首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The intracellular processing of pH-sensitive liposomes composed of cholesterylhemisuccinate (CHEMS) and dioleoylphosphatidylethanolamine (DOPE) by eukaryotic cell lines has been compared to non-pH-sensitive liposomes made of CHEMS and dioleoylphosphatidylcholine (DOPC). The pH-sensitive liposomes can deliver encapsulated fluorescent molecules [calcein, fluoresceinated dextran, fluoresceinated polypeptide, and diphtheria toxin A chain (DTA)] into the cytoplasm. Cytoplasmic delivery can be blocked in the presence of ammonium chloride or EDTA, indicating that the process requires a low-pH environment and the presence of divalent cations. Inhibition of cellular protein synthesis by DTA delivery from the pH-sensitive liposome is orders of magnitude greater than from the non-pH-sensitive liposome composition. The delivery of DTA into the cytoplasm by pH-sensitive liposomes is at least 0.01% of cell-associated liposomal DTA. There is no significant difference in the degradation rate of bovine serum albumin (BSA) or the rate of acidification of pH-sensitive dye, 8-hydroxy-l,3,6-pyrene-trisulfonate (HPTS), when delivered to cells in pH-sensitive and non-pH-sensitive liposomes. Thus the efficiency of cytoplasmic delivery is less than 10% of the cell-associated liposome contents, which is the smallest difference that can be detected by these two assays. Based upon the various assays used to measure liposome content disposition in the cell, we conclude that the efficiency of cytoplasmic delivery by the CHEMS/DOPE liposomes is greater than 0.01% and less than 10% of the cell-associated liposomal contents.  相似文献   

2.
The effect of membrane composition on calcein release from dioleoylphosphatidylethanolamine (DOPE)-based liposomes on exposure to low doses of 1.13 MHz focused ultrasound (US) was investigated by multivariate analysis, with the goal of designing liposomes for US-mediated drug delivery. Regression analysis revealed a strong correlation between sonosensitivity and the non-bilayer forming lipids DOPE and pegylated distearoylphosphatidylethanolamine (DSPE-PEG 2000), with DOPE having the strongest impact. Unlike most of the previously studied distearoylphosphatidylethanolamine (DSPE)-based liposomes, all the current DOPE-based liposome formulations were found stable in 20% serum in terms of drug retention.  相似文献   

3.
Various amounts of one of three different types of cleavable methoxy polyethylene glycol (mPEG)-phospholipids or of a non-cleavable counterpart (mPEG-DSPE) were included into pH-sensitive liposome formulations containing dioleoylphosphatidylethanolamine (DOPE) and cholesterylhemisuccinate (CHEMS) at a 6:4 molar ratio, and the effect on plasma clearance and contents release rates was determined. The cleavable lipopolymers were all based on a distearoylphosphatidyl lipid anchor, which was linked to mPEG via dithiodipropionateaminoethanol (mPEG-DTP-DSPE), dithio-3-hexanol (mPEG-DTH-DSPA), or Gly-Phe-Leu-Gly-aminoethanol (mPEG-GFLG-DSPE) linkers. In contrast to the first-generation thiolytically cleavable lipopolymer, mPEG-DTP-DSPE, the second generation conjugates contained a hindered disulfide or enzymatically cleavable tetrapeptide, respectively, as the points of scission. In the absence of mPEG-lipid, DOPE/CHEMS liposomes had rapid clearance half-lives. As the mol% of mPEG-lipid in the liposomes increased, the rate of clearance of DOPE/CHEMS liposomes in mice decreased. Zeta-potential measurements showed that decreased clearance was correlated with a decrease in the apparent surface charge of the liposomes, which approached neutrality as the content of mPEG-lipids increased to above 15 mol%. At these levels, liposomes containing mPEG-DTP-DSPE were cleared from blood circulation faster than liposomes containing other, less vulnerable lipopolymers. Liposomes with the peptide-linked lipopolymer exhibited the slowest clearance. The presence of either cleavable or non-cleavable mPEG-lipids at concentrations of 5 mol% or higher in the DOPE/CHEMS liposomes inhibited the release of doxorubicin from these liposomes in response to acid pH.  相似文献   

