首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The distribution and synaptic clustering of glutamate receptors (GluRs) were studied in the inner plexiform layer (IPL) of the macaque monkey retina by using subunit specific antisera. A punctate immunofluorescence pattern was observed in the IPL for all subunits tested, and electron microscopy confirmed that the immunoreactive puncta represent clustering of receptors at sites postsynaptic to the bipolar cell ribbon synapses (dyads). Usually only one of the two postsynaptic processes at the dyads expressed a given subunit. Immunoreactive GluR2, GluR2/3, and GluR4 puncta were found at high density throughout the IPL and are probably expressed at every dyad. The GluR1 subunit was expressed at lower density. The N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR1C2' were restricted to synapses localized in two broad bands in the center of the IPL. They were often colocalized with GluR2/3 and GluR4 subunits. The orphan receptor subunits delta 1/2 predominated in three horizontal bands. The kainate receptor subunits GluR6/7 were clustered in large postsynaptic densities adjacent to bipolar cell axon terminals but lacking a synaptic ribbon on the presynaptic side. This might represent a conventional synapse made by a bipolar axon terminal. The results suggest that GluR2/3 and GluR4, together with NMDA receptors, are preferentially expressed on ganglion cell dendrites, whereas kainate receptors and the delta 1/2 subunits are mostly localized on amacrine cell processes.  相似文献   

2.
In the retina the segregation of different aspects of visual information starts at the first synapse in signal transfer from the photoreceptors to the second-order neurons, via the neurotransmitter glutamate. We examined the distribution of the four AMPA glutamate receptor subunits GluR1-GluR4 at the photoreceptor synapses in mouse and rat retinae by light and immunoelectron microscopy and serial section reconstructions. On the dendrites of OFF-cone bipolar cells, which make flat, noninvaginating contacts postsynaptic at cone synaptic terminals, the subunits GluR1 and GluR2 were predominantly found. Horizontal cell processes postsynaptic at both rod and cone synaptic terminals preferentially expressed the subunits GluR2, GluR2/3 and GluR4. An intriguing finding was the presence of GluR2/3 and GluR4 subunits on dendrites of putative rod bipolar cells, which are thought to signal through the sign-inverting metabotropic glutamate receptor 6, mGluR6. Furthermore, at the rod terminals, horizontal cell processes and rod bipolar cell dendrites showed labelling for the AMPA receptor subunits at the ribbon synaptic site or perisynaptically at their site of invagination into the rod terminal. The wide distribution of AMPA receptor subunits at the photoreceptor synapses suggests that AMPA receptors play an important role in visual signal transfer from the photoreceptors to their postsynaptic partners.  相似文献   

3.
The mammalian retina encodes visual information in dim light using rod photoreceptors and a specialized circuit: rods→rod bipolar cells→AII amacrine cell. The AII amacrine cell uses sign-conserving electrical synapses to modulate ON cone bipolar cell terminals and sign-inverting chemical (glycinergic) synapses to modulate OFF cone cell bipolar terminals; these ON and OFF cone bipolar terminals then drive the output neurons, retinal ganglion cells (RGCs), following light increments and decrements, respectively. The AII amacrine cell also makes direct glycinergic synapses with certain RGCs, but it is not well established how many types receive this direct AII input. Here, we investigated functional AII amacrine→RGC synaptic connections in the retina of the guinea pig (Cavia porcellus) by recording inhibitory currents from RGCs in the presence of ionotropic glutamate receptor (iGluR) antagonists. This condition isolates a specific pathway through the AII amacrine cell that does not require iGluRs: cone→ON cone bipolar cell→AII amacrine cell→RGC. These recordings show that AII amacrine cells make direct synapses with OFF Alpha, OFF Delta and a smaller OFF transient RGC type that co-stratifies with OFF Alpha cells. However, AII amacrine cells avoid making synapses with numerous RGC types that co-stratify with the connected RGCs. Selective AII connections ensure that a privileged minority of RGC types receives direct input from the night-vision pathway, independent from OFF bipolar cell activity. Furthermore, these results illustrate the specificity of retinal connections, which cannot be predicted solely by co-stratification of dendrites and axons within the inner plexiform layer.  相似文献   

