首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cigarette smoke contains nicotine, an immunomodulatory component that is thought to affect immune surveillance and increase the progression of diseases. Dendritic cells (DCs) constitute a family of antigen-presenting (APCs) with inherent abilities to sense and translate environmental cues and to shape host immunity. We recently reported on the effects of nicotine on human DCs and proposed a possible mechanism that links cigarette smoke to higher incidences of respiratory tract infection and asthma. To establish the causal relationship between nicotine-induced DC alterations and immunomodulation in vivo, we translated our in vitro human results to the mouse system and studied the direct effects of nicotine exposure on the biological and functional properties of mouse bone marrow (BM) DCs differentiated in vitro from their precursors. We report that while the presence of nicotine in the microenvironment has no direct effect on competent mouse BM-derived DCs function, it promotes the development of mouse BM DC precursors into DCs (thereafter called nicDCs) with a semi-mature phenotype revealed by higher expression of costimulatory molecules CD80, CD86, CD40, MHC II molecules and the lymph node homing receptor, CCR7. Consistent with their maturational status, these nicDCs have reduced capacity for antigen uptake and produce substantially less Th1-promoting cytokine, IL-12, in response to Th1-polarizing adjuvant, lipopolysaccharide (LPS). Interestingly, we found that nicDCs preferentially support the proliferation and differentiation of ovalbumin (OVA)-specific na?ve T cells into effector memory cells, producing significantly less IFN-gamma and more IL-4. These results provide evidence for the similarity in the effects of nicotine on mouse and human DCs, particularly the ability to modulate DC differentiation towards developing Th2 immunity.  相似文献   

2.
3.
Reciprocal induction of the Th1 and Th17 immune responses is essential for optimal protection against Mycobacterium tuberculosis (Mtb); however, only a few Mtb antigens are known to fulfill this task. A functional role for resuscitation‐promoting factor (Rpf) E, a latency‐associated member of the Rpf family, in promoting naïve CD4+ T‐cell differentiation toward both Th1 and Th17 cell fates through interaction with dendritic cells (DCs) was identified in this study. RpfE induces DC maturation by increasing expression of surface molecules and the production of IL‐6, IL‐1β, IL‐23p19, IL‐12p70, and TNF‐α but not IL‐10. This induction is mediated through TLR4 binding and subsequent activation of ERK, p38 MAPKs, and NF‐κB signaling. RpfE‐treated DCs effectively caused naïve CD4+ T cells to secrete IFN‐γ, IL‐2, and IL‐17A, which resulted in reciprocal expansions of the Th1 and Th17 cell response along with activation of T‐bet and RORγt but not GATA‐3. Furthermore, lung and spleen cells from Mtb‐infected WT mice but not from TLR4?/? mice exhibited Th1 and Th17 polarization upon RpfE stimulation. Taken together, our data suggest that RpfE has the potential to be an effective Mtb vaccine because of its ability to activate DCs that simultaneously induce both Th1‐ and Th17‐polarized T‐cell expansion.  相似文献   

4.
Thymic stromal lymphopoietin (TSLP) plays important roles in the pathogenesis of allergic diseases. Whether and how TSLP is involved in the initial priming of T helper type‐2 (Th2) differentiation against harmless antigen remains unclear. Using an intranasal sensitization protocol with OVA and LPS, we showed that TSLP signaling is required for low‐dose LPS‐induced Th2 inflammation, but not for high‐dose LPS‐induced Th1 immunity. We further demonstrated that low‐dose LPS‐activated bone marrow‐derived dendritic cells expressed relatively high Tslp but low Il12a, and were able to prime naïve DO11.10 T cells to differentiate into Th2 cells in a TSLP‐dependent manner. After transfer into wild‐type recipient mice, the low‐dose LPS‐activated OVA‐loaded dendritic cells (DCs) induced airway eosinophilia, but primed neutrophil‐dominated airway inflammation when TSLP‐deficient DCs were used. These studies demonstrate that TSLP released by DCs in response to a low concentration of LPS plays a role in priming Th2 differentiation and thus may serve as a polarizing third signal, in addition to antigen/MHC class II and co‐stimulatory factors, from antigen‐presenting DCs to direct effector T‐cell differentiation.  相似文献   

