首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang D  Holt GE  Velders MP  Kwon ED  Kast WM 《Cancer research》2001,61(15):5857-5860
To identify genes that are differentially up-regulated in prostate cancer of transgenic adenocarcinoma mouse prostate (TRAMP) mice, we subtracted cDNA isolated from mouse kidney and spleen from cDNA isolated from TRAMP-C1 cells, a prostate tumor cell line derived from a TRAMP mouse. Using this strategy, cDNA clones that were homologous to human six-transmembrane epithelial antigen of the prostate (STEAP) and prostate stem cell antigen (PSCA) were isolated. Mouse STEAP (mSteap) is 80% homologous to human STEAP at both the nucleotide and amino acid levels and contains six potential membrane-spanning regions similar to human STEAP. Mouse PSCA (mPsca) shares 65% homology with human PSCA at the nucleotide and amino acid levels. mRNA expression of mSteap and mPsca is largely prostate-specific and highly detected in primary prostate tumors and metastases of TRAMP mice. Both mSteap and mPsca map to chromosome 5. Another known gene coding for mouse prostate-specific membrane antigen (mPsma) is also highly expressed in both primary and metastatic lesions of TRAMP mice. These results indicate that the TRAMP mouse model can be used to effectively identify genes homologous to human prostate-specific genes, thereby allowing for the investigation of their functional roles in prostate cancer. mSteap, mPsca, and mPsma constitute new tools for preventative and/or therapeutic vaccine construction and immune monitoring in the TRAMP mouse model that may provide insights into the treatment of human prostate cancer.  相似文献   

2.
Dubey P  Wu H  Reiter RE  Witte ON 《Cancer research》2001,61(8):3256-3261
Prostate Stem Cell Antigen (PSCA) is a glycosylphosphatidylinositol-anchored cell surface protein that is expressed in normal human prostate and overexpressed in human prostate cancers. To test whether different pathways that generate prostate cancer would affect PSCA expression, a murine model system was developed. Monoclonal antibodies were generated against murine PSCA (mPSCA). mPSCA is expressed on approximately 20% of cells in normal prostate epithelium, and this number decreases with increasing age. In the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of prostate cancer, tumors develop between 19 and 25 weeks of age. Murine PSCA was strongly expressed on approximately 60% of the cells of TRAMP tumors, at an age where the number of PSCA+ cells and the level of expression of PSCA is very low in the normal prostate. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) +/- mice develop a number of different cancers, including prostate cancer. The incidence of prostate cancer is low and occurs after a relatively long latency. Fluorescence-activated cell sorter analysis of prostatic tissue from 11-18-month-old PTEN +/- mice showed elevated numbers of PSCA+ cells in the prostate, and immunohistochemical analysis showed high mPSCA expression in the tumors of these mice. Together, these results show that two distinct mechanisms of carcinogenesis lead to expression of a common target antigen.  相似文献   

3.
To establish optimized conditions for immunity against prostate cancer, we compared the efficacy of multiple approaches in autochthonous and s.c. transgenic adenocarcinoma of the mouse prostate (TRAMP)-based models. Mice immunized with interleukin (IL)-12-containing apoptotic, but not necrotic TRAMP-C2 cell-based, vaccines were resistant to TRAMP-C2 tumor challenge and re-challenge, independently of the route of vaccination (s.c. or i.p.). Administration of gamma-irradiated TRAMP-C2 cells preinfected with adenovirus containing both B7-1 and IL-12 genes, unlike adenovirus containing B7-1 alone, considerably protected C57BL/6 mice from TRAMP-C2 tumor growth and extended the life span of TRAMP mice. Vaccines that included dendritic cells, instead of IL-12, were equally efficient. Whereas injections of ligand-inducible caspase-1- and IL-12-containing adenoviruses cured small s.c. TRAMP-C2 tumors, nanopump-regulated delivery of viruses led to elimination of much larger tumors. The antitumor immune responses involved CD4+-, CD8+-, and natural killer cells and were strengthened by increasing the number of vaccinations. Intraprostatic administration of inducible caspase-1- and IL-12-containing adenoviruses resulted in local cell death and improved survival of adenocarcinoma-bearing TRAMP mice. Thus, tumor cell apoptosis induced by caspase in situ and accompanied by IL-12 is efficient against prostate cancer in a preclinical model.  相似文献   