4.
We used specific antibodies against two postsynaptic density proteins, GRIP (glutamate receptor interacting protein) and ABP (AMPA receptor-binding protein), to study their distribution in the rat retina. In the central nervous system, it has been shown that both proteins bind strongly to the AMPA glutamate receptor (GluR) 2/3 subunits, but not other GluRs, through a set of three PDZ domains. Western blots detected a single GRIP protein that was virtually identical in retina and brain, whereas retinal ABP corresponded to only one of three ABP peptides found in brain. The retinal distributions of GluR2/3, GRIP, and ABP immunoreactivity (IR) were similar but not identical. GluR2/3 immunoreactivity (IR) was abundant in both plexiform layers and in large perikarya. ABP IR was concentrated in large perikarya but was sparse in the plexiform layers, whereas GRIP IR was relatively more abundant in the plexiform layers than in perikarya. Immunolabel for these three antibodies consisted of puncta < or = 0.2 microm in diameter. The cellular localization of GRIP and ABP IR was examined by double labeling subclasses of retinal neuron with characteristic marker proteins, e.g., calbindin. GRIP, ABP, and GluR2/3 IR were detected in horizontal cells, dopaminergic and glycinergic AII amacrine cells and large ganglion cells. Immunolabel was absent in rod bipolar and weak or absent in cholinergic amacrine cells. By using the tyramide method of signal amplification, a colocalization of GluR2/3 was found with either GRIP or ABP in horizontal cell terminals, and perikarya of amacrine and ganglion cells. Our results show that ABP and GRIP colocalize with GluR2/3 in particular subsets of retinal neuron, as was previously established for certain neurons in the brain.  相似文献   

5.
The AII amacrine cell, a unique rod signal integrator passing through the cone bipolar cell to ganglion cells, uses parvalbumin as a transducer of cytosolic calcium ion signals in the mammalian retina. For clarification of whether AII amacrine cell network contributes to the early neuropathogenesis of diabetic retinopathy, this study first analyzed alteration of parvalbumin expression in experimental diabetic retinas using immunohistochemical methods. Parvalbumin immunoreactivity was found in AII amacrine cells, some amacrine cells of a wide-field type, and displaced amacrine cells of the normal rat retina. During diabetes, cell density of each parvalbumin immunoreactive amacrine cell type showed no large changes despite decrease in immunoreactivity especially in AII amacrine cells. In addition to these parvalbumin immunoreactive amacrine cell types, a type of cone bipolar cells co-expressing glutamate transporter 1b and connecting electrically with AII amacrine cells appeared clearly by 4 weeks of diabetes, and thereafter sharply increased in number to that of AII amacrine cells. Protein levels of parvalbumin throughout the diabetic retinas also showed no large changes, except a transitional slight increase at 4 weeks of diabetes. These results suggest that the parvalbumin expression propagates from AII amacrine cells to a type of cone bipolar cell through electrical synapses due to dysfunction of biased mechanism in calcium ion buffering, caused by diabetic injury, and thus AII amacrine cells are closely involved in neuropathogenesis of ongoing diabetic retinopathy.  相似文献   

6.
Synaptic vesicle protein 2 (SV2), a ubiquitous synaptic vesicle protein, is known to participate in the regulation of Ca(2+)-mediated synaptic transmission, although its precise function has not been established. Three SV2 isoforms (SV2A, SV2B, SV2C) have been identified recently, each of which has a unique distribution in brain, suggesting synapse-specific functions. To determine if SV2A, -B, and -C are differentially distributed among synapses in the retina and the sequence of their development, we examined their distribution and expression patterns immunocytochemically in adult and developing mouse retina. The three SV2 isoforms were differentially distributed in the synapses of the two plexiform layers in the adult retina. SV2A was present in cone, but not rod, terminals in the outer plexiform layer (OPL) and in many synaptic terminals in the inner plexiform layer (IPL). SV2B was present only in the ribbon synapse-containing terminals of rod and cone photoreceptors and bipolar cells. SV2C was present in starburst amacrine cells, other conventional synapses in the IPL of unknown origin, and in presumptive interplexiform cell terminals in the INL and OPL. Each SV2 isoform was expressed in its distinct presynaptic terminals early and throughout postnatal development. In addition, SV2A was transiently expressed by developing horizontal cells. The unique distribution of each isoform suggests potentially distinct functions at different types of synapses, with SV2B having ribbon synapse-specific functions, and SV2C being important for the functions of starburst amacrine cells. Rod and cone terminals contain different complements of SV2 isoforms, indicating that ribbon synapses are not all identical. The early expression of SV2 isoforms prior to initiation of synapse formation suggests that they may have important synapse-specific roles during synaptogenesis.  相似文献   