5.
Alum is the principal vaccine adjuvant for clinical applications but it is a poor inducer of cellular immunity and is not an optimal adjuvant for vaccines where Th1 responses are required for protection. The mechanism underlying the inefficiency of alum in promoting Th1 responses is not fully understood. We show that aluminium hydroxide, aluminium phosphate, and calcium phosphate adjuvants inhibit the secretion of the Th1 polarizing cytokine, IL‐12 by dendritic cells (DCs). Alum selectively inhibited DC expression of the IL‐12p35 subunit and the inhibitory effect results from adjuvant‐induced PI3 kinase signaling. To develop a more effective adjuvant for promoting cell‐mediated immunity, we investigated alternative particulates and found that in contrast to alum, the cationic polysaccharide chitosan did not inhibit IL‐12 secretion. A combination of chitosan and the TLR9 agonist CpG activated the NLRP3 inflammasome and enhanced secretion of IL‐12 and the other key Th1 and Th17‐cell polarizing cytokines. When used as an adjuvant, CpG‐chitosan induced NLRP3‐dependent antigen‐specific Th1 and Th17 responses. A combination of alum and CpG also enhanced Th1 and Th17 responses but was less effective than CpG‐chitosan. Therefore, chitosan is an attractive alternative to alum in adjuvants for vaccines where potent cell‐mediated immunity is required.  相似文献   

6.
T helper type 1 (Th1) cells are responsible for cell-mediated immunity against invading pathogens, while Th2 cells provide help to B cells and control allergic responses. The polarization of na?ve Th cells into Th1 or Th2 subsets is controlled by dendritic cells (DCs) migrating from the periphery to draining lymph nodes. Migrating DCs carry not only antigen-specific 'signal 1' and costimulatory 'signal 2', but also Th-polarizing 'signal 3' that reflects the nature of the pathogen and the character of the infected tissue. Any changes imposed by external factors on the DC lifecycle may result in an inappropriate immune response. Here we show that DCs developed in a nicotinic environment (nicDCs) fail to support the terminal development of effector memory Th1 cells due to their differential expression of costimulatory molecules and lack of IL-12 production. Interestingly, they adopt critical Th1-promoting function necessary to prevent and fight infections only when the total balance of environmental signals strongly favors Th1 immunity. Notably, in a Th2-biased environment, nicDCs provoke stronger than normal Th2 responses which predisposes the development and exacerbation of asthma. These results help explain the two opposing effects of cigarette smoke on respiratory immune defense mechanisms: (a) immunosuppression against infectious agents and (b) exacerbation of asthma.  相似文献   

7.
Th17 cells are a heterogeneous population of pro‐inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune‐mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010–1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN‐γ‐producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL‐17‐producing capacities in the gut in a mouse model of colitis, and in response to TGF‐β and IL‐6 in vitro. TGF‐β induced Runx1, and together with IL‐6 was shown to render the ROR‐γt and IL‐17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co‐produce IL‐17 and IFN‐γ, and consider possible implications of this Th1‐to‐Th17‐cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens.  相似文献   

