首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms by which diet-induced obesity is associated with insulin resistance are not well established, and no study has until now integrated, in a temporal manner, functional insulin action data with insulin signaling in key insulin-sensitive tissues, including the hypothalamus. In this study, we evaluated the regulation of insulin sensitivity by hyperinsulinemic-euglycemic clamp procedures and insulin signaling, c-jun N-terminal kinase (JNK) activation and insulin receptor substrate (IRS)-1(ser307) phosphorylation in liver, muscle, adipose tissue, and hypothalamus, by immunoprecipitation and immunoblotting, in rats fed on a Western diet (WD) or control diet for 10 or 30 d. WD increased visceral adiposity, serum triacylglycerol, and insulin levels and reduced whole-body glucose use. After 10 d of WD (WD10) there was a decrease in IRS-1/phosphatidylinositol 3-kinase/protein kinase B pathway in hypothalamus and muscle, associated with an attenuation of the anorexigenic effect of insulin in the former and reduced glucose transport in the latter. In WD10, there was an increased glucose transport in adipose tissue in parallel to increased insulin signaling in this tissue. After 30 d of WD, insulin was less effective in suppressing hepatic glucose production, and this was associated with a decrease in insulin signaling in the liver. JNK activity and IRS-1(ser307) phosphorylation were higher in insulin-resistant tissues. In summary, the insulin resistance induced by WD is tissue specific and installs first in hypothalamus and muscle and later in liver, accompanied by activation of JNK and IRS-1(ser307) phosphorylation. The impairment of the insulin signaling in these tissues, but not in adipose tissue, may lead to increased adiposity and insulin resistance in the WD rats.  相似文献   

2.
Insulin resistance is central to the pathophysiology of type 2 diabetes. It has been known for some time that down-regulation and reduced kinase activity of the insulin receptor play a role in insulin resistance; however, it has recently emerged that defects in the intracellular responses to insulin are also very important. We studied the molecular basis of insulin resistance in mice in which injection with gold thioglucose led to the development of hyperphagia, obesity and insulin resistance over a 4-month period. We found that the insulin-stimulated activation of MAP kinase was defective in obese, insulin-resistant mice. Similarly, we investigated insulin-stimulated PI3-kinase activation in the isolated soleus muscle of lean and obese mice, and found a marked reduction in the PI3-kinase activation of obese animals. The magnitude of the effect was greater than the reduction in insulin receptor activation, suggesting that impairment of PI3-kinase activation is a very important element in the development of insulin resistance in obese mice. In keeping with this, we found that the defect in PI3-kinase activation developed in young obese mice before the emergence of overt insulin resistance. We investigated different mechanisms by which defects in the components of the insulin signalling cascade could emerge, including down-regulation and abnormal phosphorylation of signal molecules. In adipocytes from young obese mice in which insulin resistance had not yet developed, we found that there were already marked defects in IRS-1 tyrosine phosphorylation. Increased IRS-1 phosphorylation on serine and threonine residues affects tyrosine phosphorylation. Such a process could contribute to the defective IRS-1 tyrosine phosphorylation in insulin-resistant animals. We found that brief exposure of 3T3-L1 adipocytes to platelet-derived growth factor led to IRS-1 serine/threonine phosphorylation through a PI3-kinase-dependent pathway, and that this prevented phosphorylation of the tyrosine residues of IRS-1. Such a mechanism, induced by growth factors, TNF-alpha or some other agent, may play an important role in the development of insulin resistance in obese mice.  相似文献   

