首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to classify the presynaptic elements contacting the principle class of globus pallidus neurons, electron microscopic examination of serial sections made from a medially located large globus pallidus neuron, labeled with intracellular horseradish peroxidase, was undertaken. In addition, the use of labeled and light microscopically reconstructed material allowed us to quantitatively determine the distribution of each bouton type along the soma and dendrites. Six types of presynaptic terminals contacting the labeled cell have been recognized. Type 1 endings, the most numerous (84%), make symmetrical contacts on all portions of the cell, except spines, contain large pleomorphic, and a few large dense-core vesicles. Type 2 endings are filled with small spherical-to-ellipsoidal synaptic vesicles. They make asymmetrical contacts only with higher-order dendrites and account for 12% of synaptic contacts onto the labeled neuron. Type 3 endings are large, contain sparsely distributed large pleomorphic vesicles, and make two symmetrical synapses per bouton, one onto a spine head and the other onto the underlying dendritic shaft. They are infrequent (0.2%), being found only in association with dendritic spines. Type 4 endings contain large pleomorphic synaptic vesicles and no dense-core vesicles. They make symmetrical contacts with the short primary dendrites. Type 5 endings contain a mixture of small clear pleomorphic vesicles and numerous large dense-core vesicles. They contact only the cell body and the short primary dendrites, making up 20% of somatic synaptic contacts but less than 1% of contacts onto dendrites. Type 6 boutons contain oval and flattened synaptic vesicles and establish symmetrical contacts with higher-order dendritic branches and the cell body.  相似文献   

2.
The synaptic organization of globular bushy cells of the anteroventral cochlear nucleus was quantitatively analyzed in order to understand better their functional attributes. A method was devised to estimate the concentrations and relative proportions of synapses on the entire postsynaptic surface of Golgi-impregnated neurons, by sampling with limited series of sections for electron microscopy. This provided a characteristic synaptic profile which was homogeneous for the population measured. The total concentration of synaptic endings decreases with distance from the soma. The cochlear, presumably glutamatergic and excitatory, endings with large spherical vesicles (LS) account for most of this decrease. Of the noncochlear inputs, the putative glycinergic endings with flattened vesicles (FL) decrease slightly, and the presumed GABAergic terminals with pleomorphic vesicles (PL) maintain a relatively constant concentration, while endings with small spherical vesicles (SS) increase on the distal dendrites. LS endings have the largest proportion of synapses near the soma, while FL synapses maintain a constant proportion in all cell regions, and PL and SS proportions increase on higher-order dendrites. Excitatory and inhibitory synapses have significant inputs to the axon hillock and initial segment, as well as to the distal dendrites, where dual synapses may provide a way to sample the activity of surrounding neurons. These features must be considered in explanations of physiological properties, such as the synaptic security, level of spontaneous activity, and well-timed, rapid onset responses, as well as their potential for normalizing and synchronizing an important inhibitory pathway involved in binaural signal processing. Synaptic profile analysis should be useful for experimental studies and for developing realistic computational models.  相似文献   

3.
The retrograde horseradish peroxidase technique was used to: (1) identify and assess the overall morphology of large neurons in the ventrolateral portion (VL) of rat trigeminal nucleus oralis projecting to cervical, thoracic and lumbosacral levels of the spinal cord; and (2) characterize the synaptic endings terminating on their dendrites. The morphology of large VL neurons projecting to all spinal levels is similar. They have 25–50 μm pyramidal-shaped somata which emit 3–6 primary dendrites. These primary dendrites give rise to spherical to elliptical-shaped dendritic arbors measuring up to 700 μm in diameter. Labeled axons enter either a deep axon bundle or the medial portion of the spinal V tract. Dendrites of labeled neurons are contacted by axonal endings of 3 types. The most numerous endings are filled with clear, spherical synaptic vesicles and usually form a single asymmetrical contacts along the entire length of dendritic shafts. Synapsing less frequently on dendritic shafts are endings containing pleomorphic synaptic vesicles and forming single symmetrical synaptic contacts. The least frequently encountered synaptic terminal contains flattened synaptic vesicles and makes a single symmetrical synaptic contact with a dendritic shaft.  相似文献   

