首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The retrograde horseradish peroxidase technique was used to: (1) identify and assess the overall morphology of large neurons in the ventrolateral portion (VL) of rat trigeminal nucleus oralis projecting to cervical, thoracic and lumbosacral levels of the spinal cord; and (2) characterize the synaptic endings terminating on their dendrites. The morphology of large VL neurons projecting to all spinal levels is similar. They have 25–50 μm pyramidal-shaped somata which emit 3–6 primary dendrites. These primary dendrites give rise to spherical to elliptical-shaped dendritic arbors measuring up to 700 μm in diameter. Labeled axons enter either a deep axon bundle or the medial portion of the spinal V tract. Dendrites of labeled neurons are contacted by axonal endings of 3 types. The most numerous endings are filled with clear, spherical synaptic vesicles and usually form a single asymmetrical contacts along the entire length of dendritic shafts. Synapsing less frequently on dendritic shafts are endings containing pleomorphic synaptic vesicles and forming single symmetrical synaptic contacts. The least frequently encountered synaptic terminal contains flattened synaptic vesicles and makes a single symmetrical synaptic contact with a dendritic shaft.  相似文献   

2.
Previous work has demonstrated that layer V pyramidal cells of primary auditory cortex project directly to the cochlear nucleus. The postsynaptic targets of these centrifugal projections, however, are not known. For the present study, biotinylated dextran amine, an anterograde tracer, was injected into the auditory cortex of rats, and labeled terminals were examined with light and electron microscopy. Labeled corticobulbar axons and terminals in the cochlear nucleus are found almost exclusively in the granule cell domain, and the terminals appear as boutons (1–2 μm in diameter) or as small mossy fiber endings (2–5 μm in diameter). These cortical endings contain round synaptic vesicles and form asymmetric synapses on hairy dendritic profiles, from which thin (0.1 μm in diameter), nonsynaptic “hairs” protrude deep into the labeled endings. These postsynaptic dendrites, which are typical of granule cells, surround and receive synapses from large, unlabeled mossy fiber endings containing round synaptic vesicles and are also postsynaptic to unlabeled axon terminals containing pleomorphic synaptic vesicles. No labeled fibers were observed synapsing on profiles that did not fit the characteristics of granule cell dendrites. We describe a circuit in the auditory system by which ascending information in the cochlear nucleus can be modified directly by descending cortical influences. © 1996 Wiley-Liss, Inc.  相似文献   

3.
When viewed in Nissl preparations, the lateral reticular nucleus (LRN) of the opossum can be divided into three subgroups: a medial internal portion, a lateral external portion and a rostral trigeminal division. Neurons within the internal division measure 13-45 μ in their greatest dimension whereas those within the external and trigeminal portions measure 11-32 μ and 14-27 μ respectively. Golgi impregnations reveal that many neurons in all three subdivisions display a radial dendritic pattern although some of the nerve cells within the external division have dendrites which orient mainly in a ventromedial to dorsolateral direction. The cell bodies of LRN neurons are relatively spine-free. However, a small percentage of neurons exhibit clusters of sessile spines on proximal and more distal dendritic segments. No locally ramifying axons or axon collaterals were found within the LRN. Synaptic terminals within the LRN were divided into four categories: (1) small terminals measuring 2.5 μ or less containing agranular spherical vesicles; (2) small terminals (2.5 μ or less) with agranular pleomorphic synaptic vesicles, i.e., a mixture of spherical and elliptical synaptic vesicles; (3) small terminals (2.5 μ or less) containing agranular spherical or pleomorphic vesicles with a variable number (4-27) of dense core vesicles; and (4) large terminals (greater than 2.5 μ) which contain agranular spherical synaptic vesicles and a variable number of dense core vesicles (1-17). Dendritic diameters were measured from Golgi impregnations and correlated with cross-sectioned profiles in electron micrographs to help determine the post-synaptic distribution of synaptic endings. Small terminals containing agranular spherical or pleomorphic synaptic vesicles contact the soma and entire dendritic tree in each portion of the nucleus, whereas the small terminals containing dense core vesicles are usually located on distal dendrites or spines. Some large terminals make multiple synaptic contacts with a cluster of spines, others contact groups of small (distal) dendrites. In order to identify two of the major afferent systems to the LRN, 15 adult opossums were subjected to either a cervical spinal cord hemisection or a stereotaxic lesion of the red nucleus. Two days subsequent to spinal hemisection, large terminals in the caudal part of the ipsilateral LRN exhibit either an electron dense or filamentous reaction. Their postsynaptic loci are spines and shafts of proximal dendrites or a number of distal dendrites and spines. In addition, small terminals containing spherical agranular synaptic vesicles undergo an electron dense reaction in the same areas. Their postsynaptic loci are proximal or distal dendrites. Two days subsequent to rubral lesions, small terminals containing agranular spherical synaptic vesicles undergo a dark reaction in rostral portions of the contralateral nucleus. They contact intermediate or distal dendrites and occasionally spines.  相似文献   

