首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cyclin-dependent kinase 1 (Cdk1) kinase dephosphorylation and activation by Cdc25 phosphatase are essential for mitotic entry. Activated Cdk1 phosphorylates Cdc25 and other substrates, further activating Cdc25 to form a positive feedback loop that drives the abrupt G2/mitosis switch. Conversely, mitotic exit requires Cdk1 inactivation and reversal of Cdk1 substrate phosphorylation. This dephosphorylation is mediated, in part, by Clp1/Cdc14, a Cdk1-antagonizing phosphatase, which reverses Cdk1 phosphorylation of itself, Cdc25, and other Cdk1 substrates. Thus, Cdc25 phosphoregulation is essential for proper G2-M transition, and its contributions to cell cycle control have been modeled based on studies using Xenopus and human cell extracts. Because cell extract systems only approximate in vivo conditions where proteins interact within dynamic cellular environments, here, we use Schizosaccharomyces pombe to characterize, both experimentally and mathematically, the in vivo contributions of Cdk1-mediated phosphorylation of Cdc25 to the mitotic transition. Through comprehensive mapping of Cdk1 phosphosites on Cdc25 and characterization of phosphomutants, we show that Cdc25 hyperphosphorylation by Cdk1 governs Cdc25 catalytic activation, the precision of mitotic entry, and unvarying cell length but not Cdc25 localization or abundance. We propose a mathematical model that explains Cdc25 regulation by Cdk1 through a distributive and disordered phosphorylation mechanism that ultrasensitively activates Cdc25. We also show that Clp1/Cdc14 dephosphorylation of Cdk1 sites on Cdc25 controls the proper timing of cell division, a mechanism that is likely due to the double negative feedback loop between Clp1/Cdc14 and Cdc25 that controls the abruptness of the mitotic exit switch.  相似文献   

3.
4.
Our previous studies of DARPP-32 in striatal slices have shown that activation of D1 receptors leads to cAMP-dependent dephosphorylation of Thr-75, the Cdk5 site in DARPP-32. In the current study, we have elucidated a mechanism whereby protein phosphatase 2A (PP2A) is activated by a cAMP/PKA-dependent pathway, leading to dephosphorylation of Thr-75. PP2A consists of a catalytic C subunit that associates with the scaffolding A subunit and a variety of B subunits. We have found that the A/C subunits of PP2A, in association with the B56delta (or PPP2R5D) regulatory subunit, is an active DARPP-32 phosphatase. The B56delta subunit expressed in HEK293 cells forms a heterotrimeric assembly that catalyzes PKA-mediated dephosphorylation at Thr-75 in DARPP-32 (also cotransfected into HEK293 cells). The B56delta subunit is phosphorylated by PKA, and this increases the overall activity of PP2A in vitro and in vivo. Among four PKA-phosphorylation sites identified in B56delta in vitro, Ser-566 was found to be critical for the regulation of PP2A activity. Moreover, Ser-566 was phosphorylated by PKA in response to activation of D1 receptors in striatal slices. Based on these studies, we propose that the B56delta/A/C PP2A complex regulates the dephosphorylation of DARPP-32 at Thr-75, thereby helping coordinate the efficacy of dopaminergic neurotransmission in striatal neurons. Moreover, stimulation of protein phosphatase activity by this mechanism may represent an important signaling pathway regulated by cAMP in neurons and other types of cell.  相似文献   

5.
Proteolysis triggered by the anaphase-promoting complex (APC) is needed for sister chromatid separation and the exit from mitosis. APC is a ubiquitin ligase whose activity is tightly controlled during the cell cycle. To identify factors involved in the regulation of APC-mediated proteolysis, a Saccharomyces cerevisiae GAL-cDNA library was screened for genes whose overexpression prevented degradation of an APC target protein, the mitotic cyclin Clb2. Genes encoding G1, S, and mitotic cyclins were identified, consistent with previous data showing that the cyclin-dependent kinase Cdk1 associated with different cyclins is a key factor for inhibiting APC(Cdh1) activity from late-G1 phase until mitosis. In addition, the meiosis-specific protein kinase Ime2 was identified as a negative regulator of APC-mediated proteolysis. Ectopic expression of IME2 in G1 arrested cells inhibited the degradation of mitotic cyclins and of other APC substrates. IME2 expression resulted in the phosphorylation of Cdh1 in G1 cells, indicating that Ime2 and Cdk1 regulate APC(Cdh1) in a similar manner. The expression of IME2 in cycling cells inhibited bud formation and caused cells to arrest in mitosis. We show further that Ime2 itself is an unstable protein whose proteolysis occurs independently of the APC and SCF (Skp1/Cdc53/F-box) ubiquitin ligases. Our findings suggest that Ime2 represents an unstable, meiosis-specific regulator of APC(Cdh1).  相似文献   