4.
LENN, N. J. Fornix afferents to the anteroventral thalamic nucleus: An EM study in the rat. BRAIN RES. BULL. 3(6) 589–593, 1978.—Three types of synapses occur in the anteroventral thalamic nucleus (AVN). Type 1 consists of small (0.5–0.8 μm) axonal endings densely packed with spherical synaptic vesicles. They form markedly asymmetrical synaptic contacts with distal portions of dendrites. Degenerative changes in these axons following destruction of the fornix identify them as the endings of the subicular projection to AVN. Type 2 synapses consist of large (1.0–1.5 μm) axonal processes containing spherical vesicles which form asymmetrical synapses on more proximal dendrites. Type 3 endings consist of large unidentified processes containing spherical, and occasionally flattened, synaptic vesicles forming symmetrical contacts with the largest stem dendrites. Neither of these synaptic types were modified by fornix lesions. The synaptic arrangements within AVN are simpler than other thalamic nuclei in that serial synapses and synaptic glomeruli are not present.  相似文献   

5.
The medial superior olive (MSO) was studied in normal animals to determine the types of synaptic endings and their distribution over the surface of MSO neurons. Unilateral lesions were made in the anteroventral cochlear nucleus (AVCN) of experimental animals to determine the source of at least one synaptic type in the MSO. The surfaces of MSO neurons in normal animals were studded with three distinct types of synaptic endings distinguished mainly by the size of their synaptic vesicles. There were endings with large vesicles, 510 Å in mean diameter; endings with small vesicles, 380 Å; and endings with vesicles intermediate in size. 435 Å. The large vesicle ending typically was greater than 2 μm in maximum diameter. It appeared as the termination of a myelinated axon or as a swollen portion of a node and made multiple asymmetrical synapses. Large vesicle endings occurred exclusively on dendrites where they formed 85% of the synaptic endings. Small vesicle endings typically were less than 2 μm in diameter. They appeared as the termination of a fine unmyelinated axon and made only one symmetrical synapse. Small vesicle boutons occurred infrequently over the entire neuronal surface. Intermediate vesicle synaptic endings were similar to large vesicle endings except that they were present only on the cell body, axon hillock, and proximal portions of the dendrites where they formed most of the synapses. In AVCN lesioned animals degenerating myelinated axons and large vesicle synaptic endings were distributed to the lateral dendrites of the ipsilateral MSO and medial dendrites of the contralateral one. In addition, a few degenerating axons and large vesicle endings were found among the ipsilateral medial dendrites. The changes in the degenerating endings were characterized by an early proliferation of neurofilaments and swelling of the endings followed by collapse of the endings and increase in electron density, disappearance of filaments and synaptic vesicles, and phagocytosis of the degenerated endings by reactive glial cells. No degenerative changes were observed in the small and intermediate vesicle endings. The results of this study indicate that the more numerous large vesicle endings presynaptic to the MSO dendrites are the axon terminals of neurons in the AVCN. The persistence after lesions of the small and intermediate vesicle endings suggests that they arise from as yet unidentified sources.  相似文献   

6.
Medium-sized spiny neurons of the rat neostriatum, identified by intracellular injection of horseradish peroxidase, were examined at both light and electron microscopic levels. These neurons were characterized by their heavy investment of dendritic spines, beginning about 20 μm from the soma and continuing to the tips of the dendrites. Their axons arose from the soma or from a large dendritic trunk very near the soma, and tapered rapidly to form a main axonal branch from which arose several smaller initial collaterals. These arborized extensively throughout an area of about the same size as, and highly overlapping with, the dendritic field of the cell, while the main axon could be followed for distances of up to 1 mm in the direction of the globus pallidus. Three major synaptic types were seen in contact with spiny neurons. Boutons containing small round synaptic vesicles formed synapses exclusively with spiny regions of the dendrites, and most of these were axo-spinous. Small, very pleomorphic synaptic vesicles characterized a second bouton type of unknown origin, which made contacts with somata, initial segments, and dendrites, but not dendritic spines. Boutons containing large pleomorphic synaptic vesicles had the most widespread distribution, contacting all regions including dendritic spines. Spines receiving these contacts also were postsynaptic to boutons containing small round vesicles. Axon collaterals of spiny cells formed synapses with large pleomorphic vesicles and made synapses with somata, initial segments of axons, dendrites, and dendritic spines of striatal neurons, including other spiny cells.  相似文献   

