首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The microsomal cytochrome P450 (CYP) family 4 monooxygenases are the major fatty acid omega-hydroxylases. These enzymes remove excess free fatty acids to prevent lipotoxicity, catabolize leukotrienes and prostanoids, and also produce bioactive metabolites from arachidonic acid omega-hydroxylation. In addition to endogenous substrates, recent evidence indicates that CYP4 monooxygenases can also metabolize xenobiotics, including therapeutic drugs. This review focuses on human CYP4 enzymes and updates current knowledge concerning catalytic activity profiles, genetic variation and regulation of expression. Comparative differences between the human and rodent CYP4 enzymes regarding catalytic function and conditional expression are also discussed.  相似文献   

2.
《Drug metabolism reviews》2012,44(3):451-476
CYP4B1 belongs to the mammalian CYP4 enzyme family that also includes CYP4A, 4F, 4V, 4X, and 4Z subfamilies. CYP4B1 shares with other CYP4 proteins a capacity to ω-hydroxylate medium-chain fatty acids, which may be related to an endogenous role for the enzyme. CYP4B1 also participates in the metabolism of certain xenobiotics that are protoxic, including valproic acid, 3-methylindole, 4-ipomeanol, 3-methoxy-4-aminoazobenzene, and numerous aromatic amines. Although these compounds have little in common structurally or chemically, their metabolism by CYP4B1 leads to tissue-specific toxicities in several experimental animals. The bioactivation capabilities of rabbit CYP4B1 have also attracted attention in the cancer community and form the basis of a potential therapeutic strategy involving prodrug activation by the CYP4B1 transgene. The metabolic capabilities of human CYP4B1 are less clear due to difficulties in heterologous expression and existence of alternatively spliced products. Also, many CYP4B1 enzymes covalently bind their heme, a posttranslational modification unique to the CYP4 family of P450s, but common to the mammalian peroxidases. These varied characteristics render CYP4B1 an interesting and enigmatic investigational target.  相似文献   

3.
细胞色素P450(CYP)ω-羟化酶主要包括CYP4A11和CYP4F2,代谢花生四烯酸(AA)生成20-羟化二十碳四烯酸(20-HETE),20-HETE具有收缩血管和促进尿钠排泄等作用。CYP4A11和4F2基因具有高度多态性,这种多态性导致酶活性降低,并可能引起某些心血管疾病。  相似文献   

4.
Cytochrome P450 4A11 (CYP4A11) is a fatty acid hydroxylase enzyme expressed in human liver. It catalyzes not only the hydroxylation of saturated and unsaturated fatty acids, but the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a regulator of blood pressure. In this study, we performed a directed evolution analysis of CYP4A11 using the luminogenic assay system. A random mutant library of CYP4A11, in which mutations were made throughout the entire coding region, was screened with luciferase activity to detect the demethylation of luciferin-4A (2-[6-methoxyquinolin-2-yl]-4,5-dihydrothiazole-4-carboxylic acid) of CYP4A11 mutants in Escherichia coli. Consecutive rounds of random mutagenesis and screening yielded three improved CYP4A11 mutants, CP2600 (A24T/T263A), CP2601 (T263A), and CP2616 (A24T/T263A/V430E) with ~3-fold increase in whole cells and >10-fold increase in purified proteins on the luminescence assay. However, the steady state kinetic analysis for lauric acid hydroxylation showed the significant reductions in enzymatic activities in all three mutants. A mutant, CP2600, showed a 51% decrease in catalytic efficiency (kcat/Km) for lauric acid hydroxylation mainly due to an increase in Km. CP2601 and CP2616 showed much greater reductions (>75%) in the catalytic efficiency due to both a decrease in kcat and an increase in Km. These decreased catalytic activities of CP2601 and CP2616 can be partially attributed to the changes in substrate affinities. These results suggest that the enzymatic activities of CYP4A11 mutants selected from directed evolution using a luminogenic P450 substrate may not demonstrate a direct correlation with the hydroxylation activities of lauric acid.  相似文献   

5.
6.
《Drug metabolism reviews》2012,44(1):149-168
The importance of cytochrome P450 (CYP) 3A enzymes in human drug metabolism is well established. The function of these enzymes has been characterized extensively in liver and intestinal tissues but much less is known about their expression, regulation and functional activity in the brain. Several lines of evidence point to the presence and function of multiple forms of CYP enzymes, including CYP3A, in both human and rodent brain. Expression studies suggest that CYP3A enzymes show regional differences in their distribution in the brain, where they may play a role in steroid metabolism. They also metabolize many psychoactive drugs and may have a profound effect on their efficacy and safety. This review explores the tissue, cellular, and subcellular expression of CYP3A isoforms in human and rodent brain and provides insight into their functional roles and regulation.  相似文献   

7.
1.?1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined.

