的患者及携带者的检查.  相似文献   

20.
This report is the second part of a trilogy from a multidisciplinary study which was undertaken to record the relationships between clinical severity and dystrophin gene and protein expression. The aim in part 2 was to correlate the effect of gene deletions on protein expression in individual patients with well defined clinical phenotypes. Among the DMD patients, most of the deletions/duplications disrupted the open reading frame, but three patients had in frame deletions. Some of the intermediate D/BMD patients had mutations which were frameshifting while others were in frame. All of the deletions/duplications in the BMD patients maintained the open reading frame and 25/26 deletions in typical BMD group 5 started with exon 45. The deletion of single exon 44 was the most common mutation in patients from groups 1 to 3. Dystrophin was detected in sections and blots from 58% of the DMD patients with a size that was compatible with synthesis from mRNA in which the reading frame had been restored. Certain deletions were particularly associated with the occurrence of limited dystrophin synthesis in DMD patients. For example, 9/11 DMD patients missing single exons had some detectable dystrophin labelling compared with 10/24 who had deletions affecting more than one exon. All patients missing single exon 44 or 45 had some dystrophin. Deletions starting or finishing with exons 3 or 51 (8/9) cases were usually associated with dystrophin synthesis whereas those starting or finishing with exons 46 or 52 (11/11) were not. Formal IQ assessments (verbal, performance, and full scores) were available for 47 patients. Mean IQ score among the DMD patients was 83 and no clear relationship was found between gene mutations and IQ. The mutations in patients with a particularly severe deficit of verbal IQ were spread throughout the gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号