7.
Neurons in the ventrolateral (VL) subdivision of rat trigeminal nucleus oralis (Vo) have most of their dendritic arbors confined within this region. This study examines the morphology and synaptic connections of a population of myelinated primary trigeminal axons that arborize within VL and are in a position to provide input directly to VL neurons. Primary axons were visualized for light and electron microscopic analysis by injecting 30% horseradish peroxidase (HRP) in 2% dimethylsulfoxide (DMSO) into the sensory root of the trigeminal nerve and allowing 24-36 hours for the anterograde transport of HRP into the terminal axonal arbors. This population is characterized by its cone-shaped terminal arbors, which generate many axonal endings (2-8 micron in diameter) along unmyelinated terminal strands. These arbors arise from collaterals emanating from thinly myelinated (2-5 micron in diameter) parent branches descending in the spinal V tract, which, on the basis of their size, are considered to be small myelinated (A sigma) primary trigeminal axons. HRP-labeled P endings belonging to this population of primary axons are scalloped, filled with spherical to ovoid (40-70 nm in diameter) synaptic vesicles, and lie centrally in glomeruli where they make asymmetrical axodendritic synapses on dendritic shafts and spine heads. It is at these synapses that this population of primary trigeminal axons is probably transferring its input directly to the dendritic arbors of VL neurons. The dendritic shafts and spine heads also receive symmetrical to intermediate axodendritic synapses from endings containing flattened (70 X 29 nm) synaptic vesicles. These terminals also establish axo-axonic synapses on the P ending. Other synaptic components found less often in the glomeruli include small terminals containing oval (14-23 nm) synaptic vesicles that establish symmetrical to intermediate synapses on the P ending, boutons containing pleomorphic (35-80 nm) synaptic vesicles that form symmetrical to intermediate synapses on the P ending as well as on dendritic shafts, and small peripheral endings containing round (20-40 nm) synaptic vesicles that establish asymmetrical synapses on dendritic shafts.  相似文献   

8.
The glomeruli in the substantia gelatinosa layer of the spinal trigeminal nucleus of the cat contain three kinds of dendritic processes. One of these, the type 2 dendrite, contains large synaptic vesicles in its spine heads and in its shaft. The type 2 dendrite receives axodendritic synapses from primary trigeminal afferent (C) axons and an occasional axodendritic synapse from small axonal (P) endings with small synaptic vesicles. The type 2 dendrites in turn form dendroaxonic synapses on the C endings. The dendroaxonic synapse and the axodendritic synapse of the C ending typically occur in reciprocal pairs. The axodendritic synapse usually lies in the depths of scalloped depressions in the surface of the C ending while the dendroaxonic synapse is found on the rim of the depression. Type 1 spines, i.e., dendritic spines receiving axodendritic synapses from the primary ending and lacking synaptic vesicles, also receive dendrodendritic synapses from type 2 dendrites. The types 2 dendrite with its large, rounded synaptic vesicles is considered to be excitatory at its dendroaxonic and dendrodendritic synapses. The type 2 dendrites course from glomerulus to glomerulus receiving their excitatory input through the axodendritic synapses of C axons. A type 2 dendrite, in response to C axon excitation would activate type 1 spines directly through their dendrodendritic synapses (C→2→1) and indirectly by increasing transmitter release at the axodendritic synapses of the C axonal endings through their dendroaxonic synapses (2→C→1). The type 2 dendrites could serve two functions. First, they may prolong transmitter release from the axodendritic synapses of C axonal endings beyond the time of arrival of incoming action potentials because of the reciprocal pairing of dendroaxonic and axodendritic synapses (C?2). Second, they may extend the spatial range of the excitatory output of active primary afferent axons to type 1 spines of glomeruli whose primary afferent axons may be inactive (C→2→1).  相似文献   