4.
This study examined the synaptic terminal coverage of primate triceps surae (TS) motoneurons at the electron microscopic level. In three male pigtail macaques, motoneurons were labeled by retrograde transport of cholera toxin-horseradish peroxidase that was injected into TS muscles bilaterally and visualized with tetramethylbenzidine stabilized with diamino-benzidine. Somatic, proximal dendritic, and distal dendritic synaptic terminals were classified by standard criteria and measured. Overall and type-specific synaptic terminal coverages and frequencies were determined. Labeled cells were located in caudal L5 to rostral S1 ventral horn and ranged from 40 to 74 μm in diameter (average, 54 μm). The range and unimodal distribution of diameters, the label used, and the presence of C terminals on almost all cells indicated that the 15 cell bodies and associated proximal dendrites analyzed here probably belonged to α-motoneurons. Synaptic terminals covered 39% of the cell body membrane, 60% of the proximal dendritic membrane, and 40% of the distal dendritic membrane. At each of these three sites, F terminals (flattened or pleomorphic vesicles, usually symmetric active zones, average contact length 1.6 μm) were most common, averaging 52%, 56%, and 58% of total coverage and 56%, 57%, and 58% of total number on cell bodies, proximal dendrites, and distal dendrites respectively. S terminals (round vesicles, usually asymmetric active zones, average contact length 1.3 μm) averaged 24%, 29%, and 33% of coverage and 33%, 35%, and 36% of number at these three sites, respectively. Thus, S terminals were slightly more prominent relative to F terminals on distal dendrites, than on cell bodies. C terminals (spherical vesicles, subsynaptic cisterns associated with rough endoplasmic reticulum, average contact length 3.5 μm) constituted 24% and 11% of total terminal coverage on cell bodies and proximal dendrites, respectively, and averaged 11% and 6% of terminal number at these two locations. M terminals (spherical vesicles, postsynaptic Taxi bodies, some with presynaptic terminals, average contact length 2.7 μm) were absent on cell bodies and averaged 3% and 7% of total coverage and 2% and 5% of terminals on proximal and distal dendrites, respectively. Except for M terminals, which tended to be smaller distally, terminal contact length was not correlated with location. Total and type-specific coverages and frequencies were not correlated with cell body diameter. Primate TS motoneurons are similar to cat TS motoneurons in synaptic terminal morphology, frequency, and distribution. However, primate terminals appear to be smaller, so that the fraction of menitrane covered by them is lower. © 1994 Wiley-Liss, Inc.  相似文献   

5.
LENN, N. J. Fornix afferents to the anteroventral thalamic nucleus: An EM study in the rat. BRAIN RES. BULL. 3(6) 589–593, 1978.—Three types of synapses occur in the anteroventral thalamic nucleus (AVN). Type 1 consists of small (0.5–0.8 μm) axonal endings densely packed with spherical synaptic vesicles. They form markedly asymmetrical synaptic contacts with distal portions of dendrites. Degenerative changes in these axons following destruction of the fornix identify them as the endings of the subicular projection to AVN. Type 2 synapses consist of large (1.0–1.5 μm) axonal processes containing spherical vesicles which form asymmetrical synapses on more proximal dendrites. Type 3 endings consist of large unidentified processes containing spherical, and occasionally flattened, synaptic vesicles forming symmetrical contacts with the largest stem dendrites. Neither of these synaptic types were modified by fornix lesions. The synaptic arrangements within AVN are simpler than other thalamic nuclei in that serial synapses and synaptic glomeruli are not present.  相似文献   