3.
In the present study we have used hypopituitary Ames dwarf mice, which lack GH, prolactin and TSH, to investigate the consequences of the deficiency of these hormones on glucose homeostasis and on the initial components of the insulin signal transduction pathway in the liver. Ames dwarf mice displayed hypersensitivity to insulin since they maintained lower fasting glucose concentrations (73% of control values), had significantly reduced amounts of insulin (58% of control values), and exhibited an increased hypoglycemic response to exogenous insulin. Probably as a result of reduced insulin production, Ames dwarf mice displayed intolerance to glucose. The insulin-stimulated phosphorylation of the insulin receptor (IR) tended to be increased in the liver of Ames dwarf mice, while IR receptor protein content was increased by 38%. Insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2 was increased by 61 and 72% respectively, while IRS-1 and IRS-2 protein levels were increased by 76 and 95%. The insulin-stimulated association of the p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase with IRS-1 was increased by 28%, but unaltered with IRS-2. Interestingly, while the insulin-stimulated phosphotyrosine-derived PI 3-kinase activity was not changed, insulin-stimulated protein kinase B activation was increased by 41% in this tissue. These alterations may account for the insulin hypersensitivity exhibited by these animals. The present findings in long-lived Ames dwarf mice add to the evidence that insulin signaling is importantly related to the regulation of aging and life span.  相似文献   

4.
Mitochondrial dysfunction and type 2 diabetes   总被引:3,自引:0,他引:3  
Insulin resistance plays a major role in the pathogenesis of the metabolic syndrome and type 2 diabetes, and yet the mechanisms responsible for it remain poorly understood. Magnetic resonance spectroscopy studies in humans suggest that a defect in insulin-stimulated glucose transport in skeletal muscle is the primary metabolic abnormality in insulin-resistant patients with type 2 diabetes. Fatty acids appear to cause this defect in glucose transport by inhibiting insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1-associated phosphatidylinositol 3-kinase activity. A number of different metabolic abnormalities may increase intramyocellular and intrahepatic fatty acid metabolites; these include increased fat delivery to muscle and liver as a consequence of either excess energy intake or defects in adipocyte fat metabolism, and acquired or inherited defects in mitochondrial fatty acid oxidation. Understanding the molecular and biochemical defects responsible for insulin resistance is beginning to unveil novel therapeutic targets for the treatment of the metabolic syndrome and type 2 diabetes.  相似文献   

5.
Insulin resistance is a major player in the pathogenesis of the metabolic syndrome and type 2 diabetes, and yet, the mechanisms responsible for it remain poorly understood. Magnetic resonance spectroscopy studies in humans suggest that a defect in insulin-stimulated glucose transport in skeletal muscle is the primary metabolic abnormality in insulin-resistant type 2 diabetics. Fatty acids appear to cause this defect in glucose transport by inhibiting insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1 associated phosphatidylinositol 3-kinase activity. A number of different metabolic abnormalities may increase intramyocellular/intrahepatic fatty acid metabolites; these include increased fat delivery to muscle/liver as a consequence of either excess energy intake or defects in adipocyte fat metabolism and acquired or inherited defects in mitochondrial fatty acid oxidation. Understanding the molecular/biochemical defects responsible for insulin resistance is beginning to unveil novel therapeutic targets for treatment of the metabolic syndrome and type 2 diabetes.  相似文献   

6.
Aim: Chromium is an essential nutrient required for glucose and lipid metabolism. Laboratory and clinical evidences indicate that chromium supplementation may improve insulin sensitivity by enhancing intracellular signalling. Considerable evidence suggests that serine phosphorylation of insulin receptor substrate 1 (IRS1) at 307 residue (IRS1‐Ser307) inhibits insulin signalling and results in peripheral insulin resistance. Therefore, we investigated whether chromium‐associated insulin action was mediated by modulation of IRS1‐Ser307 phosphorylation. Methods: Male KK/HlJ mice (genetically obese and insulin resistant) were supplemented daily with chromium‐containing milk powder or placebo for 7 weeks. In analysing functionally characterized insulin resistance, the changes of blood biochemicals, inflammatory factors and insulin signalling molecules in skeletal muscle were analysed. Results: Using KK mice model, we demonstrated that daily supplementation of trivalent chromium‐containing milk powder reduced serum levels of glucose, insulin and triglycerides, and improved glucose and insulin tolerance. Mechanistic study showed that chromium supplementation activated postreceptor insulin signalling such as increasing IRS1, IRS1 tyrosine phosphorylation, p85α regulatory subunit of phosphatidylinositol 3‐kinase and glucose transporter 4 expression, stimulating Akt activity, downregulating c‐Jun N‐terminal kinase (JNK) activity and decreasing IRS1 ubiquitinization and insulin resistance‐associated IRS1 phosphorylation (IRS1‐Ser307) in skeletal muscle. In addition, chromium supplementation attenuated pro‐inflammatory cytokine expression in both blood circulation and skeletal muscle. Conclusion: Our data suggest that chromium‐containing milk powder supplementation can provide a beneficial effect in diabetic subjects by enhancing insulin signalling in skeletal muscle. The improvement in insulin signalling by chromium was associated with the decreased IRS1‐Ser307 phosphorylation, JNK activity and pro‐inflammatory cytokine production.  相似文献   