4.
The aim of this study is to investigate whether an active immunoprophylactic approach combining specific antigens and adjuvant stimuli would be able to inhibit prostate carcinogenesis in transgenic TRAMP mice. A vaccine consisting of allogeneic large T antigen (TAg)-positive SV40-transformed cells combined with systemic recombinant IL-12 was administered to TRAMP mice, starting from when they were still tumor-free at 5-6 weeks of age. The combined vaccine significantly inhibited prostate carcinogenesis, giving a more than doubled median latency time of prostatic tumors (53 weeks in comparison to 26 weeks in control mice). Vaccination with cells alone or IL-12 treatment alone was poorly effective (median latency of 30 and 39 weeks, respectively). The combined vaccine induced a very high CD4 response biased toward the Th1 pathway, with the induction of a humoral response that included TAg-specific antibodies. Therefore, such active immunoprophylactic approach based on the combination of allogeneic SV40 TAg-positive cells and systemic administration of recombinant IL-12 significantly delayed autochthonous urogenital carcinogenesis driven by SV40 TAg in TRAMP mice.  相似文献   

5.
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) are thought to suppress the natural and vaccine-induced immune response against tumor-associated antigens (TAA). Here, we show that Treg accumulate in tumors and tumor-draining lymph nodes of aging transgenic adenocarcinoma of the mouse prostate (TRAMP) male mice, which spontaneously develop prostate cancer. TAA overexpression and disease progression associate also with induction of TAA-specific tolerance. TAA-specific T cells were found in the lymphoid organs of tumor-bearing mice. However, they had lost the ability to release IFN-gamma and kill relevant targets. Neither in vivo depletion of Treg by PC61 monoclonal antibody followed by repeated vaccinations with antigen-pulsed dendritic cells nor the combined treatment with 1-methyl-L-tryptophan inhibitor of the enzyme indoleamine 2,3-dyoxigenase, PC61 antibody, and dendritic cell vaccination restored the TAA-specific immune response. Treg did not seem to control the early phases of tolerance induction, as well. Indeed, depletion of Treg, starting at week 6, the age at which TRAMP mice are not yet tolerant, and prolonged up to week 12, did not avoid tolerance induction. A similar accumulation of Treg was found in the lymph nodes draining the site of dendritic cell vaccination both in TRAMP and wild-type animals. Hence, we conclude that Treg accrual is a phenomenon common to the sites of an ongoing immune response, and in TRAMP mice in particular, Treg are dispensable for induction of tumor-specific tolerance.  相似文献   

6.
We have previously shown that antibodies to CTLA-4, an inhibitory receptor on T cells, can be effective at inducing regression of transplantable murine tumors. In this study, we demonstrate that an effective immune response against primary prostate tumors in transgenic (TRAMP) mice can be elicited using a strategy that combines CTLA-4 blockade and an irradiated tumor cell vaccine. Treatment of TRAMP mice at 14 weeks of age resulted in a significant reduction in tumor incidence (15% versus control, 75%), as assessed 2 months after treatment. Histopathological analysis revealed that treated mice had a lower tumor grade with significant accumulation of inflammatory cells in interductal spaces when treated with anti-CTLA-4 and a granulocyte-macrophage colony-stimulating factor-expressing vaccine. Vaccination of nontransgenic mice with this regimen resulted in marked prostatitis accompanied by destruction of epithelium, indicating that the immune response was, at least in part, directed against normal prostate antigens. These findings demonstrate that this combinatorial treatment can elicit a potent antiprostate response and suggest potential of this approach for treatment of prostate cancer.  相似文献   