6.
The nucleus isthmi is reciprocally connected to the ipsilateral optic tectum. Ablation of the nucleus isthmi compromises visually guided behavior that is mediated by the tectum. In this paper, horseradish peroxidase (HRP) histochemistry and electron microscopy were used to explore the synaptic interrelationships between the optic tectum and the ipsilateral nucleus isthmi. After localized injections of HRP into the optic tectum, there are retrogradely labeled isthmotectal neurons and orthogradely labeled fibers and terminals in the ipsilateral nucleus isthmi. These terminals contain round. Clear vesicles of medium diameter (40–52 nm). These terminals make synaptic contact with dendrites of nucleus isthmi cells. Almost half of these postsynaptic dendrites are retrogradely labeled, indicating that there are monosynaptic tectoisthmotectal connections. Localized HRP injection into the nucleus isthmi labels terminals primarily in tectal layers B, E, F, and 8. The terminals contain medium-sized clear vesicles and they form synaptic contacts with tectal dendrites. There are no instances of labeled isthmotectal terminals contacting labeled dendrites. Retrogradely labeled tectoisthmal neurons are contacted by unlabeled terminals containing medium-sized and small clear vesicles. Fifty-four percent of the labeled fibers connecting the nucleus isthmi and ipsilateral tectum are myelinated fibers (average diameter approximately 0.6 μm). The remainder are unmyelinated fibers (average diameter approximately 0.4 μm). © 1994 Wiley-Liss, Inc.  相似文献   

7.
The synaptic organization of the lateral superior olivary nucleus of the cat was analyzed under the electron microscope. The predominant cell type, the fusiform cell, has dendrites that extend from opposite poles of the cell body toward the margins of the nucleus, where they terminate in spinous branches. The fusiform cells are contacted by three types of synaptic terminals that can be distinguished by the size and shape of their synaptic vesicles. The somatic and proximal dendritic surfaces are apposed by synaptic terminals containing small, flat synaptic vesicles. Further from the cell body, the dendrites form numerous synaptic contacts with terminals containing large round vesicles as well as with the terminals containing small, flat vesicles. The most distal dendritic branches and their spiny appendages appear to form synapses almost exclusively with the terminals with large, round vesicles. A relatively rare type of terminal that contains small, round vesicles may form synapses with either the somatic or dendritic surfaces. A few small cells are interspersed among the fusiform cells, but they are more commonly located around the margins of the nucleus. The small cells form few axosomatic contacts. The simplest interpretation of the findings is that the terminals with small, flat vesicles arise in the medial nucleus of the trapezoid body and are inhibitory in function, whereas the terminals with large, round vesicles arise in the anteroventral cochlear nucleus and are excitatory; however, this remains to be demonstrated experimentally. In any case, the differential distribution of these two types of inputs on the somatic and dendritic surfaces must be an important determinant of the physiological response properties of the fusiform cells to binaural acoustic stimuli.  相似文献   

8.
In the medial and commissural subdivisions of the nucleus tractus solitarii enkephalin and substance P immunoreactivities were localized within synaptic terminals, unmyelinated axons, and neuronal cell bodies. Both enkephalin and substance P immunoreactivities were contained within synaptic terminals which had a mixture of small clear vesicles and dense core vesicles. The presence of dense core vesicles within both the enkephalin- and substance P-immunoreactive terminals was a consistent feature, although they were not associated with the actual synaptic junction. While enkephalin- and substance P-immunoreactive terminals shared a similar morphology, their respective distributions along the dendritic tree were quite distinct. Enkephalin-immunoreactive terminals contacted mainly the cell body and proximal portions of the dendritic tree. In contrast, substance P-immunoreactive terminals synapsed predominantly with spines and shafts of small to medium-sized dendrites. Few substance P-immunoreactive terminals contacted proximal dendrites and they were never presynaptic to the neuronal cell body. This apparent segregation of synaptic terminals on neurons suggests that enkephalin synapses have a more pronounced effect than substance P terminals.  相似文献   