8.
Background Asthma is an inflammatory disease of the airways that is mediated by Th2 responses. Poly‐γ‐glutamic acid (γ‐PGA) is an extracellular polymeric compound that is synthesized by Bacillus cells. Previously, we found that γ‐PGA promoted Th1 cell development in a manner dependent on antigen‐presenting cells, but inhibited Th2 cell development. Objective To investigate the effect of γ‐PGA on dendritic cells (DCs), and its potential for treating Th2‐mediated allergic asthma. Methods Wild‐type, Toll‐like receptor (TLR)‐2 deficient, and TLR‐4‐defective mice were used. DCs derived from the bone marrow and extracted from the lung were stimulated with γ‐PGA and assayed for the expression of signalling molecules, costimulatory molecules, and cytokines. Mice were sensitized and challenged with ovalbumin (OVA) to induce asthma. They were repeatedly injected intranasally with γ‐PGA before and during the challenge period, and inflammation and structural remodelling of the airways were examined. Results γ‐PGA selectively signalled conventional DCs to activate NF‐κB and mitogen‐activated protein kinase, leading to the up‐regulation of CD86, CD40, and IL‐12, but not IL‐10 and IL‐6. These effects of γ‐PGA were dependent on TLR‐4 and independent of TLR‐2. Importantly, the intranasal administration of γ‐PGA to OVA‐sensitized/challenged mice reduced the airway hyperresponsiveness and allergic inflammation such as leucocyte influx, goblet cell hyperplasia, eosinophilia, and Th2 cytokine production. In addition to lowered IgE titres, the treatment of mice with γ‐PGA significantly reduced the multiplication and Th2 polarization of mediastinal lymph node T cells upon allergen‐specific restimulation. These anti‐asthmatic effects of γ‐PGA were also abolished in TLR‐4‐defective mice. Conclusions and Clinical Relevance Our data indicate that γ‐PGA activates DCs to favour Th1 cell induction through a TLR‐4‐dependent pathway and alleviates pathologic symptoms in a Th2‐biased asthmatic model. These findings highlight the potential of γ‐PGA for the treatment of asthma and other allergic disease in which Th2 polarization plays an important role. Cite this as: K. Lee, S.‐H. Kim, H. J. Yoon, D. J. Paik, J. M. Kim and J. Youn, Clinical & Experimental Allergy, 2011 (41) 1143–1156.  相似文献   

9.
The identification of DC‐derived signals orchestrating activation of Th1 and Th17 immune responses has advanced our understanding on how these inflammatory responses develop. However, whether specific signals delivered by DCs also participate in the regulation of Th2 immune responses remains largely unknown. In this study, we show that administration of antigen‐loaded, IL‐6‐deficient DCs to naïve mice induced an exacerbated Th2 response, characterized by the differentiation of GATA‐3‐expressing T lymphocytes secreting high levels of IL‐4, IL‐5, and IL‐13. Coinjection of wild type and IL‐6‐deficient bone marrow‐derived dendritic cells (BMDCs) confirmed that IL‐6 exerted a dominant, negative influence on Th2‐cell development. This finding was confirmed in vitro, where exogenously added IL‐6 was found to limit IL‐4‐induced Th2‐cell differentiation. iNKT cells were required for optimal Th2‐cell differentiation in vivo although their activation occurred independently of IL‐6 secretion by the BMDCs. Collectively, these observations identify IL‐6 secretion as a major, unsuspected, mechanism whereby DCs control the magnitude of Th2 immunity.  相似文献   

10.
Background Human thymic stromal lymphopoietin (TSLP) is expressed in the human asthmatic lung and activates dendritic cells (DCs) to strongly induce proallergic T‐helper type 2 (Th2) cell responses, suggesting that TSLP plays a critical role in the pathophysiology of human asthma. Th2 cells are predominantly involved in mild asthma, whereas a mixture of Th1 and Th2 cells with neutrophilic inflammation, probably induced by Th17, affects more severe asthmatic disease. Exacerbation of asthmatic inflammation is often triggered by airway‐targeting RNA viral infection; virus‐derived double‐stranded RNA, Toll‐like receptor (TLR)3 ligand, activates bronchial epithelial cells to produce pro‐inflammatory mediators, including TSLP. Objective Because TSLPR‐expressing DCs express TLR3, we examined how the relationship between TSLP and TLR3 ligand stimulation influences DC activation. Methods CD11c+DCs purified from adult peripheral blood were cultured in TLR ligands containing media with or without TSLP and then co‐cultured with allogeneic naïve CD4+T cells. Results CD11c+ DCs responded to a combination of TSLP and TLR3 ligand, poly(I : C), to up‐regulate expression of the functional TSLP receptor and TLR3. Although TSLP alone did not induce IL‐23 production by DCs, poly(I : C) alone primed DCs for the production of IL‐23, and a combination of TSLP and poly(I : C) primed DCs for further production of IL‐23. The addition of poly(I : C) did not inhibit TSLP‐activated DCs to prime naïve CD4+ T cells to differentiate into inflammatory Th2 cells. Furthermore, DCs activated by a combination of TSLP and poly(I : C) primed more naïve CD4+ T cells to differentiate into Th17‐cytokine–producing cells with a central memory T cell phenotype compared with DCs activated by poly(I : C) alone. Conclusions These results suggest that through DC activation, human TSLP and TLR3 ligands promote differentiation of Th17 cells with the central memory T cell phenotype under Th2‐polarizing conditions.  相似文献   