7.
CD73 is a cell surface 5'-nucleotidase that converts AMP to adenosine, an immune suppressive molecule. CD73 may promote immune escape in cancer by contributing to the degradation of extracellular ATP released by dying cancer cells in hypoxic tumors or following chemotherapy. However, whether CD73 exerts a critical oncogenic function during tumorigenesis is unknown. In this study, we used genetically deficient mice to investigate its contribution to autochthonous tumor formation. CD73 deficiency suppressed the development of 3-methylcholanthrene (MCA)-induced fibrosarcomas through a mechanism relying upon IFN-γ, natural killer (NK) cells, and CD8(+) T cells. Similarly, CD73 deficiency also suppressed prostate tumorigenesis in TRAMP transgenic mice. Importantly, treatment with an anti-CD73 monoclonal antibody effectively suppressed growth of established MCA-induced tumors or TRAMP-C1 prostate tumors and inhibited the development of TRAMP-C1 lung metastases. The therapeutic activity of anti-CD73 monoclonal antibody against primary tumors was dependent on CD8(+) T cells, whereas its antimetastatic activity was dependent on host CD73 expression independent of T cells or NK cells. Taken together, our findings indicate that CD73 is a critical factor in tumorigenesis and that anti-CD73 antibodies may offer a novel generalized strategy to blunt immune escape and treat cancer.  相似文献   

8.
Immunotherapy may provide an alternative treatment for cancer patients, especially when tumors overexpress antigens that can be recognized by immune cells. The identification of markers and therapeutic targets that are up-regulated in prostate cancer has been important to design new potential treatments for prostate cancer. Among them, the recently identified six-transmembrane epithelial antigen of the prostate (STEAP) is considered attractive due to its overexpression in human prostate cancer tissues. Our study constitutes the first assessment of the in vivo effectiveness of STEAP-based vaccination in prophylactic and therapeutic mouse models. Two delivery systems, cDNA delivered by gene gun and Venezuelan equine encephalitis virus-like replicon particles (VRP), both encoding mouse STEAP (mSTEAP) and three vaccination strategies were used. Our results show that mSTEAP-based vaccination was able to induce a specific CD8 T-cell response against a newly defined mSTEAP epitope that prolonged the overall survival rate in tumor-challenged mice very significantly. This was achieved without any development of autoimmunity. Surprisingly, CD4 T cells that produced IFNgamma, tumor necrosis factor-alpha (TNF-alpha), and interleukin-2 (IL-2) played the main role in tumor rejection in our model as shown by using CD4- and CD8-deficient mice. In addition, the presence of high IL-12 levels in the tumor environment was associated with a favorable antitumor response. Finally, the therapeutic effect of STEAP vaccination was also assessed and induced a modest but significant delay in growth of established, 31 day old tumors. Taken together, our data suggest that vaccination against mSTEAP is a viable option to delay tumor growth.  相似文献   

9.
Prostate stem cell antigen (PSCA) is a recently defined homologue of the Thy-1/Ly-6 family of glycosylphosphatidylinositol (GPI)-anchored cell surface antigens. PSCA mRNA is expressed in the basal cells of normal prostate and in more than 80% of prostate cancers. The purpose of the present study was to examine PSCA protein expression in clinical specimens of human prostate cancer. Five monoclonal antibodies were raised against a PSCA-GST fusion protein and screened for their ability to recognize PSCA on the cell surface of human prostate cancer cells. Immunohistochemical analysis of PSCA expression was performed on paraffin-embedded sections from 25 normal tissues, 112 primary prostate cancers and nine prostate cancers metastatic to bone. The level of PSCA expression in prostate tumors was quantified and compared with expression in adjacent normal glands. The antibodies detect PSCA expression on the cell surface of normal and malignant prostate cells and distinguish three extracellular epitopes on PSCA. Prostate and transitional epithelium reacted strongly with PSCA. PSCA staining was also seen in placental trophoblasts, renal collecting ducts and neuroendocrine cells in the stomach and colon. All other normal tissues tested were negative. PSCA protein expression was identified in 105/112 (94%) primary prostate tumors and 9/9 (100%) bone metastases. The level of PSCA expression increased with higher Gleason score (P=0.016), higher tumor stage (P=0.010) and progression to androgen-independence (P=0. 021). Intense, homogeneous staining was seen in all nine bone metastases. PSCA is a cell surface protein with limited expression in extraprostatic normal tissues. PSCA expression correlates with tumor stage, grade and androgen independence and may have prognostic utility. Because expression on the surface of prostate cancer cells increases with tumor progression, PSCA may be a useful molecular target in advanced prostate cancer.  相似文献   