9.
10.
The synaptic distribution in the sacral visceral gray of the cat was examined. Synaptic complexes exhibiting a distinct membrane specialization were identified and classified according to vesicle type and number. Boutons containing clear spherical vesicles (S type) account for more than 63% of the synaptic contacts on both cell bodies and dendrites. Terminals containing three or more granular vesicles (GS type) comprise between 23 and 31% of the synapses in the nucleus. F boutons are less frequently seen (3–6%) as are T type boutons (1–2%). Presynaptic terminals containing a predominance of dense core vesicles (GG type) constitute less than 1% of the total synapses in this neuropil and are found only on dendrites. Nerve cell bodies receive approximately five synaptic contacts per 100 μm of postsynaptic membrane. Large and medium size dendrites are contacted by an average of seven boutons per 100 μm of postsynaptic membrane and small dendrites have the highest distribution (approximately 12 per 100 μm). Comparison of the percentage distribution of various types of synapses in this nucleus reveals little variation between cell bodies and dendrites. However, expression of the synaptic population as boutons per 100 μm of available postsynaptic membrane clearly illustrates intranuclear differences in synaptic distribution not seen in percentage type comparisons.  相似文献   

11.
The organization of lateral reticular nucleus (LRN) of the cat was investigated using electron microscopy and Golgi techniques. Golgi-Cox preparations revealed that the LRN consists of allodendritic and, especially, isodendritic neurons. The latter have been associated with neural centres that have important roles integrating signals from distant sources. Several forms of spines were identified with the Golgi method, and their ultrastructural correlates were determined. Somatic spines resembled stubby protrusions, while dendritic spines, where were usually observed on distal dendrites, appeared as pedunculated spines, racemose appendages and spine-crowned appendages. Ultrastructural examination of this nuclease revealed various synaptic relationships. The majority of the synaptic terminals were small (1.5--2.5 micrometer in diameter), contained round vesicles and usually contacted dendrites and spines. Other small terminals contained pleomorphic vesicles and contacted distal dendrites and spines. Large terminals (greater than 2.5 micrometer in diameter) with round or pleomorphic vesicles contacted the somata or proximal dendrites. Three types of "synaptic configurations," which consisted of discrete aggregations of neuronal processes invested by astrocytic lamellae, were also identified. These structural arrangements likely provide a basis for the integration of inputs to the LRN from spinal and supraspinal centres.  相似文献   

12.
Neurons in the ventrolateral (VL) subdivision of rat trigeminal nucleus oralis (Vo) have most of their dendritic arbors confined within this region. This study examines the morphology and synaptic connections of a population of myelinated primary trigeminal axons that arborize within VL and are in a position to provide input directly to VL neurons. Primary axons were visualized for light and electron microscopic analysis by injecting 30% horseradish peroxidase (HRP) in 2% dimethylsulfoxide (DMSO) into the sensory root of the trigeminal nerve and allowing 24-36 hours for the anterograde transport of HRP into the terminal axonal arbors. This population is characterized by its cone-shaped terminal arbors, which generate many axonal endings (2-8 micron in diameter) along unmyelinated terminal strands. These arbors arise from collaterals emanating from thinly myelinated (2-5 micron in diameter) parent branches descending in the spinal V tract, which, on the basis of their size, are considered to be small myelinated (A sigma) primary trigeminal axons. HRP-labeled P endings belonging to this population of primary axons are scalloped, filled with spherical to ovoid (40-70 nm in diameter) synaptic vesicles, and lie centrally in glomeruli where they make asymmetrical axodendritic synapses on dendritic shafts and spine heads. It is at these synapses that this population of primary trigeminal axons is probably transferring its input directly to the dendritic arbors of VL neurons. The dendritic shafts and spine heads also receive symmetrical to intermediate axodendritic synapses from endings containing flattened (70 X 29 nm) synaptic vesicles. These terminals also establish axo-axonic synapses on the P ending. Other synaptic components found less often in the glomeruli include small terminals containing oval (14-23 nm) synaptic vesicles that establish symmetrical to intermediate synapses on the P ending, boutons containing pleomorphic (35-80 nm) synaptic vesicles that form symmetrical to intermediate synapses on the P ending as well as on dendritic shafts, and small peripheral endings containing round (20-40 nm) synaptic vesicles that establish asymmetrical synapses on dendritic shafts.  相似文献   