7.
Regulation of IRS-2 tyrosine phosphorylation in fasting and diabetes   总被引:3,自引:0,他引:3  
Intracellular insulin signaling involves a series of alternative and complementary pathways created by the multiple substrates of the insulin receptor (IRS) and the various isoforms of the SH2 domain signaling molecules that can interact with substrate. In this study we investigated IRS-1 and IRS-2 tyrosine phosphorylation, their association with PI3-kinase and the phosphorylation of Akt, a serine-threonine kinase situated downstream to PI 3-kinase, in liver and muscle of two animal models of insulin resistance: 72 h of fasting and STZ-diabetic rats. There was an upregulation in insulin-induced IRS-1 and IRS-2 tyrosine phosphorylation and association with PI3-kinase in liver and muscle of both animal models of insulin resistance. However, Akt phosphorylation showed different regulation, increasing in fasting and decreasing in STZ-diabetic rats. Since an important difference between these two animal models of insulin resistance is the plasma glucose levels, we can suggest that in STZ diabetic rats, the reduction in Akt phosphorylation is probably related to hyperglycemia and may certainly contribute to the molecular mechanism of insulin resistance observed in these animals.  相似文献   

8.
Insulin receptor substrate 1 (IRS-1) gene polymorphisms have been identified in type 2 diabetic patients; however, it is unclear how such polymorphisms contribute to the development of diabetes. Here we introduced obesity in heterozygous IRS-1 knockout (IRS-1(+/-)) mice by gold-thioglucose (GTG) injection and studied the impact of reduced IRS-1 expression on obesity-linked insulin resistance. GTG injection resulted in approximately 30% weight gain in IRS-1(+/-) and wild type (WT) mice, compared with saline-injected controls. There was no difference in insulin sensitivity between lean IRS-1(+/-) and lean WT. Elevated fasting insulin levels but no change in fasting glucose were noted in obese IRS-1(+/-) and WT compared with the respective lean controls. Importantly, fasting insulin in obese IRS-1(+/-) was 1.5-fold higher (P<0.05) than in obese WT, and an insulin tolerance test showed a profound insulin resistance in obese IRS-1(+/-) compared with obese WT. The islets of obese IRS-1(+/-) were 1.4-fold larger than those of obese WT. The expression of insulin receptor and IRS-1 and IRS-2 was decreased in obese IRS-1(+/-), which could in part explain the profound insulin resistance in these mice. Our results suggest that IRS-1 is the suspected gene for type 2 diabetes and its polymorphisms could worsen insulin resistance in the presence of other additional factors, such as obesity.  相似文献   