10.
Identification of TAAs recognized by CD8(+) CTLs paved the way for new concepts in cancer therapy. In view of the heterogeneity of tumors and their diverse escape mechanisms, CTL-based cancer therapy largely depends on an appropriate number of TAAs. In prostate cancer, the number of antigens defined as suitable targets of CTLs remains rather limited. PSCA is widely distributed in prostate cancer. In this report, we define immunogenic peptides of PSCA which are recognized by circulating CD8(+) T cells from prostate cancer patients and able to activate CTLs in vitro. Screening the amino acid sequence of PSCA for peptides containing a binding motif for HLA-A*0201 resulted in 8 candidate peptides. Specificity and affinity of peptide binding were verified in a competition assay. Frequencies of CD8(+) T lymphocytes reactive against selected epitopes were determined in the blood of prostate cancer patients using the ELISPOT assay. Increased frequencies were revealed for CD8(+) T cells recognizing the peptides ALQPGTALL and AILALLPAL. CTLs from prostate cancer patients were raised against these 2 peptides in vitro when presented by autologous DCs. They specifically recognized peptide-pulsed T2 target cells and prostate cancer cells that were HLA-A*0201- and PSCA-positive, indicating that these peptides were naturally generated by tumor cells. These data suggest that PSCA is a promising target for the immunotherapy of prostate cancer.  相似文献   

11.
Chung AC  Zhou S  Liao L  Tien JC  Greenberg NM  Xu J 《Cancer research》2007,67(12):5965-5975
Although the amplified-in-breast cancer 1 (AIB1; SRC-3, ACTR, or NCoA3) was defined as a coactivator for androgen receptor (AR) by in vitro studies, its role in AR-mediated prostate development and prostate cancer remained unexplored. We report here that AIB1 is expressed in the basal and stromal cells but not in the epithelial cells of the normal mouse prostates. AIB1 deficiency only slightly delayed prostate growth and had no effect on androgen-dependent prostate regeneration, suggesting an unessential role of AIB1 in AR function in the prostate. Surprisingly, when prostate tumorigenesis was induced by the SV40 transgene in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice, AIB1 expression was observed in certain epithelial cells of the prostate intraepithelial neoplasia (PIN) and well-differentiated carcinoma and in almost all cells of the poorly differentiated carcinoma. After AIB1 was genetically inactivated in AIB1-/-/TRAMP mice, the progression of prostate tumorigenesis in most AIB1-/-/TRAMP mice was arrested at the well-differentiated carcinoma stage. Wild-type (WT)/TRAMP mice developed progressive, multifocal, and metastatic prostate tumors and died between 25 and 34 weeks. In contrast, AIB1-/-/TRAMP mice only exhibited PIN and early-stage well-differentiated carcinoma by 39 weeks. AIB1-/-/TRAMP prostates showed much lower cell proliferation than WT/TRAMP prostates. Most AIB1-/-/TRAMP mice could survive more than 35 weeks and died with other types of tumors or unknown reasons. Our results indicate that induction of AIB1 expression in partially transformed epithelial cells is essential for progression of prostate tumorigenesis into poorly differentiated carcinoma. Inhibition of AIB1 expression or function in the prostate epithelium may be a potential strategy to suppress prostate cancer initiation and progression.  相似文献   