13.
In the nucleus raphe dorsalis of the cat, an electron microscopic immunocytochemistry method was used to identify the fine structure of serotoninergic dendritic profiles and axon terminals analyzed in serial sections. Two classes of serotoninergic dendrites were distinguished in the nucleus. The first class was constituted by conventional serotonin (5-HT) dendrites that were contacted by unlabeled axon terminals containing differing populations of synaptic vesicles. The second class consisted of serotoninergic dendrites that contained vesicles in their dendritic shafts. Such 5-HT dendrites were further subdivided into two groups according to their synaptic contacts. In some 5-HT vesicle-containing dendrites, the vesicles were densely packed in small clusters and were associated with a well-defined synaptic specialization. These dendrites were classified as serotoninergic presynaptic dendrites and established synaptic contacts with unlabeled and labeled dendrites and were contacted by unlabeled axon terminals. In other 5-HT vesicle-containing dendrites, extensive serial section examination showed that the vesicles could be observed near the membrane but were never found to be associated with any synaptic membrane specialization. Serotoninergic axon terminals that were presumed to be recurrent collaterals of 5-HT neurons were present in the nucleus. Some of them were observed in synaptic contact with dendrites or dendritic protrusions whereas others did not exhibit synaptic specializations. The existence of serotoninergic dendrodendritic synaptic contacts and axon terminals suggests direct local interactions between serotoninergic neurons within the nucleus raphe dorsalis.  相似文献   

14.
The fine structure of synaptic terminals contacting neurons generated in the forebrain of adult male canaries was investigated by autoradiography and electron microscopy. The procedure for labeling the new neurons included pretreating adult canaries with 3H-thymidine and sacrificing them 23-45 days later. Neurons were identified as newly generated by the presence of 3H-thymidine in the cell nucleus. The new neurons in the nucleus hyperstriatum ventralis, pars caudalis (HVc) were identified by autoradiography and light microscopy and examined with electron microscopy. Several types of synaptic terminals contacted the cell body and proximal dendrites of the newly formed neurons. Synaptic junctions were formed by terminals that contained spherical, agranular vesicles, large dense-core vesicles and spherical, agranular vesicles, and pleomorphic or flattened synaptic vesicles. Terminals that contained spherical vesicles were most often associated with asymmetric synaptic densities, and terminals that contained pleomorphic or flattened vesicles formed symmetric junctions. New neurons were also contacted by small terminals that contained few vesicles and had little pre- or postsynaptic density associated with the junction; these terminals may be a special type or may be in the process of developing their synaptic contact with the new neuron. In addition, rare terminals that appeared to be degenerating or to contain debris from other degenerating neural elements contacted new neurons. In summary, these data indicate that the new neurons, which are known to be inserted into existing neural networks, receive synaptic input from at least three different sources.  相似文献   

15.
The analysis of EM structure of nucleus rotundus completes the results got by Golgi study. The fine structure of neurons and neuropil of the nucleus and the synaptic relations were studied by EM. The fine structural details of principal neuron were described. Several synapses of symmetrical type with flattened vesicles in large terminals contacted the cell body and also the origin and proximal part of the main dendrites. In the neuropil synaptic junctions were formed by terminals that contained (1) spherical vesicles with occasionally very few dense core vesicles, (2) flattened synaptic vesicles. Terminals that contained spherical vesicles were associated with asymmetric synaptic densities, and terminals that contained flattened vesicles formed symmetric junctions. Synapses of asymmetric type associated mostly with terminal sections of dendrites forming glomerular-like structure. Synapses of symmetric type with flattened synaptic vesicles contacted the branching areas of dendritic terminals and side-branches, the origin of main dendrites and the cell surface of principal neuron.  相似文献   