9.
The ultrastructure of large neurons in the stratum griseum intermedium of the cat superior colliculus was examined following injections of horseradish peroxidase (HRP) into the dorsal tegmental decussation. Four HRP-labeled cells were selected, and the synaptology of their cell bodies and selected regions of proximal and distal dendrites was examined. The four neurons represent four morphologically distinct cell types: multipolar radiating, tufted, large vertical, and medium-sized trapezoid radiating. These four neurons correspond with cell types X1, X2, X3, and T1 respectively, according to the recent classification of neurons in the superior colliculus of the cat by Moschovakis and Karabelas (J. Comp Neurol. 239:276-308, '85). The three X type neurons are similar in having 83% of their somata and over 74% of their proximal dendrites contacted by synaptic profiles. Distal dendrites of the X type neurons, however, receive fewer synaptic contacts. In contrast, in the T1 cell, only 69% of the soma membrane is contacted by synaptic profiles, and the synaptic coverage on proximal and distal dendrites does not vary much from this. Of the eight types of synaptic terminals described in the stratum griseum intermedium of the cat superior colliculus by Norita (J. Comp. Neurol. 190:29-48, '80), only five are found in contact with the X and T type efferent neurons described here. There are some regional differences in terminal distribution, although each terminal is represented on each cell. Type III terminals (small, contain mostly pleomorphic vesicles, and make symmetrical contacts) are the most abundant on cell bodies and dendrites of all four cell types. Terminal types II (medium-sized, containing round and flattened vesicles, and making asymmetrical contacts), and IV (medium to large in size, containing flattened vesicles, and making symmetrical contacts) are well represented. In general, terminal types I (small, containing densely packed round vesicles, and making asymmetrical contacts) and VI (small and irregular in shape, containing flattened vesicles and making symmetrical contacts) are found infrequently. The identity of different types of synaptic terminal is discussed.  相似文献   

10.
A Golgi and ultrastructural analysis of the centromedian nucleus of the cat   总被引:1,自引:0,他引:1  
The morphology of neurons in the centromedian nucleus (CM) was studied in rapid Golgi preparations of the adult cat. The ultrastructure of the nucleus, particularly its synaptic organization, was also studied with electron microscopy. The CM contains three types of neurons referred to as principal neurons, Golgi type II neurons, and bushy neurons. Principal neurons are the most numerous, have long dendrites, which branch infrequently, and are divided into two subgroups: principal-A neurons with dendrites that arborize radially, whereas principal-B neurons display horizontal orientations. Both subgroups show a frontal orientation in their dendritic organization and give rise to myelinated axons. Golgi type II neurons with their characteristic sinuous dendrites and unmyelinated axons are thought to be interneurons. The occurrence of bushy neurons in the cat's CM is a new finding. These bushy neurons resemble those of thalamic specific relay nuclei and give rise to myelinated axons. In addition to these three cell types, neurons with intermediate features between these three neuronal types are also described. The ultrastructure of CM neurons resembles, in general, typical central nervous system neurons. Presynaptic profiles are classified into four main categories. SR (small round) boutons are small in size, contain clear, round vesicles, and form asymmetrical synaptic contacts with predominantly small-diameter dendrites. LR (large round) boutons are relatively large and contain both clear and dense-cored vesicles. They interdigitate and form multiple, moderately asymmetrical synapses with their postsynaptic targets. Pale profiles are identified by their relatively electron-light appearance. They contain round vesicles and are thought to be dendritic in origin. The last category of presynaptic profiles is pleomorphic boutons. They contain vesicles of different shapes and are further subdivided into two subtypes: pleomorphic-I ends on soma and dendritic trunks, whereas pleomorphic-II contacts small-diameter dendrites. Both subtypes form symmetrical synapses. The glomeruli of specific thalamic relay nuclei generally contain dendrites, LR boutons, and pale profiles. In addition to these, pleomorphic-II boutons also participate in the formation of the glomerulus of the cat's CM.  相似文献   