2.?CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentially catalyzed 6-hydroxylation.

3.?Five CYP2A13 allelic variants oxidized 8-hydroxylation much more than 6- and 3-hydroxylation, and the variant CYP2A13.3 was found to slowly catalyze these reactions with a lower kcat value than other CYP2A13.1 variants.

4.?CYP2A6 catalyzed 1-chloropyrene 6-hydroxylation at a higher rate than the CYP2A13 enzymes, but the rate was lower than the CYP1A1 and 1B1 variants. Other human P450 enzymes had low activities towards 1-chloropyrene.

5.?Molecular docking analysis suggested differences in the interaction of 1-chloropyrene with active sites of CYP1 and 2?A enzymes. In addition, a naturally occurring Thr134 insertion in CYP2A13.3 was found to affect the orientation of Asn297 in the I-helix in interacting with 1-chloropyrene (and also 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and caused changes in the active site of CYP2A13.3 as compared with CYP2A13.1.  相似文献   

8.
AIMS: To investigate the potential induction by rifampicin of intestinal CYP2C8, CYP2C9, CYP2D6 and CYP3A4 using preparations of human enterocytes. METHODS: Using a multilumen perfusion catheter shed human enterocytes were collected from 6 healthy subjects before and after 10 days of 600 mg day(-1) oral rifampicin administration. The protein expression of CYP2C8, CYP2C9, CYP2D6 and CYP3A4 as well as that of CYP3A4 mRNA was determined using Western blotting and RT-PCR, respectively. RESULTS: CYP3A4 mRNA expression in shed enterocytes increased from 74.6 +/- 44.2 to 143.2 +/- 68.4 a.u. (P < 0.05, 95% CI: 21.8-115.3). Expression of CYP2C8 and CYP2C9 increased from 5.1 +/- 0.9 to 10.4 +/- 2.3 pmol mg(-1) protein (P < 0.01, 95% CI: 2.8-7.7) and from 4.2 +/- 1.4 to 5.7 +/- 1.1 pmol mg(-1) protein (P < 0.01, 95% CI: 0.6-2.4), respectively. No significant difference in CYP2D6 expression before and during rifampicin intake was observed. Rifampicin administration also resulted in a significant induction of CYP3A4 protein (34.1 +/- 10.7 vs. 113.9 +/- 31.1 pmol mg(-1) protein (P < 0.001, 95% CI: 51.8-107.6)). Ex vivo incubation of enterocyte homogenates with verapamil resulted in a significantly increased production of the metabolites formed via CYP3A4 (D-617: 125.9 +/- 118.8 vs. 277.2 +/- 145.5 pmol min(-1) mg(-1) protein (P < 0.05, 95% CI: 30.1-272.5); norverapamil: 113.0 +/- 57.9 vs. 398.4 +/- 148.2 pmol min(-1) mg(-1) protein (P < 0.05, 95% CI: 47.2-523.6)). CONCLUSION: Our findings indicate that shed enterocytes are a useful tool to study the expression, regulation and function of drug metabolizing enzymes. Induction of intestinal CYP2C8 and CYP2C9 might contribute in part to rifampicin - mediated drug interactions, in addition to their hepatic counterparts and intestinal and hepatic CYP3A4.  相似文献   

9.
Cytochrome P450 monooxygenases play an important role in the biosynthesis and metabolism of terpenoids. We explored the potential of recombinant human liver cytochrome P450 monooxygenases CYP1A2, CYP2C9, and CYP3A4, heterologously expressed in Escherichia coli, to convert mono- and sesquiterpenoids to human metabolites. This natural product group is a diverse class of secondary metabolites and includes several industrially and pharmaceutically interesting compounds. Incubation of cedrol with CYP3A4 resulted in a bioconversion of 74% (±8.9%) after 1 h of the unknown metabolites 2-hydroxycedrol and 4-hydroxycedrol, which have been structurally elucidated by 1H and 13C NMR and GC-MS. We conclude that recombinant human cytochrome P450 enzymes can be useful tools in a combinatorial biosynthesis strategy for the production of new natural products and for in vitro metabolization studies.  相似文献   