9.
Acute insulin resistance occurs after injury, hemorrhage, infection, and critical illness. However, little is known about the development of this acute insulin-resistant state. In the current study, we found that insulin resistance develops rapidly in skeletal muscle, with the earliest insulin signaling defects at 60 min. However, defects in insulin signaling were measurable even earlier in liver, by as soon as 15 min after hemorrhage. To begin to understand the mechanisms for the development of acute insulin resistance, serine phosphorylation of insulin receptor substrate (IRS)-1 and c-Jun N-terminal kinase phosphorylation/activation was investigated. These markers (and possible contributors) of insulin resistance were increased in the liver after hemorrhage but not measurable in skeletal muscle. Because glucocorticoids are important counterregulatory hormones responsible for glucose homeostasis, a glucocorticoid synthesis inhibitor, metyrapone, and a glucocorticoid receptor antagonist, RU486, were administered to adult rats prior to hemorrhage. In the liver, the defects of insulin signaling after hemorrhage, including reduced tyrosine phosphorylation of the insulin receptor and IRS-1, association between IRS-1 and phosphatidylinositol 3-kinase and serine phosphorylation of Akt in response to insulin were not altered by pretreatment of rats with metyrapone or RU486. In contrast, hemorrhage-induced defects in insulin signaling were dramatically reversed in skeletal muscle, indicating a prevention of insulin resistance in muscle. These results suggest that distinct mechanisms for hemorrhage-induced acute insulin resistance are present in these two tissues and that glucocorticoids are involved in the rapid development of insulin resistance in skeletal muscle, but not in the liver, after hemorrhage.  相似文献   

10.
Palmitate has been shown to induce insulin resistance in skeletal muscle cells. The aim of this study was to investigate the role of the leukocyte common antigen-related (LAR) gene in palmitate-induced insulin resistance in C2C12 cells. A stable C2C12 cell line was generated using LAR short hairpin RNA. The levels of LAR protein and phosphorylation of insulin receptor substrate-1 (IRS1) and Akt were detected by western blot analysis. 2-Deoxyglucose uptake was measured in LAR knockdown and control cells using d-[2-(3)H]glucose. LAR protein level was decreased by 65% in the stable cell line compared with the control cells. Palmitate (0.5?mM) significantly induced LAR mRNA (65%) and protein levels (40%) in myotubes compared with untreated cells. Palmitate significantly reduced insulin-stimulated glucose uptake in both the control and LAR knockdown cells by 33 and 51% respectively. However, LAR depletion improved insulin-stimulated glucose uptake in myotubes treated with palmitate. Furthermore, the inhibition of LAR prevented palmitate-induced decreases in phosphorylation of IRS1(Tyr632) and Akt(Ser473) in C2C12 cells. In conclusion, these results reveal that palmitate induces LAR expression in C2C12 cells. We also provided evidence that the inhibition of LAR attenuates palmitate-induced insulin resistance in myotubes.  相似文献   

11.
In this study, we analyzed the effects of long-term (14 months) caloric restriction (CR) on the first steps of the insulin signaling system in skeletal muscle of normal mice. CR induced a significant decrease in serum insulin and glucose levels, indicating an enhancement of insulin sensitivity. CR reduced the in vivo insulin-induced phosphorylation of the insulin receptor substrate (IRS)-1 by 27%, but this difference was not significant (p =.298). CR reduced insulin receptor (IR) abundance by 34% from the ad libitum values, but this difference did not reach significance (p =.246). The abundance of the p85 regulatory subunit of PI3K and glucose transporter 4 was unaltered after CR. However, IRS-1 abundance was significantly increased by 42% in muscle of mice exposed to CR. These findings indicate that the CR-induced improvement of insulin action in mice is not related to changes in glucose transporter 4, the p85 regulatory subunit of PI3K, or IR abundance in skeletal muscle but might be related to an increase in IRS-1 abundance in this tissue.  相似文献   