11.
The early postnatal development of dendrites and axodendritic connectivity in the entopeduncular nucleus of kittens was studied by light and electron microscopy. We focused on the fine structure of neuropil and the organization of synaptic elements at several ages during the first weeks of life. We were able to define, in newborn to 1-week-old kittens, several of the distinct types of nerve endings seen previously by us in adult animals. They were found singly or in small clusters widely spaced along surfaces of dendrites and cell bodies. Most endings were small, contained 45 to 50-nm synaptic vesicles, and formed symmetrical synaptic junctions. Fewer large endings, filled with 30- to 35-nm vesicles, formed asymmetrical synapses. By the end of the second week, most dendrites and much of the cell body surfaces were ensheathed by these endings. Astroglial elements apposed nonsynaptic surfaces and enveloped arrays of axodendritic synapses. We used Fink and Heimer staining of degenerating axons to show that much of this early connectivity originated in the neostriatum. These morphologic studies support physiologic data that striopallidal pathways are functional at birth and suggest that many of the age-related changes in response parameters reflect a quantitative increase in axodendritic connectivity. To assess this notion, we initiated a computer-assisted study of Golgi-impregnated neurons and measured dendritic growth during this period. Preliminary data suggested dendritic fields are extensive in 3-day-old kittens (mean total dendritic length of 2800 μm) and individual dendrites radiate for long distances and branch sparsely (mean total branch length of 700 μm). By 18 days of age, these parameters had increased by about 40% to 4800 and 1200 μm, respectively.  相似文献   

12.
The synaptic associations of neurons in the suprachiasmatic nucleus (SCN) of rats were examined by single immunolabeling for somatostatin (SRIH) and arginine vasopressin (AVP), and double immunolabeling for SRIH plus AVP and vasoactive intestinal polypeptide (VIP) plus AVP. Single immunolabeling showed that SRIH neurons, which displayed some somatic and dendritic spines, formed synaptic contacts with immunonegative and positive axon terminals. AVP neurons also formed synaptic contacts with both immunonegative and positive axon terminals. The immunonegative terminals contained small, spherical clear vesicles or flattened clear vesicles. A few immunopositive AVP fibers made synapses with immunonegative somatic or dendritic spines. Double immunolabeling showed synaptic associations between SRIH axons and AVP cell bodies or dendritic processes, and between AVP axons and the somata or dendrites of SRIH neurons. These findings suggest a reciprocal relation between the two types of neurons. Synaptic contacts between AVP neurons and VIP axon terminals were also demonstrated. Previously, we found synapses between SRIH axons and VIP neurons. Thus SRIH neurons appeared to regulate AVP and VIP neurons. On the basis of these findings, two possible oscillation systems of the SCN are proposed.  相似文献   

13.
Morphological and pharmacological data suggest that catecholaminergic neurons receive afferent axons positively labeled for the peptides, substance P and [Met5]enkephalin. In the present study, electron microscopic immunocytochemistry was used to determine whether a positive reaction for these peptides could be localized to axon terminals forming synapses with catecholaminergic neurons in the locus coeruleus and A2 regions of rat brain. Adjacent sections through these areas were incubated with antiserum to either substance P, [Met5]-enkephalin, or tyrosine hydroxylase, a specific marker for catecholaminergic neurons. The sections were subsequently processes by the peroxidase-antiperoxidase immunocytochemical technique. In both the locus coeruleus and A2 region, tyrosine hydroxylase was localized primarily to perikarya and dendrites of intrinsic neurons; whereas substance P and enkephalin-like immunoreactivity was localized to axons and axon terminals. The axon terminals showing positive reactions for substance P and [Met5]-enkephalin were morphologically similar to each other and to one type of axon terminal which formed synapses with dendrites labeled for tyrosine hydroxylase. This type of axon terminal always formed asymmetric synaptic junctions and contained 3–4 large (75–100 nm) dense vesicles (LDVs) and many small (40–60 nm) clear vesicles (SCVs). The reaction product for substance P and [Met5]-enkephalin was distributed throughout the lumen of the LDVs and formed a rim of labeling around the outer boundaries of the SCVs. These findings demonstrate that substance P and [Met5]-enkephalin-positive reactions are selectively localized to subcellular organelles in axon terminals in the locus coeruleus and A2 region of rat brain. They further suggest that the labeled axon terminals form synapses with dendrites of the catecholaminergic neurons.  相似文献   