10.
11.
目的探讨人体尼古丁主要代谢酶细胞色素P450(CYP)2A6及其同族成员CYP2A13肽链结构中,影响其尼古丁5′-羟化代谢活性的关键性氨基酸残基。方法使用前期制备的CYP2A6和CYP2A13系列氨基酸互换突变体:CYP2A6V117A,CYP2A6G164H,CYP2A6I208S,CYP2A6R372H和CYP2A6S465P以及CYP2A13A117V,CYP2A13H164G,CYP2A13S208I,CYP2A13H372R和CYP2A13P465S,比较其与相应野生蛋白酶的尼古丁5′-羟化催化反应的动力学参数。结果各突变体对2个CYP2A蛋白酶的尼古丁代谢活性影响不同。对于CYP2A6,I208S突变对酶活性的影响显著,导致表观反应常数Km及最大反应速度Vmax由野生型62.25μmol.L-1和6.53mol.min-1.mol-1变化为345μmol.L-1和2.19mol.min-1.mol-1,但该位点对CYP2A13酶活性无显著影响;对于CYP2A13,H372R突变对酶活性的影响最为显著,导致Km及Vmax由野生型的26.01μmol.L-1和24.51mol.min-1.mol-1变为148.7μmol.L-1和6.11mol.min-1.mol-1,此位点对CYP2A6无显著影响。其他位点突变对酶活性影响较小或不显著。结论CYP2A家族蛋白中,I208与H372分别是影响CYP2A6和CYP2A13对尼古丁代谢的关键残基。对于同家族蛋白酶而言,关键性氨基酸的作用并不总是一一对应。  相似文献   

12.
13.
Dietary fish oil ω-3 fatty acids (n-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), protect against arrhythmia and sudden cardiac death using largely unknown mechanisms. EPA and DHA may serve as efficient alternative substrates of arachidonic acid (AA) metabolizing cytochrome P450 (CYP) enzymes. For many of the CYP isoforms, the n-3 PUFAs are the preferred substrates. Moreover, the CYP enzymes oxygenate EPA and DHA with largely different regioselectivities compared to AA. In particular, the ω-3 double bond that distinguishes EPA and DHA from AA is a preferred site of CYP-catalyzed epoxidation reactions. Given the pivotal role of CYP-dependent AA metabolites in the regulation of vascular, renal and cardiac functions, their replacement by unique sets of epoxy- and hydroxy-metabolites derived from EPA and DHA may have far-reaching physiological implications. The currently available data suggest that some of the vasculo- and cardioprotective effects attributed to dietary n-3 PUFAs may be mediated by CYP-dependent metabolites of EPA and DHA.  相似文献   

14.
15.
16.
细胞色素P450氧化还原酶(Cytochrome P450 0xidoreductase,POR)是将电子从NADPH转运至所有肝微粒体的细胞色素P450氧化酶(Cytochrome P450 monooxygenases,CYP)中的唯一供体.药物、类固醇激素等物质的代谢和转化需要CYP参与.POR基因具有遗传多态性,遗传变异可以改变CYP活性,引起P450氧化还原酶缺陷(P450 0xidoreductase deficiency,PORD)、临床药物代谢和反应差异.本文将从POR的结构功能、基因突变引起的疾病及其对酶活性影响三个方面进行论述,总结近年来POR遗传多态性对CYP酶影响的最新研究进展.  相似文献   

17.
AIMS: The study aimed to identify the specific human cytochrome P450 (CYP450) enzymes involved in the metabolism of artemisinin. METHODS: Microsomes from human B-lymphoblastoid cell lines transformed with individual CYP450 cDNAs were investigated for their capacity to metabolize artemisinin. The effect on artemisinin metabolism in human liver microsomes by chemical inhibitors selective for individual forms of CYP450 was investigated. The relative contribution of individual CYP450 isoenzymes to artemisinin metabolism in human liver microsomes was evaluated with a tree-based regression model of artemisinin disappearance rate and specific CYP450 activities. RESULTS: The involvement of CYP2B6 in artemisinin metabolism was demonstrated by metabolism of artemisinin by recombinant CYP2B6, inhibition of artemisinin disappearance in human liver microsomes by orphenadrine (76%) and primary inclusion of CYP2B6 in the tree-based regression model. Recombinant CYP3A4 was catalytically competent in metabolizing artemisinin, although the rate was 10% of that for recombinant CYP2B6. The tree-based regression model suggested CYP3A4 to be of importance in individuals with low CYP2B6 expression. Even though ketoconazole inhibited artemisinin metabolism in human liver microsomes by 46%, incubation with ketoconazole together with orphenadrine did not increase the inhibition of artemisinin metabolism compared to orphenadrine alone. Troleandomycin failed to inhibit artemisinin metabolism. The rate of artemisinin metabolism in recombinant CYP2A6 was 15% of that for recombinant CYP2B6. The inhibition of artemisinin metabolism in human liver microsomes by 8-methoxypsoralen (a CYP2A6 inhibitor) was 82% but CYP2A6 activity was not included in the regression tree. CONCLUSIONS: Artemisinin metabolism in human liver microsomes is mediated primarily by CYP2B6 with probable secondary contribution of CYP3A4 in individuals with low CYP2B6 expression. The contribution of CYP2A6 to artemisinin metabolism is likely of minor importance.  相似文献   