11.
The Notch signalling pathway has recently been linked to T helper 1 (Th1)/T helper 2 (Th2) cell polarization via a mechanism involving differential expression of Notch ligands, Delta-like and Jagged, in antigen-presenting cells. However, whether stimuli other than pathogen-derived factors are involved in the regulation of Notch ligand expression in dendritic cells (DCs) remains unknown. Here, we address the effect of T helper cells (Th1 and Th2) on Delta-like 4 and Jagged 2 expression in bone marrow-derived DCs. We demonstrate that both Th1 and Th2 cells induce Delta-like 4 mRNA expression in DCs, in a process that is, in part, mediated by CD40 signalling. In contrast, only Th2 cells induce a significant increase in Jagged 2 mRNA levels in DCs. Additionally, we show that IL-4, a hallmark Th2 cytokine, plays a role in Jagged 2 expression, as evidenced by the fact that cholera toxin, a Th2-promoting stimulus, induces Jagged 2 mRNA expression in DCs only in the presence of IL-4. Finally, we demonstrate that DCs also express Notch 1 and that this expression is downregulated by IL-4. These data suggest that Notch ligands are differentially regulated in DCs: Delta-like 4 is regulated by T helper cells and by pathogen-derived Th1 stimuli, whereas Jagged 2 is regulated by Th2 cells and pathogen-derived Th2-promoting stimuli. Based on our results, we propose that the positive feedback loop that Th2 cells exert on T cell polarization may involve the induction of Jagged 2 expression in DCs.  相似文献   

12.
Aberrant formation of neutrophil extracellular traps (NETs) is a key feature in rheumatoid arthritis (RA) and plays a pivotal role in disease pathogenesis. However, the mechanism through which NETs shape the autoimmune response in RA remains elusive. In this study, we demonstrate that inhibition of peptidylarginine deiminases activity in collagen‐induced arthritis (CIA) mouse model significantly reduces NET formation, attenuates clinical disease activity, and prevents joint destruction. Importantly, peptidylarginine deiminase 4 blocking markedly reduces the frequency of collagen‐specific IFN‐γ‐producing T helper 1 (Th1) cells in the draining lymph nodes of immunized mice. Exposure of dendritic cells (DCs) to CIA‐derived NETs induces DC maturation characterized by significant upregulation of costimulatory molecules, as well as elevated secretion of IL‐6. Moreover, CIA‐NET‐treated DCs promote the induction of antigen‐specific Th1 cells in vitro. Finally, NETs from RA patients show an increased potential to induce the maturation of DCs from healthy individuals, corroborating the findings obtained in CIA mouse model. Collectively, our findings delineate an important role of NETs in the induction and expansion of Th1 pathogenic cells in CIA through maturation of DCs and reveal a novel role of NETs in shaping the RA‐autoimmune response that could be exploited therapeutically.  相似文献   

13.
Dendritic cells (DCs) are antigen-presenting cells specialized to activate naive T lymphocytes and initiate primary immune responses. The different classes of specific immune responses are driven by the biased development of antigen-specific helper T cell subsets - that is, Th1, Th2, and Th17 cells - that activate different components of cellular and humoral immunity. DCs reside in an immature state in many nonlymphoid tissues such as the skin or airway mucosa which are highly exposed to allergens, pathogens, and chemicals. T cell receptor stimulation with costimulation allows naive Th cells to develop into effector cells, normally accompanied by high-level expression of selective sets of cytokines. The balance of these cytokines and the resulting class of immune responses depend on the conditions under which DCs are primed. Immunomodulators such as lipopolysaccharides/forskolin/curdlan change the nature of DCs to induce Th1/Th2/Th17 cells thereby designated Th1/Th2/Th17 adjuvants. We have recently found that such activities can be scrutinized by using mixed lymphocyte reaction, cAMP, and differential expression of Notch ligand isoforms. Application of these methods for the analyses of atopic dermatitis and experimental autoimmune encephalomyelitis will be discussed.  相似文献   