14.
The parvicellular and magnocellular divisions of the red nucleus of the old world monkey, Macaca fascicularis, were analyzed at an electron microscopic level to examine the morphology of the synaptic profiles terminating on rubral neurons and to categorize them by their individual characteristics. The parvicellular division, or anterior two-thirds of the nucleus, is composed of small (10-15 microns) and medium-size (20-30 microns) cells, which are uniformly distributed with high packing density throughout this portion of the nucleus. These cells have invaginated nuclei and are often indented by blood vessels and glial cell somata (satellite cells) that lie in close proximity. The magnocellular portion, occupying the caudal one-third of the nucleus, is composed of an additional population of large cells, ranging from 50-90 microns in diameter, which often contain prominent lipofuscin granules and are frequently indented by blood vessels. Satellite glial cells are not a prominent feature in the magnocellularis portion of the nucleus. The large cells are separated one from the other by fields of myelinated axons either coursing through the nucleus or projecting to and from the nucleus itself. Although the divisions of the nucleus in the Macaca fascicularis are spatially distinct, each possesses a morphological similarity in regard to the categories of synaptic profiles seen at the electron microscopic level. These synaptic profiles are classified as follows: large terminals containing numerous, predominantly rounded vesicles (LR), which can often be seen to form the central profile in a synaptic glomerular arrangement; terminals of similar size with predominantly rounded vesicles but with a pale axoplasmic matrix (LRP); small profiles with rounded vesicles (SR); profiles containing granular dense-cored vesicles (DCV); profiles with numerous flattened vesicles (F); profiles containing pleomorphic vesicles (PL), some of which can be interpreted as presynaptic dendrites (PSD) because they are seen to be postsynaptic and contain ribosomes; and profiles with rounded synaptic vesicles, which are associated with subsynaptic Taxi bodies (T). Most of the various synaptic profile types were found to have similar distributions on the dendritic arbors of rubral neurons in both divisions of the nucleus. However, the LRP-type terminal predominates on the cell bodies and proximal dendrites of the large neurons in magnocellularis. Unlike other regions in the nervous system, F type terminals are rarely seen to contact neuronal somata. This study provides a basis for future experimental studies of afferents to the nucleus in this species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The fine structure of the projection from the dorsal nucleus of the lateral lemniscus (DNLL) to the inferior colliculus is examined in the cat. Anterograde axonal transport of 3H-leucine and EM autoradiographic techniques are used to label axonal endings from DNLL. The primary finding is that axonal endings from DNLL contain pleomorphic synaptic vesicles and make symmetrical synaptic contacts. This morphology is associated with inhibitory synapses. The projection from DNLL is the source of approximately one-third of the axonal endings with pleomorphic vesicles in the central nucleus of the inferior colliculus. In the contralateral central nucleus, only labeled endings with pleomorphic vesicles are found. By comparison, on the ipsilateral side, both endings with pleomorphic vesicles and, to a lesser degree, endings with round vesicles are labeled. Endings from DNLL are more numerous per unit area on the contralateral side. About half of the labeled axonal endings from DNLL terminate upon small dendrites, and another third terminate upon more proximal dendrites and several types of cell bodies. Many axonal endings form multiple synaptic contacts, sometimes on more than one postsynaptic structure. Sites of termination for axonal endings include dendritic spines and branch points of dendrites. These data support the hypothesis that the DNLL pathway to the inferior colliculus may have an inhibitory function. Previous studies show that DNLL neurons exhibit immunoreactivity to GAD and GABA antibodies. The crossed projection of DNLL to the inferior colliculus forms tonotopically organized bands that terminate as endings with pleomorphic vesicles. These endings may supply GABAergic inputs to the inferior colliculus. Thus, bands from DNLL could provide inhibitory inputs and overlap with bands from other sources that provide excitatory inputs. Overlapping bands may form unique synaptic domains in the inferior colliculus. The uncrossed projections from DNLL may provide the inferior colliculus with a more diffusely organized projection that could include excitatory and inhibitory inputs. Since the DNLL on one side may inhibit the opposite DNLL and the inferior colliculus, the DNLL pathway may regulate ascending inhibition to the midbrain. Presumed inhibitory inputs from DNLL to the inferior colliculus could be involved in binaural information processing and contralateral dominance.  相似文献   