4.
The purpose of this study was to enhance encapsulation efficiency and sustained-release delivery for parenteral administration of a protein drug. To reduce the administration frequency of protein drugs, it is necessary to develop sustained delivery systems. In this study, protein drug-loaded cationic liposomes were formulated with dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), dioleoyl-3-trimethylammonium-propane (DOTAP), and cholesterol (CH) at a molar ratio of DOPE/DOTAP/CH of 2/1.5/2. Five mol% of distearoylphosphatidyl ethanolamine polyethylene glycol (DSPE-PEG) was added prior to encapsulation of the drug into liposomes. Insulin was chosen as a model protein drug and encapsulation efficiency was evaluated in various liposomes with and without DSPE-PEG. Scanning electron microscopy was used to examine the insulin-loaded cationic liposomes. Structural analysis was performed using spectropolarimetry. Additionally, the stability and cytotoxicity of insulin-loaded cationic liposomes were evaluated. Liposomes coated with DSPE-PEG showed higher insulin encapsulation efficiency than did those without DSPE-PEG, but not significantly. Moreover, among the liposomes coated with DSPE-PEG, those hydrated with 10% sucrose showed higher encapsulation efficiency than did liposomes hydrated in either phosphate-buffered saline or 5% dextrose. In vitro release of insulin was prolonged by cationic liposomes. Our findings suggest that cationic liposomes may be a potential sustained-release delivery system for parenteral administration of protein and peptide drugs to prolong efficacy and improve bioavailability.  相似文献   

5.
On the formulation of pH-sensitive liposomes with long circulation times   总被引:11,自引:0,他引:11  
Strategies used to enhance liposome-mediated drug delivery in vivo include the enhancement of stability and circulation time in the bloodstream, targeting to specific tissues or cells, and facilitation of intracytoplasmic delivery. pH-sensitive liposomes have been developed to mediate the introduction of highly hydrophilic molecules or macromolecules into the cytoplasm. These liposomes destabilize under acidic conditions found in the endocytotic pathway, and usually contain phosphatidylethanolamine (PE) and titratable stabilizing amphiphiles. Formulations without PE have also been developed. Encapsulated compounds are thought to be transported into the cytoplasm through destabilization of or fusion with the endosome membrane. Incorporation of a low mole percentage of poly(ethylene glycol) (PEG)-conjugated lipids into pH-sensitive liposomes confers prolonged circulation times to these liposomes, which are otherwise cleared rapidly. While the incorporation of PEG-lipids reduces the pH-dependent release of encapsulated fluorescent markers in vitro, it does not hinder the cytoplasmic delivery of the markers per cell-associated liposome. This suggests that intracellular delivery is not dictated simply by the destabilization of the liposomes. Antibodies or ligands to cell surface receptors can be coupled to pH-sensitive or sterically stabilized pH-sensitive liposomes for targeting. pH-sensitive liposomes have been used to deliver anticancer drugs, antibiotics, antisense oligonucleotides, ribozymes, plasmids, proteins and peptides to cells in culture or in vivo.  相似文献   

6.
The purpose of this study is to propose a suitable vector combining increased circulation lifetime and intracellular delivery capacities for a therapeutic peptide. Long circulating classical liposomes [SPC:CHOL:PEG-750-DSPE (47:47:6 molar% ratio)] or pH-sensitive stealth liposomes [DOPE:CHEMS:CHOL:PEG750-DSPE (43:21:30:6 molar% ratio)] were used to deliver a therapeutic peptide to its nuclear site of action. The benefit of using stealth pH-sensitive liposomes was investigated and formulations were compared to classical liposomes in terms of size, shape, charge, encapsulation efficiency, stability and, most importantly, in terms of cellular uptake. Confocal microscopy and flow cytometry were used to evaluate the intracellular fate of liposomes themselves and of their hydrophilic encapsulated material. Cellular uptake of peptide-loaded liposomes was also investigated in three cell lines: Hs578t human epithelial cells from breast carcinoma, MDA-MB-231 human breast carcinoma cells and WI-26 human diploid lung fibroblast cells. The difference between formulations in terms of peptide delivery from the endosome to the cytoplasm and even to the nucleus was investigated as a function of time. Characterization studies showed that both formulations possess acceptable size, shape and encapsulation efficiency but cellular uptake studies showed the important benefit of the pH-sensitive formulation over the classical one, in spite of liposome PEGylation. Indeed, stealth pH-sensitive liposomes were able to deliver hydrophilic materials strongly to the cytoplasm. Most importantly, when encapsulated in pH-sensitive stealth liposomes, the peptide was able to reach the nucleus of tumorigenic and non tumorigenic breast cancer cells.  相似文献   