12.
13.
A severe restriction of sodium chloride intake has been associated with insulin resistance and obesity. The molecular mechanisms by which the low salt diet (LS) can induce insulin resistance have not yet been established. The c-jun N-terminal kinase (JNK) activity has been involved in the pathophysiology of obesity and induces insulin resistance by increasing inhibitory IRS-1(ser307) phosphorylation. In this study we have evaluated the regulation of insulin signaling, JNK activation and IRS-1(ser307) phophorylation in liver, muscle and adipose tissue by immunoprecipitation and immunoblotting in rats fed with LS or normal salt diet (NS) during 9 weeks. LS increased body weight, visceral adiposity, blood glucose and plasma insulin levels, induced insulin resistance and did not change blood pressure. In LS rats a decrease in PI3-K/Akt was observed in liver and muscle and an increase in this pathway was seen in adipose tissue. JNK activity and IRS-1(ser307) phosphorylation were higher in insulin-resistant tissues. In summary, the insulin resistance, induced by LS, is tissue-specific and is accompanied by activation of JNK and IRS-1(ser307) phosphorylation. The impairment of the insulin signaling in these tissues, but not in adipose tissue, may lead to increased adiposity and insulin resistance in LS rats.  相似文献   

14.
AIM/HYPOTHESIS: We examined insulin signal transduction at the level of insulin receptor substrates (IRS) 1 and 2, phosphatidylinositol (PI) 3-kinase and glucose transport in isolated subcutaneous adipocytes from obese and lean women. METHODS: Glucose transport and insulin signalling were investigated in isolated adipocytes from six obese women (BMI 36-43 kg/m(2)) (before and after 11 days of very low calorie diet) and from six lean women (BMI 22-26 kg/m(2)). RESULTS: Insulin sensitivity of glucose transport was reduced in adipocytes from obese women (p<0.05), with further reductions in basal and maximal insulin-stimulated glucose transport after a very low calorie diet (p<0.05). In obese women, IRS-1 associated PI 3-kinase activity was markedly impaired (p<0.05), whereas, IRS-2 associated PI 3-kinase activity was normal. IRS-1 associated PI 3-kinase activity remained blunted after a very low calorie diet, whereas IRS-2 associated PI 3-kinase activity was increased. GLUT4 protein was reduced by 37% in obese versus lean subjects (p<0.05), and decreased further after a very low calorie diet (from 19+/-4 to 14+/-4 arbitrary units; p<0.05). CONCLUSION/INTERPRETATION: IRS-1 signalling to PI 3-kinase is a site of insulin resistance in adipocytes from obese women, whereas insulin action on IRS-2 is normal. Thus, IRS-1 and IRS-2 undergo differential regulation in adipocytes from obese insulin resistant subjects. Finally, a very low calorie diet is associated with a further impairment in glucose transport in adipose tissue. The defect in glucose transport after a very low calorie diet occurs independent of further defects in insulin signalling at the level of the PI 3-kinase.  相似文献   

15.
Insulin resistance, a hallmark of type 2 diabetes and obesity, is associated with increased activity of MAP and stress-activated protein (SAP) kinases, which results in decreased insulin signaling. Our goal was to investigate the role of MAP kinase phosphatase-4 (MKP-4) in modulating this process. We found that MKP-4 expression is up-regulated during adipocyte and myocyte differentiation in vitro and up-regulated during fasting in white adipose tissue in vivo. Overexpression of MKP-4 in 3T3-L1 cells inhibited ERK and JNK phosphorylation and, to a lesser extent, p38MAPK phosphorylation. As a result, the phosphorylation of IRS-1 serine 307 induced by anisomycin was abolished, leading to a sensitization of insulin signaling with recovery of insulin-stimulated IRS-1 tyrosine phosphorylation, IRS-1 docking with phosphatidylinositol 3-kinase, and Akt phosphorylation. MKP-4 also reversed the effect of TNF-alpha to inhibit insulin signaling; alter IL-6, Glut1 and Glut4 expression; and inhibit insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Overexpression of MKP-4 in the liver of ob/ob mice decreased ERK and JNK phosphorylation, leading to a reduction in fed and fasted glycemia, improved glucose intolerance, decreased expression of gluconeogenic and lipogenic genes, and reduced hepatic steatosis. Thus, MKP-4 has a protective effect against the development of insulin resistance through its ability to dephosphorylate and inactivate crucial mediators of stress-induced insulin resistance, such as ERK and JNK, and increasing MKP-4 activity might provide a therapy for insulin-resistant disorders.  相似文献   