18.
This article reviews in vitro metabolic activities [including Michaelis constants (Km), maximal velocities (Vmax) and Vmax/Km] and drug–steroid interactions [such as induction and cooperativity (activation)] of cytochromes P450 (P450 or CYP) in human tissues, including liver and adrenal gland, for 14 kinds of endogenous steroid compounds, including allopregnanolone, cholesterol, cortisol, cortisone, dehydroepiandrosterone, estradiol, estrone, pregnenolone, progesterone, testosterone and bile acids (cholic acid). First, we considered the drug-metabolizing P450s. 6β-Hydroxylation of many steroids, including cortisol, cortisone, progesterone and testosterone, was catalyzed primarily by CYP3A4. CYP1A2 and CYP3A4, respectively, are likely the major hepatic enzymes responsible for 2-/4-hydroxylation and 16α-hydroxylation of estradiol and estrone, steroids that can contribute to breast cancer risk. In contrast, CYP1A1 and CYP1B1 predominantly metabolized estrone and estradiol to 2- and 4-catechol estrogens, which are endogenous ultimate carcinogens if formed in the breast. Some metabolic activities of CYP3A4, including dehydroepiandrosterone 7β-/16α-hydroxylation, estrone 2-hydroxylation and testosterone 6β-hydroxylation, were higher than those for polymorphically expressed CYP3A5. Next, we considered typical steroidogenic P450s. CYP17A1, CYP19A1 and CYP27A1 catalyzed steroid synthesis, including hydroxylation at 17α, 19 and 27 positions, respectively. However, it was difficult to predict which hepatic drug-metabolizing P450 or steroidogenic P450 will be mainly responsible for metabolizing each steroid hormone in vivo based on these results. Further research is required on the metabolism of steroid hormones by various P450s and on prediction of their relative contributions to in vivo metabolism. The findings collected here provide fundamental and useful information on the metabolism of steroid compounds.  相似文献   

19.
目的:探讨中国华东地区汉族人群细胞色素P4503A4基因的基因型差异。方法:采用RT-PCR与DNA测序技术相结合的方法对来自华东地区的6份汉族成人肝组织P4503A4基因的cD-NA进行了扩增与序列分析。结果:本研究从6份汉族人肝组织中首次检测到了一种新的基因型,该基因型存在三处氨基酸突变和一处核苷酸缺失,即第71位氨基酸发生V(GTG)→A(GCG)突变;第225位氨基酸发生V(GTC)→I(AIC)的突变;第393位氨基酸发生W(TGG)→V(GTG)突变;第671~673位核苷酸CAG发生缺失。结论:本研究首次发现中国华东地区汉族人群存在一种CYP3A4新基因型。  相似文献   

20.
Involvement of cytochrome P450 (P450 or CYP) 2C19, 2C9, and 3A4 in N-oxidation of voriconazole, a new triazole antifungal agent, has been demonstrated using human liver microsomes. To confirm the precise roles of P450 isoforms in voriconazole clearance in individuals, we investigated the oxidative metabolism of voriconazole catalyzed by recombinant P450s as well as human liver microsomes genotyped for the CYP2C19 gene. Among recombinant P450 isoforms using Escherichia coli expression systems, CYP2C19 and CYP3A4 had voriconazole N-oxidation activities, but not CYP2C9. Apparent K(m) and V(max) values of CYP2C19 and CYP3A4 for voriconazole N-oxidation were 14+/-6 microM and 0.22+/-0.02 nmol/min/nmol CYP2C19 and 16+/-10 microM and 0.05+/-0.01 nmol/min/nmol CYP3A4, respectively (mean+/-S.E.). CYP3A4 produced a new methyl hydroxylated metabolite from voriconazole, detected by LC/UV and LC/MS/MS and confirmed by 1H and 13C NMR analyses, with K(m) and V(max) values of 11+/-3 microM and 0.10+/-0.01 nmol/min/nmol CYP3A4. The voriconazole 4-hydroxylation to N-oxidation metabolic ratios in liver microsomes from the wild-type CYP2C19*1/*1 individuals (0.07) were lower than those observed in other genotypes (0.20-0.27) at a substrate concentration of 25 microM based on the reported clinical plasma level. These results suggest that the CYP2C19 genotype, but not CYP2C9 genotype, would be evaluated as a key factor in the pharmacokinetics of voriconazole and that 4-hydroxyvoriconazole formation may become an important pathway for voriconazole metabolism in individuals with poor CYP2C19 catalytic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号