16.
Previous work has demonstrated that layer V pyramidal cells of primary auditory cortex project directly to the cochlear nucleus. The postsynaptic targets of these centrifugal projections, however, are not known. For the present study, biotinylated dextran amine, an anterograde tracer, was injected into the auditory cortex of rats, and labeled terminals were examined with light and electron microscopy. Labeled corticobulbar axons and terminals in the cochlear nucleus are found almost exclusively in the granule cell domain, and the terminals appear as boutons (1–2 μm in diameter) or as small mossy fiber endings (2–5 μm in diameter). These cortical endings contain round synaptic vesicles and form asymmetric synapses on hairy dendritic profiles, from which thin (0.1 μm in diameter), nonsynaptic “hairs” protrude deep into the labeled endings. These postsynaptic dendrites, which are typical of granule cells, surround and receive synapses from large, unlabeled mossy fiber endings containing round synaptic vesicles and are also postsynaptic to unlabeled axon terminals containing pleomorphic synaptic vesicles. No labeled fibers were observed synapsing on profiles that did not fit the characteristics of granule cell dendrites. We describe a circuit in the auditory system by which ascending information in the cochlear nucleus can be modified directly by descending cortical influences. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The normal cellular architecture and synaptic organization of the dorsal lateral geniculate nucleus (LGN) of Saimiri sciureus has been studied with light and electron microscopic techniques. Golgi preparations reveal at least four types of neurons: type I and II are large and medium-sized cells; type II cells have grape-like dendritic protrusions, while type I cells do not. Type III small neurons have very long dendrites that cross laminar borders freely; and type IV very small neurons resemble glial cells. The last type may correspond to small, spindle-shaped or round, neurons which show somato-dendritic synapses under the electron microscope. Types I and II neurons are regarded as geniculocortical relay cells. Types III and IV are good candidates for interneurons. A serial dorsal to ventral interlaminar dendritic overlap is noted throughout the LGN. With the electron microscope, several types of axonal profiles can be seen: large axons with round vesicles (RL's), small axons with round vesicles (RS's), and intermediate axons with flattened or pleomorphic vesicles (F's). The RL's are retinal terminals; some of the RS's are corticogeniculate fibers; while the F's are believed to be intrageniculate in origin. The F type is then subdivided into F1 and F2; F1 being darker and containing more evenly dispersed synaptic vesicles than F2. There is also a distinct class of presynaptic dendrites, Fd, which contains pleomorphic vesicles and has a light cytoplasmic density similar to that of the F2 profiles. It is possible that some or all of the F2 processes may prove to be dendritic. Somato-dendritic synapses arise from very small neurons and form a part of the normal synaptic organization in the LGN. The RL and RS axons form asymmetrical synaptic contacts, whereas the F (F1, F2 and Fd) processes mainly form symmetrical ones. Non-synaptic filamentous contacts are also found. The rules of synaptic connectivity are such that the RL and RS terminals are never synaptic to either the RL or the RS terminals, and presynaptic to other dendrites. If the F profiles contact each other, the F1 axon is never the post-synaptic element. The RL and F processes synapse upon any part of the perikaryal and dendritic surfaces, whereas the RS terminals do not contact the soma.  相似文献   

18.
Synaptological characteristics of synapses between axonal boutons of the trigeminal mesencephalic nucleus (Vme) neurons and the hypoglossal nucleus (XII) motoneurons (MNs) were studied using biotinylated dextran amine (BDA) anterograde labeling combined with horseradish peroxidase (HRP) retrograde transport in the rat. BDA was initially iontophoresed into Vme unilaterally and 7 days later HRP was injected into the anterior two-thirds of the ipsilateral tongue. After histochemical reactions, BDA anterogradely labeled boutons were seen to appose closely to somata and dendrites of HRP retrogradely labeled MNs in XII by light microscopy. A total of 212 BDA-labeled Vme boutons were examined ultrastructurally, which had an average diameter of 1.3 +/- 0.4 microm and contain small clear spherical vesicles. Eighty-eight percent of Vme boutons (187/212) synapsed on dendrites of HRP-labeled XII MNs. Twenty-five Vme boutons (25/212, 12%) made synapses with somata of HRP-labeled XII MNs. Thirty-five percent (74/212) of BDA-labeled Vme boutons were also contacted by unlabeled P-type terminals. Presynaptic P-type terminals contained spherical (47%, 35/74), pleomorphic (43%, 32/74), and flattened (10%, 7/74) synaptic vesicles. Thus, P-type terminals (as a presynaptic element), BDA-labeled Vme boutons, and XII MNs constitute axoaxodendritic and axoaxosomatic synaptic triads. There are four types of synaptic microcircuits in XII neuropil: synaptic convergence, synaptic divergence, presynaptic inhibition synaptic circuits, and feedforward regulation circuits. This detailed ultrastructure examination of the synaptic organization between Vme neurons and XII MNs provides insights into the synaptic mechanisms of the trigeminal proprioceptive afferents involved in the jaw-tongue reflex and coordination during oral motor behaviors.  相似文献   