7.
The synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the inner plexiform layer (IPL) of the rabbit retina were reconstructed from electron micrographs of continuous series of thin sections. The AII amacrine cell receives a large synaptic input from the axonal endings of rod bipolar cells in the most vitreal region of the IPL (sublamina b, S5) and a smaller input from axonal endings of cone bipolar cells in the scleral region of the IPL (sublamina a, S1-S2). Amacrine input, localized at multiple levels in the IPL, equals the total number of synapses received from bipolar cells. The axonal endings of cone bipolar cells represent the major target for the chemical output of the AII amacrine cell: these synapses are established by the lobular appendages in sublamina a (S1-S2). Ganglion cell dendrites represent only 4% of the output of the AII amacrine and most of them are also postsynaptic to the cone bipolars which receive AII input. The AII amacrine is not presynaptic to other amacrine cells. Finally, the AII amacrine makes gap junctions with the axonal arborizations of cone bipolars that stratify in sublamina b (S3-S4) as well as with other AII amacrine cells in S5. Therefore, in the rabbit retina 1) the rod pathway consists of five neurons arranged in series: rod-->rod bipolar-->AII amacrine-->cone bipolar-->ganglion cell; 2) it seems unlikely that a class of ganglion cells exists that is exclusively devoted to scotopic functions. In ventral, midperipheral retina, about nine rod bipolar cells converge onto a single AII amacrine, but one of them establishes a much higher proportion of synaptic contacts than the rest. Conversely, each rod bipolar cell diverges onto four AII amacrine cells, but one of them receives the largest fraction of synapses. Thus, within the pattern of convergence and divergence suggested by population studies, preferential synaptic pathways are established.  相似文献   

8.
The distribution of metabotropic glutamate receptors 1alpha (mGluR1alpha) and mGluR2/3 in the cat retina was studied through the use of preembedding immunocytochemistry for light and electron microscopy. Staining for mGluR1alpha in the outer plexiform layer was seen in numerous punctate structures that were identified as rod spherules. Cone pedicles remained unlabeled. A number of amacrine and ganglion cell somata also were stained with processes ramifying throughout the inner plexiform layer. These processes were postsynaptic to cone bipolar cells in both sublaminae, where they comprised one but not both of the postsynaptic elements at dyad contacts. Immunostaining for mGluR2/3 was observed in horizontal cells as well as in numerous amacrine and displaced amacrine cells. Labeled amacrine processes were postsynaptic to cone bipolar cells in both sublaminae but, similar to mGluR1alpha, comprised only one of the postsynaptic elements. Staining for mGluR2/3 also was seen in amacrine processes postsynaptic to rod bipolar terminals; these processes were identified as belonging to type A17 amacrine cells. The distribution patterns indicate that both mGluR1alpha and mGluR2/3 are positioned for postsynaptic function, whereas mGluR1alpha also may contribute to the presynaptic regulation of glutamate release from rod photoreceptors.  相似文献   

9.
Detailed analysis of the synaptic inputs to the primate DB1 bipolar cell has been precluded by the absence of a suitable immunohistochemical marker. Here we demonstrate that antibodies for the EF-hand calcium-binding protein, secretagogin, strongly label the DB1 bipolar cell as well as a mixed population of GABAergic amacrine cells in the macaque retina. Using secretagogin as a marker, we show that the DB1 bipolar makes synaptic contact with both L/M as well as S-cone photoreceptors and only minimal contact with rod photoreceptors. Electron microscopy showed that the DB1 bipolar makes flat contacts at both triad-associated and nontriad-associated positions on the cone pedicle. Double labeling with various glutamate receptor subunit antibodies failed to conclusively determine the subunit composition of the glutamate receptors on DB1 bipolar cells. In the IPL, DB1 bipolar cell axon terminals expressed the glycine receptor, GlyRα1, at sites of contact with AII amacrine cells, suggesting that these cells receive input from the rod pathway.  相似文献   