16.
S6K1 has emerged as a critical signaling component in the development of insulin resistance through phosphorylation and inhibition of IRS-1 function. This effect can be triggered directly by nutrients such as amino acids or by insulin through a homeostatic negative-feedback loop. However, the role of S6K1 in mediating IRS-1 phosphorylation in a physiological setting of nutrient overload is unresolved. Here we show that S6K1 directly phosphorylates IRS-1 Ser-1101 in vitro in the C-terminal domain of the protein and that mutation of this site largely blocks the ability of amino acids to suppress IRS-1 tyrosine and Akt phosphorylation. Consistent with this finding, phosphorylation of IRS-1 Ser-1101 is increased in the liver of obese db/db and wild-type, but not S6K1(-/-), mice maintained on a high-fat diet and is blocked by siRNA knockdown of S6K1 protein. Finally, infusion of amino acids in humans leads to the concomitant activation of S6K1, phosphorylation of IRS-1 Ser-1101, a reduction in IRS-1 function, and insulin resistance in skeletal muscle. These findings indicate that nutrient- and hormonal-dependent activation of S6K1 causes insulin resistance in mice and humans, in part, by mediating IRS-1 Ser-1101 phosphorylation.  相似文献   

17.
Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen content increased 2- and 4-fold after 1 and 5 days of exercise, with no change in glycogen synthase expression. Protein expression of the glucose transporter GLUT4 and the insulin receptor increased 2-fold after 1 day, with no further change after 5 days of exercise. Insulin-stimulated receptor tyrosine phosphorylation increased 2-fold after 5 days of exercise. Insulin-stimulated tyrosine phosphorylation of insulin-receptor substrate (IRS) 1 and associated phosphatidylinositol (PI) 3-kinase activity increased 2.5- and 3. 5-fold after 1 and 5 days of exercise, despite reduced (50%) IRS-1 protein content after 5 days of exercise. After 1 day of exercise, IRS-2 protein expression increased 2.6-fold and basal and insulin-stimulated IRS-2 associated PI 3-kinase activity increased 2. 8-fold and 9-fold, respectively. In contrast to IRS-1, IRS-2 expression and associated PI 3-kinase activity normalized to sedentary levels after 5 days of exercise. Insulin-stimulated Akt phosphorylation increased 5-fold after 5 days of exercise. In conclusion, increased insulin-stimulated glucose transport after exercise is not limited to increased GLUT4 expression. Exercise leads to increased expression and function of several proteins involved in insulin-signal transduction. Furthermore, the differential response of IRS-1 and IRS-2 to exercise suggests that these molecules have specialized, rather than redundant, roles in insulin signaling in skeletal muscle.  相似文献   

18.
In type 2 diabetes, there is a defect in the regulation of functional beta-cell mass to overcome high-fat (HF) diet-induced insulin resistance. Many signals and pathways have been implicated in beta-cell function, proliferation and apoptosis. The co-ordinated regulation of functional beta-cell mass by insulin signalling and glucose metabolism under HF diet-induced insulin-resistant conditions is discussed in this article. Insulin receptor substrate (IRS)-2 is one of the two major substrates for the insulin signalling. Interestingly, IRS-2 is involved in the regulation of beta-cell proliferation, as has been demonstrated using knockout mice models. On the other hand, in an animal model for human type 2 diabetes with impaired insulin secretion because of insufficiency of glucose metabolism, decreased beta-cell proliferation was observed in mice with beta-cell-specific glucokinase haploinsufficiency (Gck(+/) (-)) fed a HF diet without upregulation of IRS-2 in beta-cells, which was reversed by overexpression of IRS-2 in beta-cells. As to the mechanism underlying the upregulation of IRS-2 in beta-cells, glucose metabolism plays an important role independently of insulin, and phosphorylation of cAMP response element-binding protein triggered by calcium-dependent signalling is the critical pathway. Downstream from insulin signalling via IRS-2 in beta-cells, a reduction in FoxO1 nuclear exclusion contributes to the insufficient proliferative response of beta-cells to insulin resistance. These findings suggest that IRS-2 is critical for beta-cell hyperplasia in response to HF diet-induced insulin resistance.  相似文献   