19.
Cartwheel neurons in rat dorsal cochlear nucleus (DCN) were studied by Golgi impregnation-electron microscopy. Usually situated in layers 1-2, cartwheel neurons (10-14 micrometers in mean cell body diameter) have dendritic trees predominantly in layer 1. The dendrites branch at wide angles. Most primary dendrites are short, nontapering, and bear only a few sessile spines. Secondary and tertiary dendrites are short, curved, and spine-laden. The perikaryon forms symmetric synapses with at least two kinds of boutons containing pleomorphic vesicles. The euchromatic nucleus is indented and has an eccentric nucleolus. The cytoplasm shows several small Nissl bodies, a conspicuous Golgi apparatus, and numerous subsurface and cytoplasmic cisterns of endoplasmic reticulum with a narrow lumen, joined by mitochondria in single or multiple assemblies. In primary dendrites mitochondria are situated peripherally, while in distal branches they become ubiquitous and relatively more numerous. Dendritic shafts usually form symmetric synapses with boutons that contain pleomorphic vesicles. The majority of the dendritic spines are provided with a vesiculo-saccular spine apparatus. All dendritic spines have asymmetric synapses. Most of these are formed with varicosities of thin, unmyelinated fibers (presumably axons of granule cells) running parallel to the long axis of the DCN or radially. These varicosities contain round, clear synaptic vesicles. On the initial axon segment few symmetric synapses are present. The axon acquires a thin myelin sheath after a short trajectory. Cartwheel neurons outnumber all other neurons in layers 1-2 (with the exception of granule cells), and presumably correspond to type C cells with thinly myelinated axons described by Lorente de Nó. The axons of these neurons provide a dense plexus in the superficial layers without leaving the DCN. The possible functional role of cartwheel neurons is discussed.  相似文献   

20.
Rubrospinal neurons of the magnocellular division of the red nucleus of Macaca fascicularis were retrogradely labeled following spinal cord microinjections of wheat germ agglutinin-horseradish peroxidase, as demonstrated by the chromagen tetramethylbenzidine, identifying the mesencephalic cells of origin of this descending motor pathway. The tissue was processed for electron microscopy and subsequently tested on the electron microscope grid for immunoreactivity of gamma aminobutyric acid (GABA) in presumed local circuit neuronal somata, in dendrites, and in axonal terminals. Results demonstrate the presence of retrogradely labeled rubrospinal neurons of medium and large diameters (30-90 microns) and immunoreactive neurons of small size (less than 20 microns in diameter) within the nucleus. In addition, there are substantial numbers of GABAergic, presumably inhibitory, synaptic structures contacting somata and primary, medium, and small sized dendrites, as well as spineheads of rubrospinal neurons. The immunoreactive presynaptic profiles exhibit two different morphological appearances: one axonal and the other dendritic. Axonal terminals contain densely packed pleomorphic to flattened vesicles and form primarily symmetrical synapses with somata and all regions of the dendritic arbor. GABAergic profiles resembling presynaptic dendrites (PSDs) are also present. These profiles possess scattered flattened to pleomorphic synaptic vesicles in a translucent cytoplasm and are often postsynaptic to axonal terminals of unknown origin, or to GABAergic profiles. GABAergic local circuit neurons (LCNs), the neurites of which remain within the confines of the nucleus, appear to be contacted primarily by cortical and cerebellar afferents. These LCNs may or may not possess axons and thus may represent both the source of the GABAergic axonal terminals as well as that of the PSDs. Inhibitory afferents from other sources, such as the mesencephalic reticular formation, may also account for GABAergic terminals involved in this inhibition. We propose that the level of excitability of rubrospinal neurons and their subsequent activation of spinal motor neurons and interneurons is significantly regulated by the local circuit GABAergic inhibitory interneuronal population of the nucleus proper and probably by axons entering the nucleus from an extranuclear source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号