10.
In the retina, dopamine fulfills a crucial role in neural adaptation to photopic illumination, but the pathway that carries cone signals to the dopaminergic amacrine (DA) cells was controversial. We identified the site of ON‐cone bipolar input onto DA cells in transgenic mice in which both types of catecholaminergic amacrine (CA) cells were labeled with green fluorescent protein or human placental alkaline phosphatase (PLAP). In confocal Z series of retinal whole mounts stained with antibodies to tyrosine hydroxylase (TH), DA cells gave rise to varicose processes that descended obliquely through the scleral half of the inner plexiform layer (IPL) and formed a loose, tangential plexus in the middle of this layer. Comparison with the distribution of the dendrites of type 2 CA cells and examination of neurobiotin‐injected DA cells proved that their vitreal processes were situated in stratum S3 of the IPL. Electron microscope demonstration of PLAP activity showed that bipolar cell endings in S3 established ribbon synapses onto a postsynaptic dyad in which one or both processes were labeled by a precipitate of lead phosphate and therefore belonged to DA cells. In places, the postsynaptic DA cell processes returned a reciprocal synapse onto the bipolar endings. Confocal images of sections stained with antibodies to TH, kinesin Kif3a, which labels synaptic ribbons, and glutamate or GABAA receptors, confirmed that ribbon‐containing endings made glutamatergic synapses onto DA cells processes in S3 and received from them GABAergic synapses. The presynaptic ON‐bipolar cells most likely belonged to the CB3 (type 5) variety. J. Comp. Neurol. 518:2035–2050, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Disabled-1 (Dab1) is an adapter molecule in a signaling pathway, stimulated by reelin, that controls cell positioning in the developing brain. It localizes to selected neurons in the nervous system, including the retina, and Dab1-like immunoreactivity is present in AII amacrine cells in the mouse retina. This study was conducted to characterize Dab1-labeled cells in the guinea pig retina in detail using immunocytochemistry, quantitative analysis, and electron microscopy. Dab1 immunoreactivity is present in a class of amacrine cell bodies located in the inner nuclear layer adjacent to the inner plexiform layer (IPL). These cells give rise to processes that ramify the entire depth of the IPL. Double-labeling experiments demonstrated that these amacrine cells make contacts with the axon terminals of rod bipolar cells and that their processes make contacts with each other via connexin 36 in sublamina b of the IPL. In addition, all Dab1-labeled amacrine cells showed glycine transporter 1 immunoreactivity, indicating that they are glycinergic. The density of Dab1-labeled AII amacrine cells decreased from about 3,750 cells/mm(2) in the central retina to 1,725 cells/mm(2) in the peripheral retina. Dab1-labeled amacrine cells receive synaptic inputs from the axon terminals of rod bipolar cells in stratum 5 of the IPL. From these morphological features, Dab1-labeled cells of the guinea pig retina resemble the AII amacrine cells described in other mammalian species. Thus, the rod pathway of the guinea pig retina follows the general mammalian scheme and Dab1 antisera can be used to identify AII amacrine cells in the mammalian retina.  相似文献   