14.
Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T‐cell responses towards tolerance. However, the role of LSECs in the regulation of T‐cell‐induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro‐inflammatory Th1‐cell differentiation in mice. Using in vitro co‐culture systems and subsequent cytokine analysis, we showed that LSECs induced high amounts of the anti‐inflammatory cytokine IL‐10 in developing Th1 cells. These LSEC‐stimulated Th1 cells had no pro‐inflammatory capacity in vivo but instead actively suppressed an inflammatory Th1‐cell‐induced delayed‐type hypersensitivity reaction. Blockage of IL‐10 signaling in vivo inhibited immunosuppressive activity of LSEC‐stimulated Th1 cells. We identified the Notch pathway as a mechanism how LSECs trigger IL‐10 expression in Th1 cells. LSECs expressed high levels of the Delta‐like and Jagged family of Notch ligands and induced expression of the Notch target genes hes‐1 and deltex‐1 in Th1 cells. Blockade of Notch signaling selectively inhibited IL‐10 induction in Th1 cells by LSECs. Our findings suggest that LSEC‐induced IL‐10 expression in Th1 cells via the Notch pathway may contribute to the control of hepatic inflammatory immune responses by induction of a self‐regulatory mechanism in pro‐inflammatory Th1 cells.  相似文献   

15.
Citation Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T‐cell paradigm in pregnancy. Am J Reprod Immunol 2010 T‐helper (Th) cells play a central role in modulating immune responses. The Th1/Th2 paradigm has now developed into the new Th1/Th2/Th17 paradigm. In addition to effector cells, Th cells are regulated by regulatory T (Treg) cells. Their capacity to produce cytokines is suppressed by immunoregulatory cytokines such as transforming growth factor (TGF)‐β and interleukin (IL)‐10 or by cell‐to‐cell interaction. Here, we will review the immunological environment in normal pregnancy and complicated pregnancy, such as implantation failure, abortion, preterm labor, and preeclampsia from the viewpoint of the new Th1/Th2/Th17 and Treg paradigms.  相似文献   

16.
Differentiation of tissue monocytes into DCs is a critical phase in the development of a competent immune system. We show that in a nicotinic environment, while human monocytes differentiate into DCs (henceforth called nicDCs) with a typical morphology, they display unique phenotype and cytokine profile that adversely affect their function. Despite an increased capacity for receptor-dependent antigen uptake, nicDCs do not express CD1a and fail to fully up-regulate MHCs, molecules essential for their antigen-presenting function. Additionally, in response to bacterial antigen LPS, maturing nicDCs hardly express the chemotactic cytokine receptor 7 required for their entry into lymphatic vessels. Furthermore, in parallel with their differential expression of costimulatory molecules CD80 and CD86 and lack of IL-12, nicDCs display profoundly reduced Th1 promoting capacity. These findings thus indicate that nicotine impedes the development of cell-mediated immunity by skewing DC differentiation. These effects of nicotinic environment on DC differentiation may contribute to the increased risks of respiratory tract infection and various cancers in smokers.  相似文献   

17.
CD4+ T‐helper (Th) cells reactive against myelin antigens mediate the mouse model experimental autoimmune encephalomyelitis (EAE) and have been implicated in the pathogenesis of multiple sclerosis (MS). It is currently debated whether encephalitogenic Th cells are heterogeneous or arise from a single lineage. In the current study, we challenge the dogma that stimulation with the monokine IL‐23 is universally required for the acquisition of pathogenic properties by myelin‐reactive T cells. We show that IL‐12‐modulated Th1 cells readily produce IFN‐γ and GM‐CSF in the CNS of mice and induce a severe form of EAE via an IL‐23‐independent pathway. Th1‐mediated EAE is characterized by monocyte‐rich CNS infiltrates, elicits a strong proinflammatory cytokine response in the CNS, and is partially CCR2 dependent. Conversely, IL‐23‐modulated, stable Th17 cells induce EAE with a relatively mild course via an IL‐12‐independent pathway. These data provide definitive evidence that autoimmune disease can be driven by distinct CD4+ T‐helper‐cell subsets and polarizing factors.  相似文献   