6.
7.
The potential antiproliferative effects of interferon-alpha (IFN-alpha) in the treatment of hepatocellular carcinoma (HCC) are controversial, and the growth inhibitory mechanisms remain poorly understood. Therefore, the current study was designed to delineate the molecular mechanisms responsible for direct antiproliferative actions of IFN-alpha in HCC cells. IFN-alpha receptor expression and signal transduction were examined by RT-PCR, immunoprecipitation, Western analysis, and transient transactivation assays. Effects of IFN-alpha on cell growth and cell-cycle distribution were evaluated based on cell numbers and flow cytometry. Composition and activity of cyclin-dependent kinase complexes were determined by immunoblotting and histone-H1-kinase assays. Expression of IFN-alpha receptors was found in all 3 HCC cell lines. IFN-alpha binding initiated phosphorylation of Jak1 and Tyk2 kinases leading to Stat1/Stat2 activation, nuclear translocation, and transactivation of an ISRE-luciferase reporter gene construct. IFN-alpha treatment resulted in a time- and dose-dependent reduction of proliferation. Cell cycle analysis of G1-synchronized, IFN-alpha-treated HCC cells revealed a substantial delay in S-phase progression but no alteration of G1/S-phase transition or evidence of apoptotic cell death. Reflecting the time course of S-phase accumulation, cell cycle-dependent induction of Cyclin A and Cyclin B was impaired, resulting in reduced activity of Cdk2 and Cdc2 kinases. Furthermore, Cdc25C was selectively down-regulated. IFN-alpha treatment inhibits growth of HCC cells by specifically delaying S-phase progression, most likely because of inhibition of Cyclin A induction, resulting in decreased activity of the associated Cdk2 and Cdc2 kinases.  相似文献   

8.
Exit from mitosis in budding yeast requires inactivation of cyclin-dependent kinases through mechanisms triggered by the protein phosphatase Cdc14. Cdc14 activity, in turn, is regulated by a group of proteins, the mitotic exit network (MEN), which includes Lte1, Tem1, Cdc5, Cdc15, Dbf2/Dbf20, and Mob1. The direct biochemical interactions between the components of the MEN remain largely unresolved. Here, we investigate the mechanisms that underlie activation of the protein kinase Dbf2. Dbf2 kinase activity depended on Tem1, Cdc15, and Mob1 in vivo. In vitro, recombinant protein kinase Cdc15 activated recombinant Dbf2, but only when Dbf2 was bound to Mob1. Conserved phosphorylation sites Ser-374 and Thr-544 (present in the human, Caenorhabditis elegans, and Drosophila melanogaster relatives of Dbf2) were required for DBF2 function in vivo, and activation of Dbf2-Mob1 by Cdc15 in vitro. Although Cdc15 phosphorylated Dbf2, Dbf2-Mob1, and Dbf2(S374A/T544A)-Mob1, the pattern of phosphate incorporation into Dbf2 was substantially altered by either the S374A T544A mutations or omission of Mob1. Thus, Cdc15 promotes the exit from mitosis by directly switching on the kinase activity of Dbf2. We propose that Mob1 promotes this activation process by enabling Cdc15 to phosphorylate the critical Ser-374 and Thr-544 phosphoacceptor sites of Dbf2.  相似文献   

9.
10.
Recent evidence has suggested that human cyclin-dependent kinase 2 (CDK2) is an essential regulator of cell cycle progression through S phase. CDK2 is known to complex with at least two distinct human cyclins, E and A. The kinase activity of these complexes peaks in G1 and S phase, respectively. The vertebrate CDC2/cyclin B1 complex is an essential regulator of the onset of mitosis and is inhibited by phosphorylation of CDC2 on Thr-14 and Tyr-15. In vitro, CDC2/cyclin B1 is activated by treatment with the members of the Cdc25 family of phosphatases. We found that, like CDC2, CDK2 is also phosphorylated on Thr-14 and Tyr-15 and that treatment of cyclin A or cyclin E immunoprecipitates with bacterially expressed Cdc25M2 (the mouse homolog of human CDC25B) increased the histone H1 kinase activity of these immune complexes 5- to 10-fold. Tryptic peptide mapping demonstrated that Cdc25M2 treatment of cyclin A or cyclin B1 immune complexes resulted in the specific dephosphorylation of Thr-14 and Tyr-15 on CDK2 or CDC2, respectively. Thus, we have confirmed that Cdc25 family members comprise a class of dual-specificity phosphatases. Furthermore, our data suggest that the phosphorylation and dephosphorylation of CDKs on Thr-14 and Tyr-15 may regulate not only the G2/M transition but also other transitions in the cell cycle and that individual cdc25 family members may regulate distinct cell cycle checkpoints.  相似文献   