12.
The distribution and synaptic clustering of N-methyl-D-aspartate (NMDA) receptors were studied in the rat retina by using subunit specific antisera. A punctate immunofluorescence was observed in the inner plexiform layer (IPL) for all subunits tested, and electron microscopy confirmed that the immunoreactive puncta represent labeling of receptors clustered at postsynaptic sites. Double labeling of sections revealed that NMDA receptor clusters within the IPL are composed of different subunit combinations: NR1/NR2A, NR1/NR2B, and in a small number of synapses NR1/NR2A/NR2B. The majority of NMDA receptor clusters were colocalized with the postsynaptic density proteins PSD-95, PSD-93, and SAP 102. Double labeling of the NMDA receptor subunit specific antisera with protein kinase C (PKC), a marker of rod bipolar cells, revealed very little colocalization at the rod bipolar cell axon terminal. This suggests that NMDA receptors are important in mediating neurotransmission within the cone bipolar cell pathways of the IPL. The postsynaptic neurons are a subset of amacrine cells and most ganglion cells. Usually only one of the two postsynaptic processes at the bipolar cell ribbon synapses expressed NMDA receptors. In the outer plexiform layer (OPL), punctate immunofluoresence was observed for the NR1C2; subunit, which was shown by electron microscopy to be localized presynaptically within both rod and cone photoreceptor terminals.  相似文献   

13.
Dopaminergic amacrine cells in the vertebrate retina have long been characterized as 'interamacrine' as they were only found to be pre- and postsynaptic to other amacrine cells. Immunohistochemistry with antibodies directed against tyrosine hydroxylase (TH) revealed synapses from bipolar cell axon terminals to TH-containing neuronal processes at ribbon synapses in the rhesus monkey retina. This finding challenged the notion of the dopaminergic amacrine cell phenotype as 'interamacrine'. In order to determine if the finding of synapses from bipolar cells to dopaminergic amacrine cells could be generalized to other species, we studied the synaptic organization of dopaminergic amacrine cells in the retinas of cats and rabbits with electron microscopy of TH immunoreactivity. In both species, TH-immunoreactive processes were found to be postsynaptic to bipolar axon terminals at ribbon synapses demonstrating that the original finding in the primate may be a significant feature in the retinas of many other vertebrates as well.  相似文献   

14.
In this study we used serial section electron microscopy and three-dimensional reconstructions to examine four midget ganglion cells of the human retina. The four cells were located in the parafoveal retina 2.5 mm or 8 degrees from the foveal center. Both type a (with dendritic trees in distal inner plexiform layer) and type b (with dendritic trees in proximal inner plexiform layer) midget ganglion cells have been studied. These cells have dendritic trees of 7-9 microns diameter, and their complete dendritic trees in the neuropil of the inner plexiform layer can be analyzed, as well as the bipolar cell axon terminals having synaptic input, by a study of 100-150 serial ultrathin sections. Type a midget ganglion cells appear to be in a one-to-one relationship with flat midget bipolar cell axon terminals ending in distal inner plexiform layer. Type b midget ganglion cells are in a one-to-one synaptic relationship with invaginating midget bipolar cell axon terminals in proximal inner plexiform layer. The midget bipolar cells primarily involved with the midget ganglion cells do not contact other ganglion cell dendrites. In other words, midget bipolar cells appear to be in exclusive contact with single midget ganglion cells in the human retina. The midget ganglion cells receive most of their input from their associated midget bipolar cells in the form of ribbon synapses at dyads or monads (55-81 ribbons total), although ribbonless synapses are seen occasionally. In all four midget ganglion cells reconstructed, one or two other bipolar cell axon terminals, presumed to be from wide-field bipolar types, provide 1-3 ribbon synapses each. The number of amacrine synapses upon a midget ganglion cell's dendritic tree is approximately equal to the number of bipolar ribbon inputs (43%-56% bipolar ribbons: 44%-57% amacrine synapses). We assume from our knowledge of response characteristics of ganglion cells in other mammalian retinas (Nelson et al., '78: J. Neurophysiol. 41:427-483), that the type a midget ganglion cell and its exclusive connectivity with a flat midget bipolar cell forms a single cone connected OFF-center pathway, whereas the type b midget ganglion cell with its exclusive connectivity to an invaginating midget bipolar cell forms a single cone connected ON-center pathway, through the retina to the brain.  相似文献   