12.
Prostate stem cell antigen (PSCA) was originally identified as a tumor antigen in prostate cancer. Recent studies indicated that PSCA was correlated with many cancer types. In this review, we will consider the origin of PSCA, discuss the expression of PSCA in normal and cancer tissue, describe PSCA polymorphisms and cancer risk, summarize potential mechanisms for PSCA involvement in cancer; and look into the therapeutic implications of PSCA. PSCA is upregulated in prostate cancer, pancreatic cancer and bladder cancer, as well as a number of others, making it an ideal clinical target for both diagnosis and therapy. Future studies will be required to explore its mechanisms on various cancer types, and to confirm its clinical utility for diagnosis and immunotherapy strategies. The study of PSCA regulation and expression may also provide information on normal prostate development and prostate carcinogenesis.  相似文献   

13.
Chu Y  Xia M  Lin Y  Li A  Wang Y  Liu R  Xiong S 《Cancer gene therapy》2006,13(5):510-519
Our previous study showed that DNA vaccination with a plasmid vector encoding a core peptide of mucin1 (PDTRP) provided modest protection against challenge with tumor cells that expressed mucin1 protein. We report here that a DNA vaccine comprising a modified PDTRP plasmid and GM-CSF coding sequence at the C-terminus induced better protection against tumor challenge. The increased protection was directly correlated with a stronger PDTRP-specific immune response induced by the GM-CSF fusion plasmid. The plasmid encoding GM-CSF and the target PDTRP antigen induced a greater PDTRP-specific Th proliferation, antibodies, and cytotoxicity. Interestingly, the modified plasmid vaccine predominantly enhanced the type 2 immune responses manifested by an increased IgG1 to IgG2a antibody ratio and a greater induction of GATA-3 and IL-4 mRNA than that of T-bet and IFN-gamma mRNA in spleen cells from vaccinated mice. In addition, protection against tumor challenge in vaccinated mice showed that there was no significant change in mice survival after in vivo CD8+CTL depletion, indicating that antitumor immunity augmented by plasmid encoding GM-CSF and target PDTRP gene vaccine was dominated by Th2 immune response.  相似文献   

14.
Abnormal activation of the Sonic hedgehog (Shh) signaling pathway has been demonstrated in a number of human tumors, including prostate cancer. The study aimed to assess the activity of Shh pathway components (Shh, Gli1, Gli2 and Gli3), as well as the proliferation markers FoxA1 and Notch1 during cancer progression in the transgenic adenocarcinoma of the mouse prostate (TRAMP). We evaluated changes in respective proteins by immunohistochemistry at three time points (12, 17 and 21 weeks of age) in the tissue of TRAMP and C57Bl/6 mice. Moreover, the expression of mRNA of these proteins was assessed. The present study shows a significant age-dependent increase in the number of Shh, Gli1, Gli3 and FoxA1-positive prostate cells and a decrease in Gli2-positive cells in TRAMP. The study also supports the hypothesis that the development of prostate cancer and its metastasis is associated with activation of the Shh signaling pathway.  相似文献   

15.
We have shown previously that garlic constituent diallyl trisulfide (DATS) inhibits growth of cultured and xenografted human prostate cancer cells in association with apoptosis induction, but the mechanism of cell death is not fully understood. The present study systematically investigates the role of inhibitor of apoptosis (IAP) family proteins in the regulation of DATS-induced apoptosis using cultured PC-3 and LNCaP human prostate cancer cells and dorsolateral prostate from control and DATS-treated transgenic adenocarcinoma of mouse prostate (TRAMP) mice. Level of X-linked inhibitor of apoptosis (XIAP) protein was decreased on 8-hour treatment with 20 and 40 μmol/L DATS, but this effect was partially attenuated at the 16-hour time point. DATS-mediated decline in XIAP protein level was partially reversible in the presence of proteasomal inhibitor MG132. In contrast, DATS-treated PC-3 and LNCaP cells exhibited marked induction of survivin and cellular inhibitor of apoptosis protein 1 (cIAP1) proteins. Induction of survivin protein expression resulting from DATS exposure was associated with an increase in its mRNA level. Dorsolateral prostates from DATS-treated TRAMP mice exhibited statistically significant downregulation of XIAP and induction of survivin protein compared with those of control mice. Ectopic expression of XIAP conferred partial but significant protection against DATS-induced apoptosis. On the other hand, DATS-induced apoptosis was only marginally affected by RNA interference of survivin or cIAP1. In conclusion, the present study indicates that the DATS-induced apoptosis in prostate cancer cells is mediated in part by suppression of XIAP protein expression, and that XIAP represents a viable biomarker of DATS response for future clinical investigations.  相似文献   