18.
IL‐23 but not IL‐12 is essential for the development of autoimmune tissue inflammation in mice. Conversely, IL‐12 and IL‐23 impact on the polarization of Th1 and Th17 cells, respectively. While both polarized T helper populations can mediate autoimmune inflammation, their redundancy in the pathogenesis of EAE indicates that IL‐23 exerts its crucial influence on the disease independent of its T helper polarizing capacity. To study the impact of IL‐23 and IL‐12 on the behavior of encephalitogenic T cells in vivo, we generated BM‐chimeric mice in which we can trace individual populations of IL‐23 or IL‐12 responsive T helper cells during EAE. We observed that T cells, which lack IL‐12Rβ1 (no IL‐12 and IL‐23 signaling), fail to invade the CNS and do not acquire a Th17 phenotype. In contrast, loss of IL‐12 signaling prevents Th1 polarization but does not prevent T‐cell entry into the CNS. The loss of IL‐12R engagement does not appear to alter T‐cell expansion but leads to their accumulation in secondary lymphoid organs. We found that IL‐23 licenses T cells to invade the target tissue and to exert their effector function, whereas IL‐12 is critical for Th1 differentiation, but does not influence the pathogenic capacity of auto‐reactive T helper cells in vivo.  相似文献   

19.
Mannan derived from fungal cell walls have potential uses as immunomodulating agents and vaccine adjuvants. Immunization with antigen conjugated to oxidized mannan (OM) or reduced mannan (RM) have induced differential immune responses in mice. Yet, the adjuvant effect and differences in molecular profiles of OM and RM on APCs is unresolved. Here, we investigated the response of mouse bone marrow‐derived DCs to OM and RM. OM and RM stimulated DCs to produce differential Th1/Th2‐inducing cytokines in vitro. OM and RM‐activated DCs stimulated allogeneic T‐cell Th1 and Th2 polarization reaction. OM instruct DCs to stimulate Th1 responses via IL‐12p70 production, which depends on the phosphorylation of p38, RM barely induce IL‐12p70, but IL‐10 and IL‐4, and magnitude of ERK phosphorylation, which results in a Th2 bias. These findings indicate that OM and RM were potent adjuvant capable of directly initiating DC activation Th1 and Th2 polarization respectively.  相似文献   

20.
Dendritic cells (DCs) activate T cells and regulate their differentiation into T helper cell type 1 (Th1) and/or Th2 cells. To identify DCs with differing abilities to direct Th1/Th2 cell differentiation, we cultured mouse bone marrow progenitors in granulocyte macrophage-colony stimulating factor (GM), GM + interleukin (IL)-4, or GM + IL-15 and generated three distinct DC populations. The GM + IL-4 DCs expressed high levels of CD80/CD86 and major histocompatibility complex (MHC) class II and produced low levels of IL-12p70. GM and GM + IL-15 DCs expressed low levels of CD80/CD86 and MHC class II. The GM + IL-15 DCs produced high levels of IL-12p70 and interferon (IFN)-gamma, whereas GM DCs produced only high levels of IL-12p70. Naive T cells stimulated with GM + IL-4 DCs secreted high levels of IL-4 and IL-5 in addition to IFN-gamma. In contrast, the GM + IL-15 DCs induced higher IFN-gamma production by T cells with little or no Th2 cytokines. GM DCs did not induce T cell polarization, despite producing large amounts of IL-12p70 following activation. A similar pattern of T cell activation was observed after in vivo administration of DCs. These data suggest that IL-12p70 production alone, although necessary for Th1 differentiation, is not sufficient to induce Th1 responses. These studies have implications for the use of DC-based vaccines in immunotherapy of cancer and other clinical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号