11.
The temporal phosphorylation of cell cycle-related proteins by cyclin-dependent kinases (Cdks) is critical for the correct order of cell cycle events. In budding yeast, CDC28 encodes the only Cdk and its association with various cyclins governs the temporal phosphorylation of Cdk substrates. S-phase Cdk substrates are phosphorylated earlier than mitotic Cdk substrates, which ensures the sequential order of DNA synthesis and mitosis. However, it remains unclear whether Cdk substrates are dephosphorylated in temporally distinct windows. Cdc14 is a conserved protein phosphatase responsible for the dephosphorylation of Cdk substrates. In budding yeast, FEAR (Cdc14 early anaphase release) and MEN (mitotic exit network) activate phosphatase Cdc14 by promoting its release from the nucleolus in early and late anaphase, respectively. Here, we show that the sequential Cdc14 release and the distinct degradation timing of different cyclins provides the molecular basis for the differential dephosphorylation windows of S-phase and mitotic cyclin substrates. Our data also indicate that FEAR-induced dephosphorylation of S-phase Cdk substrates facilitates anaphase progression, revealing an extra layer of mitotic regulation.  相似文献   

12.
Early mitotic inhibitor 1 (Emi1) inhibits the activity of the anaphase promoting complex/cyclosome (APC/C), which is a multisubunit ubiquitin ligase that targets mitotic regulators for degradation in exit from mitosis. Levels of Emi1 oscillate in the cell cycle: it accumulates in the S phase and is rapidly degraded in prometaphase. The degradation of Emi1 in early mitosis is necessary for the activation of APC/C in late mitosis. Previous studies have shown that Emi1 is targeted for degradation in mitosis by a Skp1-Cullin1 F-box protein (SCF) ubiquitin ligase complex that contains the F-box protein beta-TrCP. As with other substrates of SCF(beta-TrCP), the phosphorylation of Emi1 on a DSGxxS sequence is required for this process. However, the protein kinase(s) involved has not been identified. We find that Polo-like kinase 1 (Plk1), a protein kinase that accumulates in mitosis, markedly stimulates the ligation of Emi1 to ubiquitin by purified SCF(beta-TrCP). Cdk1-cyclin B, another major mitotic protein kinase, has no influence on this process by itself but stimulates the action of Plk1 at low, physiological concentrations. Plk1 phosphorylates serine residues in the DSGxxS sequence of Emi1, as suggested by the reduced phosphorylation of a derivative in which the two serines were mutated to nonphosphorylatable amino acids. Transfection with an small interfering RNA duplex directed against Plk1 caused the accumulation of Emi1 in mitotically arrested HeLa cells. It is suggested that phosphorylation of Emi1 by Plk1 is involved in its degradation in mitosis.  相似文献   

13.
Accurate segregation of chromosomes in mitosis is ensured by a surveillance mechanism called the mitotic (or spindle assembly) checkpoint. It prevents sister chromatid separation until all chromosomes are correctly attached to the mitotic spindle through their kinetochores. The checkpoint acts by inhibiting the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets for degradation securin, an inhibitor of anaphase initiation. The activity of APC/C is inhibited by a mitotic checkpoint complex (MCC), composed of the APC/C activator Cdc20 bound to the checkpoint proteins MAD2, BubR1, and Bub3. When all kinetochores acquire bipolar attachment the checkpoint is inactivated, but the mechanisms of checkpoint inactivation are not understood. We have previously observed that hydrolyzable ATP is required for exit from checkpoint-arrested state. In this investigation we examined the possibility that ATP hydrolysis in exit from checkpoint is linked to the action of the Mad2-binding protein p31(comet) in this process. It is known that p31(comet) prevents the formation of a Mad2 dimer that it thought to be important for turning on the mitotic checkpoint. This explains how p31(comet) blocks the activation of the checkpoint but not how it promotes its inactivation. Using extracts from checkpoint-arrested cells and MCC isolated from such extracts, we now show that p31(comet) causes the disassembly of MCC and that this process requires β,γ-hydrolyzable ATP. Although p31(comet) binds to Mad2, it promotes the dissociation of Cdc20 from BubR1 in MCC.  相似文献   