16.
R C Borke  M E Nau 《Brain research》1987,422(2):235-241
Axon terminals projecting to the hypoglossal nucleus have been identified and characterized by electron microscopy following injections of horseradish peroxidase (HRP) into pars interpolaris of the spinal trigeminal nucleus (SPVN) in adult rats. Over 70% of the anterogradely labeled terminals contained spherical vesicles (S-terminals) and their synaptic densities were chiefly asymmetrical (Gray Type I). The rest (28%) of the labeled terminals had flattened vesicles (F-terminals) and predominantly established symmetrical (Gray Type II) synaptic contacts. The diameters of labeled terminals were 0.5-2.5 micron. Two-thirds of the S-terminals had diameters less than 1.25 micron, whereas, F-terminals were distributed equally in the higher (greater than 1.25) and lower (less than 1.25) diameter ranges. Most axon terminals ended on dendrites of hypoglossal neurons; some, chiefly F-terminals, formed axosomatic endings. Dendrites had diameters of 0.5-5 micron. The majority of S- and F-terminals ended on dendrites with diameters of less than 2.5 micron. However, more F-terminals (17%) than S-terminals (11%) were presynaptic to dendrites greater than 2.5 micron in diameter. Experiments in which anterograde HRP labeling of trigemino-hypoglossal projections was combined with retrograde WGA-HRP labeling of motoneurons projecting to the tongue, demonstrated that SPVN axons end on dendrites of these motoneurons. Whether some of the trigeminal fibers also terminate on intrinsic hypoglossal interneurons remains to be determined.  相似文献   

17.
The medial superior olive (MSO) was studied in normal animals to determine the types of synaptic endings and their distribution over the surface of MSO neurons. Unilateral lesions were made in the anteroventral cochlear nucleus (AVCN) of experimental animals to determine the source of at least one synaptic type in the MSO. The surfaces of MSO neurons in normal animals were studded with three distinct types of synaptic endings distinguished mainly by the size of their synaptic vesicles. There were endings with large vesicles, 510 Å in mean diameter; endings with small vesicles, 380 Å; and endings with vesicles intermediate in size. 435 Å. The large vesicle ending typically was greater than 2 μm in maximum diameter. It appeared as the termination of a myelinated axon or as a swollen portion of a node and made multiple asymmetrical synapses. Large vesicle endings occurred exclusively on dendrites where they formed 85% of the synaptic endings. Small vesicle endings typically were less than 2 μm in diameter. They appeared as the termination of a fine unmyelinated axon and made only one symmetrical synapse. Small vesicle boutons occurred infrequently over the entire neuronal surface. Intermediate vesicle synaptic endings were similar to large vesicle endings except that they were present only on the cell body, axon hillock, and proximal portions of the dendrites where they formed most of the synapses. In AVCN lesioned animals degenerating myelinated axons and large vesicle synaptic endings were distributed to the lateral dendrites of the ipsilateral MSO and medial dendrites of the contralateral one. In addition, a few degenerating axons and large vesicle endings were found among the ipsilateral medial dendrites. The changes in the degenerating endings were characterized by an early proliferation of neurofilaments and swelling of the endings followed by collapse of the endings and increase in electron density, disappearance of filaments and synaptic vesicles, and phagocytosis of the degenerated endings by reactive glial cells. No degenerative changes were observed in the small and intermediate vesicle endings. The results of this study indicate that the more numerous large vesicle endings presynaptic to the MSO dendrites are the axon terminals of neurons in the AVCN. The persistence after lesions of the small and intermediate vesicle endings suggests that they arise from as yet unidentified sources.  相似文献   

18.
The ultrastructure and distribution of dopaminergic boutons within the rat mesencephalic trigeminal (Me5) nucleus was examined with the use of electronmicroscopic immunocytochemistry. A total of 5102 boutons, comprising axosomatic and axodendritic synaptic terminals as well as non-synaptic boutons (or varicosities), located in the ventrocaudal portion of Me5 was analysed. Approximately 20% of these boutons were dopamine-immunoreactive. Morphological analysis showed that the dopaminergic synaptic terminals, axodendritic as well as axosomatic, were exclusively of the S- and G-bouton type; they contained, respectively, small spherical vesicles or small pleomorphic vesicles in combination with large granular dense-cored vesicles. All dopaminergic varicosities in the Me5 were of the G-bouton type. Quantitative analysis revealed that most of the dopaminergic synaptic terminals in the Me5 nucleus contacted dendrites, while only a minority (12%) contacted Me5 somata. This dopaminergic somatic input comprised about half (52%) of the total axosomatic input on Me5 neurons. The present results and previous findings with respect to the prominent serotonergic component of the axosomatic input to Me5 neurons indicate that dopamine and serotonin account for most of the axosomatic input in the ventrocaudal part of the Me5 nucleus. In fact, the present results seem to support previous observations regarding the existence of a population of afferent neurons in which dopamine and serotonin are colocalized.  相似文献   