7.
Prolonged circulation by liposomal incorporation has been shown to enhance the therapeutic efficacy of drugs in many cases. The purpose of this study was to investigate whether the prolonged circulation of methotrexate (MTX) can be achieved by modulating the liposomal compositions. Various compositions of liposomes were prepared with 2:1 of phosphatidylcholine (PC) and cholesterol (CH) with or without distearoylphosphatidyl-ethanolamine-N-poly(ethyleneglycol) 2000 (DSPE-PEG). The MTX encapsulation efficiency depended on the type of PC used. It also appeared to increase by inclusion of DSPE-PEG. The size of liposomes decreased by the inclusion of DSPE-PEG. The inclusion of DSPE-PEG lowered the plasma-induced release of MTX from EggPC/CH and DPPC/CH liposomes, suggesting its enhancement effect on the liposomal stability. After intravenous injection to rats, the pharmaockinetics and biodistribution of MTX were significantly changed by liposomal incorporation and also by the composition of liposomes. The total body clearance of MTX incorporated in EggPC/CH, DPPC/CH, EggPC/CH/DSPE-PEG, and DPPC/CH/DSPE-PEG liposomes decreased 4.4-, 14.9-, 24.5-, and 53.1-fold, compared with that of free MTX. The ratio of MTX concentration in blood to liver and spleen after injection of DPPC/CH, EggPC/CH/DSPE-PEG, and DPPC/CH/DSPE-PEG liposomes was 5.4-, 8.5-, and 13.5-fold higher than that of EggPC/CH liposomes. Furthermore, the accumulation of MTX in the kidney, one of the organs in which MTX exhibits its toxicity, was significantly lowered by liposomal incorporation, especially by DSPE-PEG-containing liposomes. Taken together, DPPC/CH/DSPE-PEG liposomes most effectively prolonged the blood circulation, and reduced hepatosplenic and kidney uptake of MTX. DPPC/CH/DSPE-PEG liposomes may have potential as an efficient delivery system for MTX.  相似文献   

8.
A major hurdle towards in vivo utilization of pH-sensitive liposomes is their prompt sequestration by reticuloendothelial system and hence short circulation time. Prolonged circulation of liposomes is usually achieved by incorporation of pegylated lipids, which have been frequently reported to deteriorate the acid-triggered release. In this study we evaluate the ability of four novel nonionic copolymers, bearing short blocks of lipid-mimetic units to provide steric stabilization of DOPE:CHEMs liposomes. The vesicles were prepared using the lipid film hydration method and extrusion, yielding liposomes of 120–160 nm in size. Their pH-sensitivity was monitored via the release of encapsulated calcein. The incorporation of the block copolymers at concentration up to 10 mol% did not deteriorate the pH-sensitivity of the liposomes. A selected formulation was tested for stability in presence of 25% human plasma and proved to significantly outclass the plain DOPE:CHEMs liposomes. The ability of calcein-loaded liposomes to deliver their cargo inside EJ cells was investigated using fluorescent microscopy and the results show that the surface-modified vesicles are as effective to ensure intracellular delivery as plain liposomes. The pharmacokinetics and organ distribution of a selected formulation, containing a copolymer bearing four lipid anchors was investigated in comparison to plain liposomes and PEG (2000)–DSPE stabilized liposomes. The juxtaposition of the blood clearance curves and the calculated pharmacokinetic parameters show that the block copolymer confers superior longevity in vivo. The block copolymers utilized in this study can be consider as promising sterically stabilizing agents for pH-sensitive liposomes.  相似文献   