19.
OBJECTIVES: Growth Hormone (GH) promotes loss of body fat and causes insulin resistance. It is debated whether reduction of body fat mass during long term growth hormone (GH) administration improves carbohydrate metabolism. To answer this question we assessed carbohydrate handling and tissue specific function of the insulin receptor (IR) and insulin receptor substrate-1 (IRS-1) during prolonged GH treatment of obese rats. METHODS: Body fat % estimated by DEXA scanning, plasma IGF-I, glucose and insulin were studied in 17 months old dietary induced obese rats treated for 4, 21 or 41 days (GH: 4 mg/kg/d or saline total n=90). Adipose tissue, muscle and liver samples were obtained after 21 days and expression and tyrosine phosphorylation of IR and IRS-1 proteins and the degree of IRS-1-Janus Kinase-2 (JAK2) interaction were analyzed by immunoprecipitation and immunoblotting. RESULTS: Forty-one days GH treatment caused the body fat to decline significantly to 20+/-3% (Mean+/-SEM), whereas it remained steady on 51+/-4% in the pair fed group. Insulin levels in response to OGTT were significantly elevated throughout the experiment. IR amount was elevated in adipose tissue but decreased in liver after GH treatment while IR phosphorylation was increased in muscle only. IRS-1 amount was elevated in adipose tissue and muscle while IRS-1 phosphorylation was increased only in liver. The association of IRS-1 with JAK-2 was increased in liver and muscle. CONCLUSIONS: An extensive reduction of fat mass did not improved signs of insulin resistance in GH treated old obese rats. The molecular events associated with GH treatment included tissue specific changes in the function of IR and IRS-1 suggesting the liver to be the primary site of insulin resistance. Furthermore, the association of IRS-1with JAK-2 in the course of GH signaling could present a mechanism for GH to directly induce insulin resistance.  相似文献   

20.
Sugita M  Sugita H  Kaneki M 《Hypertension》2004,44(4):484-489
Insulin resistance is associated with cardiovascular disease. Impaired insulin receptor substrate (IRS)-mediated signal transduction is a major contributor to insulin resistance. Recently, IRS-1 phosphorylation at serine 307 by stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) has been highlighted as a molecular event that causes insulin resistance. We investigated IRS-1-mediated insulin signaling, IRS-1 phosphorylation at serine 307, and SAPK/JNK activation status in the aorta of spontaneously hypertensive rats (SHR) by immunoprecipitation and immunoblotting. Insulin-stimulated tyrosine phosphorylation of insulin receptor and IRS-1 in SHR was decreased to 55% (P<0.01) and 40% (P<0.01) of the levels in Wistar-Kyoto rats (WKY), respectively. Insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activation in SHR was reduced to 28% of the level in WKY (P<0.0001). Immunoblot analysis revealed that phosphorylated IRS-1 at serine 307 in SHR was increased to 261% (P<0.001) of the level in WKY. Phosphorylated (activated) SAPK/JNK in SHR was increased to 223% of the level in WKY (P<0.01). Serine-phosphorylated IRS-1 that was immunoprecipitated from the aorta of SHR was capable of inhibiting in vitro tyrosine phosphorylation by recombinant insulin receptor compared with WKY-derived IRS-1. These findings demonstrate that insulin resistance in the aorta of SHR was associated with elevated IRS-1 phosphorylation at serine 307 and increased SAPK/JNK activation. The present study suggests that increased SAPK/JNK activation may play an important role in the pathogenesis of vascular insulin resistance via inhibitory serine phosphorylation of IRS-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号