19.
The fine structural organization of the principal sensory trigeminal nucleus was compared with that of the spinal trigeminal nucleus (subnuclei oralis, interpolaris, and the deep layers of caudalis) in adult albino rats. Direct comparisons indicate similarities between all of the subdivisions of the brainstem trigeminal complex both in the major morphological classes of neurons present and in basic patterns of synaptic connections. Major differences between the several subdivisions occur in the relative numbers and distribution of the different cell types. The spinal trigeminal nucleus is distinguished by more numerous large (22-40 micron) polygonal neurons which give rise to long straight primary dendrites. Both the perikaryal surface and the thick primary dendrites of many of these cells are densely innervated by synaptic terminals. Especially large cells of this type are a prominent feature of subnucleus oralis. By contrast, the principal sensory nucleus is distinguished by its high density of small to medium-sized (8-20 micron) round or ovoid neurons. These smaller neurons tend to receive a sparse axosomatic innervation. In addition to these differences the spinal trigeminal neuropil is distinguished by the striking manner in which it is broken up by large rostrocaudally oriented bundles of myelinated axons. Proximal dendrites of polygonal and fusiform neurons often wrap around these large axon bundles. Morphologically heterogeneous populations of synaptic terminals with round vesicles (R terminals) and terminals with predominantly flattened vesicles (F terminals) occur in all of the subdivisions of the trigeminal complex. Both types of terminal make primarily axodendritic synapses, but both also make axosomatic synapses, and axospinous synapses with somatic as well as dendritic spines. In addition, axoaxonic synaptic contacts from F terminals onto large R terminals are seen in all subdivisions. Convincing examples of presynaptic dendrites were not observed in any of the brainstem subdivisions. Synaptic glomeruli, characteristic groupings of dendrites and synaptic terminals, are found throughout the brainstem trigeminal complex. The dendritic elements in these glomeruli tend to be small-diameter dendrites, spines, and large, spinelike appendages. Within the glomerulus these elements are postsynaptic to a single large R terminal and may also be postsynaptic to smaller F terminals. In addition, axoaxonic synaptic contacts from the F terminals onto the R terminal are a consistent feature of trigeminal synaptic glomeruli.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The aim of this ultrastructural investigation was to study quantitatively the synaptology of the cell bodies and dendrites of cat medial gastrocnemius (MG) α-motoneurons of functionally different types. In electrophysiologically classified and intracellularly HRP-labelled MG α-motoneurons of the FF (fast twitch, fatigable), FR (fast twitch, fatigue resistant) and S (slow twitch, very fatigue resistant) types, the synaptic covering of the soma as well as that of dendritic segments located within 100 μm and at 300, 700, and 1,000 μm distance, respectively from the soma, was analyzed. The synaptic boutons were classified into the L-(apposition length > 4 μm) and S-types (<4 μm) with spherical synaptic vesicles, and the F-type with flat or pleomorphic synaptic vesicles. The length of apposition towards the motoneuron membrane was measured for each bouton profile. Approximately 1,000 boutons contacted the soma and a similar number of boutons contacted the proximal dendrites within 50 μm from the soma. The number of dendritic boutons was larger at the 300 μm distance than at the 100 and 700 μm distances. The three types of motoneurons showed similar values for percentage synaptic covering and synaptic packing density in the proximal dendrites, while in the most distal dendritic regions the S motoneurons had more than 50% higher values for percentage covering, packing density and total number of boutons. The S motoneurons also exhibited a larger preponderance of F-type boutons on the soma. The ratio between the F- and S-types of boutons decreased somatofugally along the dendrites in the type FF and FR motoneurons, while in the S motoneurons it remained fairly constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号