9.
The aim of this study was to characterize a pH-sensitive liposome formulation bearing a terminally alkylated N-isopropylacrylamide (NIPAM) copolymer with regard to its pH responsiveness, surface properties, and pharmacokinetics. The interacting forces between two lipid bilayers bearing the anchored NIPAM copolymer were measured with a surface force apparatus. The pH-triggered content release was evaluated in buffer before and after incubation in human serum. The pharmacokinetics was determined in rats following the intravenous injection of 67Ga-loaded liposomes with or without the polymer coating. The force measurements between lipid bilayers showed that NIPAM copolymers provide a steric barrier that was dependent on pH. The pH-sensitive liposomes maintained their pH sensitivity after incubation in serum. In vivo, the polymer-coated liposomes exhibited a prolonged circulation time in rats, with an area under the blood concentration-time curve that is 1.6-fold higher than the control formulation. This study showed that liposomes can be rendered pH sensitive by anchoring a terminally alkylated NIPAM copolymer at their surface. At neutral pH, the polymer provides a steric barrier that increases the liposome circulation time in vivo.  相似文献   

10.
E75 (HER-2/neu-369–377), is an immunogenic peptide which is highly expressed in breast cancer patients. The purpose of this study was to develop an effective vaccine delivery/adjuvant system by attachment of this peptide to the surface of liposomes consisting of phospholipids including distearoylphosphocholine (DSPC) and distearoyl phosphoglycerol (DSPG) with high transition temperature (Tm) and dioleoylphosphatidylethanolamine (DOPE) (a pH-sensitive lipid for cytosolic antigen delivery) to improve antitumour immune activity against the E75 peptide. For this purpose, the E75 peptide was incorporated into liposomes consisting of DSPC/DSPG/cholesterol (Chol)/DOPE (15/2/3/5 molar ratio) through conjugation with distearoylphosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (maleimide-PEG2000-DSPE). Immunization of BALB/c mice was performed three times with different forms of liposomal formulations at 2-week intervals and antitumour immunity responses were evaluated. Results of ELISpot and flow cytometry analysis showed that mice vaccinated with DSPC/DSPG/Chol/DOPE/E75 have significantly enhanced the antigen-specific IFN-γ response of CD8+ T cells and generated cytotoxic T lymphocytes (CTL) antitumour responses. CTL responses induced by this formulation resulted in inhibition of tumour progression and longer survival time in the mice TUBO tumour model. The results revealed that the liposomes consist of DSPC/DSPG/Chol/DOPE could be suitable candidates for vaccine delivery of E75 peptide for the prevention and therapy of HER2-positive breast cancer and merit further investigation.  相似文献   

11.
To prolong the biological half-life of streptokinase, a thrombolytic agent, streptokinase-bearing liposome with and distearolyphosphatidyl ethanolamine-N-poly (ethylene glycol) 2000 (DSPE-PEG 2000) was prepared and evaluated. Streptokinase-bearing liposomes composed of distearolyphosphatidylcholine (DSPC), cholesterol and cholesterol-3-sulfate with DSPE-PEG 2000 was prepared by the freeze-thawing method and administered via femoral vein to rats (15000 IU/kg). The activity of streptokinase in plasma was determined by the method based on the amidolytic activity of streptokinase-plasminogen complex. Pharmacokinetic parameters on streptokinase incorporated in liposomes were compared with those of streptokinase alone. The T1/2 and AUC of streptokinase incorporated in DSPC-PEG liposome increased 16.3- and 6.1-fold, respectively, compared with those of streptokinase alone. Streptokinase-bearing long-circulating liposome could increase the circulation time of streptokinase in blood and expect longer thrombolytic activity compared with streptokinase alone.  相似文献   

12.
pH-sensitive liposomes--principle and application in cancer therapy   总被引:1,自引:0,他引:1  
The purpose of this review is to provide an insight into the different aspects of pH-sensitive liposomes. The review consists of 6 parts: the first introduces different types of medications made in liposomal drug delivery to overcome several drawbacks; the second elaborates the development of pH-sensitive liposomes; the third explains diverse mechanisms associated with the endocytosis and the cytosolic delivery of the drugs through pH-sensitive liposomes; the fourth describes the role and importance of pH-sensitive lipid dioleoylphosphatidylethanolamine (DOPE) and research carried on it; the fifth explains successful strategies used so far using the mechanism of pH sensitivity for fusogenic activity; the final part is a compilation of research that has played a significant role in emphasizing the success of pH-sensitive liposomes as an efficient drug delivery system in the treatment of malignant tumours. pH-Sensitive liposomes have been extensively studied in recent years as an amicable alternative to conventional liposomes in effectively targeting and accumulating anti-cancer drugs in tumours. This research suggests that pH-sensitive liposomes are more efficient in delivering anti-cancer drugs than conventional and long-circulating liposomes due to their fusogenic property. Research focused on the clinical and therapeutic side of pH-sensitive liposomes would enable their commercial utility in cancer treatment.  相似文献   