15.
Fast-acting excitatory neurotransmission in the retina is mediated primarily by glutamate, acting at alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) -selective and kainate-selective receptors. To localize these sites of action, cat retinas were stimulated with either AMPA or kainate and processed for histochemical visualization of cobalt uptake through calcium-permeable channels. Treatment with both agonists resulted in staining of A- and B-type horizontal cells and several types of OFF cone bipolar cells; there was no evidence for staining of ON cone bipolar cells or rod bipolar cells. The subpopulations of OFF cone bipolar cells differed in their responses with two distinct types that stained heavily with cobalt after exposure to AMPA and three different types that were preferentially labeled after exposure to kainate. Although many amacrine and ganglion cells appeared to respond to both agonists, AII amacrine cells were stained after stimulation by AMPA but not by kainate. The OFF cone bipolar cells that exhibit AMPA-stimulated cobalt uptake were found to have a high level of correspondence with cells that show immunocytochemical staining for the AMPA-selective glutamate receptor subunits GluR1 and GluR2/3. Similarly, the cone bipolar cells exhibiting kainate-stimulated cobalt uptake resemble those that are immunoreactive for the kainate subunit GluR5. The results indicate that, whereas many retinal neurons express both AMPA and kainate receptors, AII amacrine cells and subpopulations of OFF cone bipolar cells are limited to the expression of either AMPA or kainate receptors. This differential expression may contribute to the unique character of transmission by these cell types.  相似文献   

16.
An electron microscopic study of the retina of the albino rat, with particular emphasis on the synaptic organization of the inner and outer plexiform layers, has been correlated with specimens impregnated with a modified Golgi technique. The central element of the photoreceptor “triad” in the outer plexiform layer is a bipolar cell dendrite. Two types of synaptic contacts were observed in the inner plexiform layer, the “dyad” ribbon synapse and the conventional synapse. The postsynaptic elements of the “dyad” consisted of an amacrine process and a ganglion cell dendrite. Conventional synapses were made by amacrine processes which were usually presynaptic to bipolar terminals. Reciprocal synapses between processes making ribbon synapses and those making conventional synapses were seen. Golgi technique revealed the presence of two types of bipolar cells, three types of amacrine cells, and one type each of horizontal and ganglion cell. These findings are discussed in relation to reported receptive field organization.  相似文献   

17.
An OFF-center alpha and an OFF-center beta ganglion cell in cat retina, which had been recorded from and intracellularly stained with horseradish peroxidase (HRP) were examined by serial section electron microscopy. We counted synapses and identified presynaptic neurons to the HRP-stained cells in 20 μm radial slices through the centers of their dendritic trees. Presynaptic amacrine and bipolar cells were identified on cytological criteria known from previous studies. The OFF-beta cell with a 62 μm dendritic arbor, restricted to S1 and S2 (sublamina a) of the inner plexiform layer (IPL), received 38% bipolar and 62% amacrine cell synapses. The bipolar input was from both cb1 and cb2 cone bipolar types. Input from three distinct amacrine cell types occurred upon the dendrites, namely from: (1) AII amacrine lobular appendages, (2) large pale amacrine profiles (possibly A2 or A3 cells), and (3) small, dark amacrine types (possibly A8 cells). Large pale amacrine profiles (possibly A13) were found on the cell body and apical dendrite in sublamina b of the IPL. In addition, several amacrine profiles synapsed directly on the sides and base of the cell body in the ganglion cell layer. We estimate that the complete dendritic tree of this beta cell received about 1,000 synapses contributed by 12–14 bipolar cells, 7–10 AII amacrines and 28–41 other amacrine cells. The OFF-alpha cell had a dendritic tree size of 680 × 920 μm. A 250 μm length of two major dendrites stratifying narrowly in S2 of the IPL was reconstructed. Amacrine cells provided most of the synaptic input (80%). This input came from: (1) AII amacrine lobular appendages, (2) amacrines exhibiting large, pale synaptic profiles (possibly A2 or A3 cells), (3) pale amacrines with large mitochondria and a few neurotubules (unknown type), and (4) densely neurotubule-filled amacrine profiles (possibly A19 cells). A large pale amacrine cell type (possibly A13) provided synaptic input to the cell body as a serial synaptic intermediary with rod bipolar cells. Cone bipolar synapses were from only one type of cone bipolar, the cb2 type and formed 20% of the total synaptic input. We estimate that a minimum of 142 bipolar cells, 256 AII amacrine cells and 1,011 other amacrine cells, altogether providing 6,000–10,000 synapses, converged on the dendritic tree of this OFF-alpha cell. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Qin P  Pourcho RG 《Brain research》2001,890(2):211-221
Localizations of the kainate-selective glutamate receptor subunits GluR5, 6, and 7 were studied in the cat retina by light and electron microscopic immunocytochemistry. GluR5 immunoreactivity was observed in the cell bodies and dendrites of numerous cone bipolar cells and ganglion cells. The labeled cone bipolar cells make basal or flat contacts with cone pedicles in the outer plexiform layer, leading to their identification as OFF-center bipolar cells. Reaction product within the inner plexiform layer was observed in processes of ganglion cells at their sites of input from cone bipolar cells. Staining for GluR6 was localized to A- and B-type horizontal cells, numerous amacrine cells, and an occasional cone bipolar cell. The larger ganglion cells were also immunoreactive. As with other GluR molecules, labeling was usually confined to one of the two postsynaptic elements at a cone bipolar dyad contact. Immunoreactivity for GluR7 was very limited and was seen only in a few amacrine and displaced amacrine cells. Findings of this study are consistent with a major role for kainate receptors in mediating OFF pathways in the outer retina with participation in both OFF and ON pathways in the inner retina.  相似文献   