16.
We conducted an expression analysis of prostate stem cell antigen (PSCA)in normal urogenital tissues, benign prostatic hyperplasia (n = 21), prostatic intraepithelial neoplasia (n = 33), and primary (n = 137) and metastatic (n = 42) prostate adenocarcinoma, using isotopic in situ hybridization on tissue microarrays. In normal prostate, we observe PSCA expression in the terminally differentiated, secretory epithelium; strong expression was also seen in normal urothelium. Forty-eight percent of primary and 64% of metastatic prostatic adenocarcinomas expressed PSCA RNA. Our studies did not confirm a positive correlation between level of PSCA RNA expression and high Gleason grade. We characterized monoclonal anti-PSCA antibodies that recognize PSCA expressed on the surface of live cells, are efficiently internalized after antigen recognition, and kill tumor cells in vitro in an antigen-specific fashion upon conjugation with maytansinoid. Unconjugated anti-PSCA antibodies demonstrated efficacy against PSCA-positive tumors by delaying progressive tumor growth in vivo. Maytansinoid-conjugated antibodies caused complete regression of established tumors in a large proportion of animals. Our results strongly suggest that maytansinoid-conjugated anti-PSCA monoclonal antibodies should be evaluated as a therapeutic modality for patients with advanced prostate cancer.  相似文献   

17.
Raina K  Singh RP  Agarwal R  Agarwal C 《Cancer research》2007,67(12):5976-5982
Prostate cancer chemoprevention is an alternative and potential strategy to control this malignancy. Herein, we evaluated the chemopreventive efficacy of grape seed extract (GSE) against prostate cancer in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice where animals were fed with GSE by oral gavage at 200 mg/kg body weight dose during 4 to 28 weeks of age. Our results showed a significant reduction (46%, P < 0.01) in the weight of genitourinary tract organs in the GSE-fed mice. The GSE-fed group of mice had a higher incidence of prostatic intraepithelial neoplasia but showed strong reduction in the incidence of adenocarcinoma compared with mice in control group. Prostate tissue from the GSE group showed approximately 50% (P < 0.001) decrease in proliferating cell nuclear antigen (PCNA)-positive cells and 64% (P < 0.01) reduction in total PCNA protein level compared with the control group; however, GSE increased apoptotic cells by 8-fold. Furthermore, GSE strongly decreased the protein levels of cyclin B1, cyclin A, and cyclin E by 84% (P < 0.05), 96% (P < 0.05), and 89% (P < 0.001), respectively. The protein expression of cyclin-dependent kinases 2 and 6 and Cdc2 was also decreased by more than 90% (P < 0.05) in the prostate from the GSE-fed group. Together, for the first time, we identified that oral GSE inhibits prostate cancer growth and progression in TRAMP mice, which could be mediated via a strong suppression of cell cycle progression and cell proliferation and an increase in apoptosis.  相似文献   