13.
Cationic liposomes composed of 3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and dioleoylphosphatidylethanolamine (DOPE) (DC-Chol/DOPE liposome, molar ratio, 1:1 or 3:2) prepared by the dry-film method have been often used as non-viral gene delivery vectors. The formulation and preparation of DC-Chol/DOPE liposomes, as well as the formation of their lipoplexes were investigated in an attempt to improve transfection efficiency in vitro. A more efficient transfection in medium with serum was achieved using DC-Chol/DOPE liposomes (molar ratio, 1:2) than those (3:2), and preparation method by a modified ethanol injection than the dry-film. The most efficient DC-Chol/DOPE liposome for gene transfer was molar ratio (1:2) and prepared by a modified ethanol injection method. The enhanced transfection might be related to an increase in the release of DNA in the cytoplasm by the large lipoplex during incubation in optiMEM, not to an increased cellular association with the lipoplex. The use of a modified ethanol injection method might enhance the role of DOPE that is aid in destabilization of the plasma membrane and/or endosome. These findings suggested that cationic liposomes rich in DOPE prepared by a modified ethanol injection method will help to improve the efficacy of liposome vector systems for gene delivery.  相似文献   

14.
pH-sensitive liposomes undergo rapid destabilization under mildly acidic conditions such as those found in endocytotic vesicles. Though this makes them promising drug carriers, their application is limited due to their rapid clearance from circulation by the reticulo-endothelial system. Researchers have therefore used pH-sensitive liposomes that are sterically stabilized by polyethylene glycol (PEG) molecules (stealth liposomes) on the liposome surface. The goal of this study is to bring bio-functionality to pH-sensitive PEGylated liposomes in order to facilitate their potential use as a targeted drug delivery agent. To improve the selectivity of these nanoparticles, we included a targeting moiety, PR_b which specifically recognizes and binds to integrin α(5)β(1) expressing cells. PR_b (KSSPHSRN(SG)(5)RGDSP) is a novel fibronectin-mimetic peptide sequence that mimics the cell adhesion domain of fibronectin. Integrin α(5)β(1) is expressed on several types of cancer cells, including colon cancer, and plays an important role in tumor growth and metastasis. We have thoroughly studied the release of calcein from pH-sensitive PEGylated liposomes by varying the lipid composition of the liposomes in the absence and presence of the targeting peptide, PR_b, and accounting for the first time for the effect of both pH and time (photo-bleaching effect) on the fluorescence signal of calcein. We have demonstrated that we can design PR_b-targeted pH-sensitive PEGylated liposomes, which can undergo destabilization under mildly acidic conditions and have shown that incorporating the PR_b peptide does not significantly affect the pH-sensitivity of the liposomes. PR_b-targeted pH-sensitive PEGylated liposomes bind to CT26.WT colon carcinoma cells that express integrin α(5)β(1), undergo cellular internalization, and release their load intracellularly in a short period of time as compared to other formulations. Our studies demonstrate that PR_b-functionalized pH-sensitive targeted delivery systems have the potential to deliver a payload directly to cancer cells in an efficient and specific manner.  相似文献   

15.
脂质体作为抗肿瘤药物载体的应用研究   总被引:2,自引:0,他引:2  
目前,应用脂质体作为抗肿瘤药物载体已成为趋势。脂质体可明显提高抗肿瘤药物的靶向性,延长药物的作用时间,降低药物毒性。作者对国内外普通脂质体和修饰脂质体(包括长循环脂质体、免疫脂质体、温度敏感脂质体和pH敏感脂质体)的相关文献进行了综述。结果表明,脂质体是抗肿瘤药物的理想载体,在肿瘤治疗中有着广阔的应用前景。  相似文献   