14.
The induction of M phase in eukaryotic cell cycles requires robust activation of Cdc2/cyclin B by Cdc25, which itself is robustly activated by serine/threonine phosphorylations. Although multiple protein kinases that directly activate Cdc25C have been identified, whether the combination of different primary phosphorylations of Cdc25C is sufficient to fully activate Cdc25C has not been determined. By analyzing the GST-Cdc25C phosphorylating activity in Xenopus egg extracts, we previously defined roles of MAPK and Cdc2/cyclin B in partially activating Cdc25C and predicted the presence of another major Cdc25C-activating kinase. In this study, we demonstrate that this missing kinase is RSK2, which phosphorylates three sites in Cdc25C and also partially activates Cdc25C. However, the phosphorylations catalyzed by MAPK, Cdc2, and RSK2 fail to fully activate Cdc25C, suggesting that additional biochemical events are required to fully activate this key cell cycle regulator.  相似文献   

15.
Cells progressing through the cell cycle must commit irreversibly to mitosis without slipping back to interphase before properly segregating their chromosomes. A mathematical model of cell-cycle progression in cell-free egg extracts from frog predicts that irreversible transitions into and out of mitosis are driven by hysteresis in the molecular control system. Hysteresis refers to toggle-like switching behavior in a dynamical system. In the mathematical model, the toggle switch is created by positive feedback in the phosphorylation reactions controlling the activity of Cdc2, a protein kinase bound to its regulatory subunit, cyclin B. To determine whether hysteresis underlies entry into and exit from mitosis in cell-free egg extracts, we tested three predictions of the Novak-Tyson model. (i) The minimal concentration of cyclin B necessary to drive an interphase extract into mitosis is distinctly higher than the minimal concentration necessary to hold a mitotic extract in mitosis, evidence for hysteresis. (ii) Unreplicated DNA elevates the cyclin threshold for Cdc2 activation, indication that checkpoints operate by enlarging the hysteresis loop. (iii) A dramatic "slowing down" in the rate of Cdc2 activation is detected at concentrations of cyclin B marginally above the activation threshold. All three predictions were validated. These observations confirm hysteresis as the driving force for cell-cycle transitions into and out of mitosis.  相似文献   

16.
Defining the links between cell division and DNA replication is essential for understanding normal cell cycle progression and tumorigenesis. In this report we explore the effect of phosphorylation of cell division cycle 6 (Cdc6), a DNA replication initiation factor, by polo-like kinase 1 (Plk1) on the regulation of chromosomal segregation. In mitosis, the phosphorylation of Cdc6 was highly increased, in correlation with the level of Plk1, and conversely, Cdc6 is hypophosphorylated in Plk1-depleted cells, although cyclin A- and cyclin B1-dependent kinases are active. Binding between Cdc6 and Plk1 occurs through the polo-box domain of Plk1, and Cdc6 is phosphorylated by Plk1 on T37. Immunohistochemistry studies reveal that Cdc6 and Plk1 colocalize to the central spindle in anaphase. Expression of T37V mutant of Cdc6 (Cdc6-TV) induces binucleated cells and incompletely separated nuclei. Wild-type Cdc6 but not Cdc6-TV binds cyclin-dependent kinase 1 (Cdk1). Expression of wild-type Plk1 but not kinase-defective mutant promotes the binding of Cdc6 to Cdk1. Cells expressing wild-type Cdc6 display lower Cdk1 activity and higher separase activity than cells expressing Cdc6-TV. These results suggest that Plk1-mediated phosphorylation of Cdc6 promotes the interaction of Cdc6 and Cdk1, leading to the attenuation of Cdk1 activity, release of separase, and subsequent anaphase progression.  相似文献   