18.
The Ron receptor is deregulated in a variety of cancers. Hepatocyte growth factor-like protein (HGFL) is the ligand for Ron and is constitutively secreted from hepatocytes into the circulation. While a few recent reports have emerged analyzing ectopic HGFL overexpression in cancer cells, no studies have examined the effect of host-produced HGFL in tumorigenesis. To examine HGFL function in prostate cancer, the TRAMP mouse model, which is predisposed to develop prostate tumors, was utilized. Prostate tumors from TRAMP mice exhibit elevated levels of HGFL, which correlated with upregulation in human prostate cancer. To directly implicate HGFL in prostate tumorigenesis, TRAMP mice deficient in HGFL (HGFL-/-TRAMP+) were generated. HGFL-/- TRAMP+ mice developed significantly smaller prostate tumors compared to controls. Analysis of HGFL-/- tumors revealed reduced tumor vascularization. No differences in cancer cell proliferation were detected between HGFL-/- TRAMP+ and HGFL+/+ TRAMP+ mice. However, a significant increase in cancer cell death was detected in HGFL-/- TRAMP+ prostates which correlated with decreased pro-survival targets. In vitro analysis demonstrated robust STAT3 activation resulting in Bcl2-dependent survival following treatment of prostate cancer cells with HGFL. These data document a novel function for endogenous HGFL in prostate cancer by imparting a critical survival signal to tumor cells.  相似文献   

19.
Huntingtin-interacting protein 1 (HIP1) is frequently overexpressed in prostate cancer. HIP1 is a clathrin-binding protein involved in growth factor receptor trafficking that transforms fibroblasts by prolonging the half-life of growth factor receptors. In addition to human cancers, HIP1 is also overexpressed in prostate tumors from the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model. Here we provide evidence that HIP1 plays an important role in mouse tumor development, as tumor formation in the TRAMP mice was impaired in the Hip1null/null background. In addition, we report that autoantibodies to HIP1 developed in the sera of TRAMP mice with prostate cancer as well as in the sera from human prostate cancer patients. This led to the development of an anti-HIP1 serum test in humans that had a similar sensitivity and specificity to the anti-alpha-methylacyl CoA racemase (AMACR) and prostate-specific antigen tests for prostate cancer and when combined with the anti-AMACR test yielded a specificity of 97%. These data suggest that HIP1 plays a functional role in tumorigenesis and that a positive HIP1 autoantibody test may be an important serum marker of prostate cancer.  相似文献   

20.
Herein, for the first time, we evaluated the chemopreventive efficacy of dietary silibinin against prostate cancer (PCa) growth and progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice from two different genetic backgrounds [C57BL/6 (TRAMP) x FVB; C57BL/6 (TRAMP) x C57BL/6]. At 4 weeks of age, mice were fed control or 0.1% to 1% silibinin-supplemented diets until 23 to 24 weeks of age. Silibinin-fed groups had a lower tumor grade and higher incidence of prostatic intraepithelial neoplasia (PIN) at the expense of a strong decrease in adenocarcinoma incidence. Prostate tissue showed a 47% (P < 0.001) decrease in proliferating cell nuclear antigen (PCNA)-positive cells and an approximately 7-fold (P < 0.001) increase in apoptotic cells at the highest silibinin dose. As potential mechanisms of silibinin efficacy, an approximately 50% (P < 0.05) decrease in insulin-like growth factor (IGF) receptor type I beta and an approximately 13-fold (P < 0.001) increase in IGF-binding protein 3 (IGFBP-3) protein levels were also observed. These changes were specific to tumors as they were not reflected in circulating IGF-IGFBP-3 system. Additionally, silibinin decreased protein expression of cyclin-dependent kinases (Cdk) by more than 90% (P < 0.001) with a concomitant increase in Cdk inhibitors, Cip1/p21 and Kip1/p27 (P < 0.05, for both). A dose-dependent decrease was also observed in cyclin B1, cyclin E, and cyclin A protein levels by silibinin. Together, these findings suggest that oral silibinin blocks PCa growth and progression at PIN stage in TRAMP mice via modulation of tumor IGF-IGFBP-3 axis and cell cycle regulation, and therefore it has practical and translational potential in suppressing growth and neoplastic conversion of PIN to PCa in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号