16.
Paramagnetic pH-responsive liposomes have recently been suggested as a promising approach for monitoring by magnetic resonance imaging (MRI) pH changes in tumours. In the present study, the effects of variations in bilayer composition on the relaxometric properties of diacylphosphatidylethanolamine (PE)/dipalmitoylglycerosuccinate (DPSG) liposomal GdDTPA-BMA were investigated both in buffer and blood. A factorial experimental design was used with the variables PE chain length and mol% DPSG. All the relaxometric profiles displayed a semi-sigmoidal shape with a minimum plateau at high pH (r1(min)) and a maximum at low pH (r1(max,E)). Relevant sigmoidal curve fit parameters were evaluated by partial least squares regression. Systematic variations in the relaxometric response (r1(max,E)-r1(min)) were shown for the liposomal systems both in buffer and blood. The pH value at which the r1 was 20% of r1(max,E) relative to r1(min), i.e. pH20, decreased significantly both in buffer and blood as a function of the mol% DPSG. This phenomenon could be understood by the increased surface charge density with increasing mol% DPSG and, hence, higher barrier against liposome aggregation with consequent leakage of contrast agent. Furthermore, the pH relaxometric profiles in blood were shifted laterally to higher, and likely more clinically relevant pH values than the corresponding profiles in buffer. The liposome formulations displayed minimal leakage of contrast agent after prolonged incubation in blood at physiological pH and retained their pH sensitivity after pre-incubation in blood.  相似文献   

17.
Cationic liposomes (CLs) composed of 3β-[N-(N′,N′-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) and dioleoylphosphatidylethanolamine (DOPE) (DC-Chol/DOPE liposomes) have been classified as one of the most efficient gene delivery systems. Our study aims to examine the effect of the molar ratio of DC-Chol/DOPE, PEGylation and serum on the pDNA (plasmid pDNA) and siRNA (small interfering RNA) transfection of DC-Chol/DOPE liposomes. The results showed that the most efficient DC-Chol/DOPE liposomes for pDNA or siRNA delivery were at a 1:2 or 1:1 molar ratio of DC-Chol/DOPE, respectively. The transfection efficiency of DC-Chol/DOPE liposomes increased along with increased weight ratio of DC-Chol/siRNA. However, the pDNA transfection efficiency decreased along with increased weight ratio of DC-Chol/pDNA from 3/1. As expected, PEGylation decreased siRNA and pDNA transfection efficiency of DC-Chol/DOPE liposomes. In PEGylated DC-Chol/DOPE liposomes, increased weight ratio of DC-Chol/pDNA from 3/1 did not lead to higher pDNA transfection efficiency, whereas increased weight ratio of DC-Chol/siRNA resulted in increased siRNA transfection efficiency. Furthermore, the serum did not significantly inhibit the pDNA and siRNA transfection efficiency of DC-Chol/DOPE liposomes. In conclusion, our results elucidated the influence factors of DC-Chol/DOPE liposome transfection and would reveal that siRNA and pDNA transfection mechanisms were different in DC-Chol/DOPE liposomes.  相似文献   

18.
Context: Liposomes are increasingly employed to deliver chemotherapeutic agents, antisense oligonucleotides, and genes to various therapeutic targets.

Objective: The present investigation evaluates the ability of fusogenic pH-sensitive liposomes of rapamycin in increasing its antiproliferative effect on human breast adenocarcinoma (MCF-7) cell line.

Materials and methods: Cholesterol (Chol) and dipalmitoylphosphatidylcholine (DPPC) (DPPC:Chol, 7:3) were used to prepare conventional rapamycin liposomes by a modified ethanol injection method. Dioleoylphosphatidylethanolamine (DOPE) was used to produce fusogenic and pH-sensitive properties in liposomes simultaneously (DPPC:Chol:DOPE, 7:3:4.2). The prepared liposomes were characterized by their size, zeta potential, encapsulation efficiency percent (EE%), and chemical stability during 6 months. The antiproliferative effects of both types of rapamycin liposomes (10, 25, and 50?nmol/L) with optimized formulations were assessed on MCF-7 cells, as cancerous cells, and human umbilical vein endothelial cells (HUVEC), as healthy cells, employing the diphenyltetrazolium bromide (MTT) assay for 72?h.