17.
Activation of cyclin A-dependent protein kinases during apoptosis.   总被引:39,自引:1,他引:39       下载免费PDF全文
Apoptosis was induced in S-phase-arrested HeLa cells by staurosporine, caffeine, 6-dimethylaminopurine, and okadaic acid, agents that activate M-phase-promoting factor and induce premature mitosis in similarly treated hamster cell lines. Addition of these agents to asynchronously growing HeLa cells or to cells arrested in early G1 phase with lovastatin had little or no effect. S-phase arrest also promoted tumor necrosis factor alpha-induced apoptosis, eliminating the normal requirement for simultaneous cycloheximide treatment. For all of the apoptosis-inducing agents tested, the appearance of condensed chromatin was accompanied by 2- to 7-fold increases in cyclin A-associated histone H1 kinase activity, levels approximating the mitotic value. Where examined, both Cdc2 and Cdk2, the catalytic subunits known to associate with cyclin A, were activated. Stable overexpression of bcl-2 suppressed the apoptosis-inducing activity of all agents tested and reduced the amount of Cdc2 and Cdk2 in the nucleus, suggesting a possible mechanism by which bcl-2 inhibits the chromatin condensation characteristic of apoptosis. These findings suggest that at least one of the biochemical steps required for mitosis, activation of cyclin A-dependent protein kinases, is also an important event during apoptosis.  相似文献   

18.
李文明  吴琦  朱彧 《山东医药》2014,(15):17-19
目的观察异硫氰酸苄酯(BITC)对人脑胶质瘤细胞系U一87MG细胞周期的阻滞作用,并探讨其机制。方法取对数期u.87MG细胞分别以2、5Ixmol/L的BITC处理,应用流式细胞仪检测细胞周期分布,Westernblot—ting法检测细胞周期相关蛋白CyclinB1、Cdc2、p21、Cdc25C及磷酸化Akt(p-Akt)蛋白表达,RT—PCR法检测CyclinB1、Cdc2、p21和Cdc25C的mRNA表达,报告基因技术检测NF—KB、缺氧诱导因子(HIF)和真核细胞翻译起始因子4E(eIF4E)的转录活性。结果BITC作用24h后,u一87MG细胞周期G2/M期比例显著升高,CyclinB1、Cdc2、Cdc25C、p-Akt蛋白表达下调,p21蛋白表达上升,CyclinB1、Cdc2、Cdc25C、p21mRNA表达均显著下降,NF—KB、HIF、elF4E转录活性均显著下降(P均〈0.05)。结论BITC对U.87MG细胞周期有阻滞作用,机制可能与抑制Akt/NF-KB信号转导路径,进而调节细胞周期相关基因表达有关;此为胶质瘤的细胞周期靶点治疗提供了新思路。  相似文献   

19.
Expression of the human T lymphotropic virus type I (HTLV-I) transactivator/oncoprotein, Tax, leads to faulty mitosis as reflected by chromosome aneuploidy, cytokinesis failure, and formation of micro- and multinucleated cells. Here we show that HTLV-I-transformed T cells progress through S/G(2)/M phases of the cell cycle with a delay. This delay is correlated with a decrease in the levels of cyclin A, cyclin B1, and securin. In tax-expressing cells, the Cdc20-associated anaphase promoting complex (APC(Cdc20)), an E3 ubiquitin ligase that controls metaphase to anaphase transition, becomes active before cellular entry into mitosis as evidenced by premature cyclin B1 polyubiquitination and degradation during S/G(2). Consistent with the notion that Tax activates APC(Cdc20) directly, Tax is found to coimmunoprecipitate with Cdc20 and Cdc27/APC3. The APC(Cdc20) activity prematurely activated by Tax remains sensitive to spindle checkpoint inhibition. Unscheduled activation of APC(Cdc20) by Tax provides an explanation for the mitotic abnormalities in HTLV-I-infected cells and is likely to play an important role in the development of adult T cell leukemia.  相似文献   

20.
Estrogen receptor (ER) beta counteracts the activity of ERalpha in many systems. In agreement with this, we show in this study that induced expression of ERbeta in the breast cancer cell line T47D reduces 17beta-estradiol-stimulated proliferation when expression of ERbeta mRNA equals that of ERalpha. Induction of ERbeta reduces growth of exponentially proliferating cells with a concomitant decrease in components of the cell cycle associated with proliferation, namely cyclin E, Cdc25A (a key regulator of Cdk2), p45(Skp2) (a key regulator of p27(Kip1) proteolysis), and an increase in the Cdk inhibitor p27(Kip1). We also observed a reduced Cdk2 activity. These findings suggest a possible role for ERbeta in breast cancer and imply that ERbeta-specific ligands may reduce proliferation of ER-positive breast cancer cells through actions on the G(1) phase cell-cycle machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号