19.
The mechanism underlying transmitter release from retinal horizontal cells is poorly understood. We investigated the possibility of vesicular transmitter release from mammalian horizontal cells by examining the expression of synaptic proteins that participate in vesicular transmitter release at chemical synapses. Using immunocytochemistry, we evaluated the cellular and subcellular distribution of complexin I/II, syntaxin-1, and synapsin I in rabbit retina. Strong labeling for complexin I/II, proteins that regulate a late step in vesicular transmitter release, was found in both synaptic layers of the retina, and in somata of A- and B-type horizontal cells, of gamma-aminobutyric acid (GABA)- and glycinergic amacrine cells, and of ganglion cells. Immunoelectron microscopy demonstrated the presence of complexin I/II in horizontal cell processes postsynaptic to rod and cone ribbon synapses. Syntaxin-1, a core protein of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex known to bind to complexin, and synapsin I, a synaptic vesicle-associated protein involved in the Ca(2+)-dependent recruitment of synaptic vesicles for transmitter release, were also present in the horizontal cells and their processes at photoreceptor synapses. Photoreceptors and bipolar cells did not express any of these proteins at their axon terminals. The presence of complexin I/II, syntaxin-1, and synapsin I in rabbit horizontal cell processes and tips suggests that a vesicular mechanism may underlie transmitter release from mammalian horizontal cells.  相似文献   

20.
In the retina, somatostatin influences neuronal activity likely by acting at one or more somatostatin subtype (sst) receptors. Somatostatin and somatostatin-binding sites are distributed predominantly to the inner retina. The present study has investigated the cellular expression of one of the sst receptors, the sst2A receptor isoform, in the rabbit retina. These studies have used a new polyclonal antibody directed to the predicted C-terminus of mouse sst2A(361–369) receptor. Antibody specificity was tested by preadsorption of the primary antibody with a peptide corresponding to sst2A(361–369). sst2A Receptor immunoreactivity was localized mainly to the plasma membrane of rod bipolar cells and to sparsely occurring, wide-field amacrine cells. Immunostaining in rod bipolar cells was strongest in the axon and axon terminals in lamina 5 of the inner plexiform layer (IPL) and was weakest in the cell body and dendrites. Double-labeling experiments using a monoclonal antibody against protein kinase C (PKC; α and β), a rod bipolar cell-selective marker, showed complete colocalization. In horizontal sections of retina, immunostained bipolar cell bodies had a dense distribution, which is in agreement with the reported distribution of rod bipolar cell bodies. Immunoreactive amacrine cell bodies were located at the border of the inner nuclear layer and the IPL, and thin varicose processes ramified mainly in laminae 2 and 4 of the IPL. These observations indicate that somatostatin influences visual information processing in the retina 1) by acting presynaptically on rod bipolar cell axon terminals and b) by influencing the activity of sparsely occurring amacrine cells. J. Comp. Neurol. 393:93–101, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号