Results and discussion: The particle size, zeta potential, and EE% of the liposomes were 165?±?12.3 and 178?±?15.4?nm, ?39.6?±?1.3, and ?41.2?±?2.1?mV as well as 76.9?±?2.6 and 76.9?±?2.6% in conventional and fusogenic pH-sensitive liposomes, respectively. Physicochemical stability results indicated that both liposome types were relatively stable at 4?°C than 25?°C. In vitro antiproliferative evaluation showed that fusogenic pH-sensitive liposomes had better antiproliferative effects on MCF-7 cells compared to the conventional liposomes. Conversely, fusogenic pH-sensitive liposomes had less cytotoxicity on HUVEC cell line.  相似文献   

19.
Efficient liposomal therapeutics require high drug loading and low leakage. The objective of this study is to develop a targeted liposome delivery system for combretastatin A4 (CA4), a novel antivascular agent, with high loading and stable drug encapsulation. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, and distearoyl phosphoethanolamine-PEG-2000 conjugate (DSPE-PEG) were prepared by the lipid film hydration and extrusion process. Cyclic arginine-glycine-aspartic acid (RGD) peptides with affinity for alphav beta3-integrins overexpressed on tumor vascular endothelial cells were coupled to the distal end of polyethylene glycol (PEG) on the liposomes sterically stabilized with PEG (non-targeted liposomes; LCLs). Effect of lipid concentration, drug-to-lipid ratio, cholesterol, and DSPE-PEG content in the formulation on CA4 loading and its release from the liposomes was studied. Total liposomal CA4 levels obtained increased with increasing lipid concentration in the formulation. As the drug-to-lipid ratio increased from 10:100 to 20:100, total drug in the liposome formulation increased from 1.05+/-0.11 mg/mL to 1.55+/-0.13 mg/mL, respectively. When the drug-to-lipid ratio was further raised to 40:100, the total drug in liposome formulation did not increase, but the amount of free drug increased significantly, thereby decreasing the percent of entrapped drug. Increasing cholesterol content in the formulation decreased drug loading. In vitro drug leakage from the liposomes increased with increase in drug-to-lipid ratio or DSPE-PEG content in the formulation; whereas increasing cholesterol content of the formulation up to 30 mol-percent, decreased CA4 leakage from the liposomes. Ligand coupling to the liposome surface increased drug leakage as a function of ligand density. Optimized liposome formulation with 100 mM lipid concentration, 20:100 drug-to-lipid ratio, 30 mol-percent cholesterol, 4 mol-percent DSPE-PEG, and 1 mol-percent DSPE-PEG-maleimide content yielded 1.77+/-0.14 mg/mL liposomal CA4 with 85.70+/-1.71% of this being entrapped in the liposomes. These liposomes, with measured size of 123.84+/-41.23 nm, released no significant amount of the encapsulated drug over 48 h at 37 degrees C.  相似文献   

20.
In this work we investigated how the surface charge and the presence of polyethylene glycol (PEG) on liposome carriers affect the delivery of the encapsulated doxorubicin in P-glycoprotein (Pgp)-overexpressing cells. We found that neutral net charge was critical to favour the liposome uptake and decrease the Vmax of doxorubicin efflux. PEG-coating was necessary to increase the Km of doxorubicin for Pgp. In particular the PEGylated phospholipid present in neutral liposomes, i.e. PEGylated distearoyl-phosphatidylethanolamine (DSPE-PEG), was a Pgp allosteric inhibitor, increased doxorubicin Km and inhibited Pgp ATPase activity. Site-directed mutagenesis experiments suggested that the domain centred around glycine 185 of Pgp was necessary for these inhibitory properties of DSPE-PEG and PEGylated neutral liposomes. We conclude that both surface charge and PEGylation must be considered to optimize the doxorubicin delivery within chemoresistant cells. DSPE-PEG-enriched particles may represent promising tools for therapeutic and diagnostic applications in tissues with high levels of Pgp.From the Clinical EditorThese authors investigated how surface charge and PEGylation of liposome carriers affect the delivery of encapsulated doxorubicin to Pgp-overexpressing cells, concluding that both factors need to be considered in order to optimize doxorubicin delivery to chemoresistant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号