首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vaccine》2015,33(36):4472-4478
Respiratory syncytial virus (RSV) causes significant disease in elderly adults, but an effective vaccine is not yet available. We have previously reported that vaccines consisting of engineered respiratory syncytial virus soluble fusion protein (RSV sF) adjuvanted with glucopyranosyl lipid A (GLA) in an oil-in-water emulsion (stable emulsion [SE]) induce RSV F-specific T and B cell responses in mice and rats that protect from viral challenge. Here, we evaluated the immunogenicity of GLA-SE adjuvanted RSV sF vs unadjuvanted RSV sF vaccines in cynomolgus macaques (Macaca fascicularis). RSV F-specific IgG, RSV neutralizing antibodies, and RSV F-specific T cell IFNγ ELISPOT responses induced by GLA-SE adjuvanted RSV sF peaked at week 6 at significantly higher levels than achieved by unadjuvanted RSV sF and remained detectable through week 24, demonstrating response longevity. Two weeks after a week 24 booster immunization, humoral and cellular responses reached levels similar to those seen at the earlier peak response. Importantly, the GLA-SE adjuvanted RSV sF vaccine induced cross-neutralizing antibodies to other RSV A and B strains as well as F-specific IgA and IgG memory B cells. GLA-SE adjuvanted RSV sF was also demonstrated to drive a Th1-biased response characterized by more IFNγ than IL-4. This study indicates that a GLA-SE adjuvanted RSV sF vaccine induces robust humoral and Th1-biased cellular immunity in non-human primates and may benefit human populations at risk for RSV disease.  相似文献   

2.
Respiratory syncytial virus infection remains a serious health problem, not only in infants but also in immunocompromised adults and the elderly. An effective and safe vaccine is not available due to several obstacles: non-replicating RSV vaccines may prime for excess Th2-type responses and enhanced respiratory disease (ERD) upon natural RSV infection of vaccine recipients. We previously found that inclusion of the Toll-like receptor 4 (TLR4) ligand monophosphoryl lipid A (MPLA) in reconstituted RSV membranes (virosomes) potentiates vaccine-induced immunity and skews immune responses toward a Th1-phenotype, without priming for ERD. As mucosal immunization is an attractive approach for induction of RSV-specific systemic and mucosal antibody responses and TLR ligands could potentiate such responses, we explored the efficacy and safety of RSV-MPLA virosomes administered intranasally (IN) to mice and cotton rats. In mice, we found that incorporation of MPLA in IN-administered RSV virosomes increased both systemic IgG and local secretory-IgA (S-IgA) antibody levels and resulted in significantly reduced lung viral titers upon live virus challenge. Also, RSV MPLA virosomes induced more Th1–skewed responses compared to responses induced by FI-RSV. Antibody responses and Th1/Th2-cytokine responses induced by RSV-MPLA virosomes were comparable to those induced by live RSV infection. By comparison, formalin-inactivated RSV (FI-RSV) induced serum IgG that inhibited viral shedding upon challenge, but also induced Th2-skewed responses. In cotton rats, similar effects of incorporation of MPLA in virosomes were observed with respect to induction of systemic antibodies and inhibition of lung viral shedding upon challenge, but mucosal sS-IgA responses were only moderately enhanced. Importantly, IN immunization with RSV-MPLA virosomes, like live virus infection, did not lead to any signs of ERD upon live virus challenge of vaccinated animals, whereas IM immunization with FI-RSV did induce severe lung immunopathology under otherwise comparable conditions. Taken together, these data show that mucosally administered RSV-MPLA virosomes hold promise for a safe and effective vaccine against RSV.  相似文献   

3.
《Vaccine》2015,33(41):5406-5414
RSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene. Single immunization of mice with either one of these vectors induced high titers of RSV neutralizing antibodies and high levels of F specific interferon-gamma-producing T cells. A Th1-type immune response was indicated by a high IgG2a/IgG1 ratio of RSV-specific antibodies, strong induction of RSV-specific interferon-gamma and tumor necrosis factor-alpha cytokine producing CD8 Tcells, and low RSV-specific CD4 T-cell induction. Both humoral and cellular responses were increased upon a boost with RSV-F expressing heterologous adenovirus vector (Ad35 boost after Ad26 prime or vice versa). Both single immunization and prime-boost immunization of cotton rats induced high and long-lasting RSV neutralizing antibody titers and protective immunity against lung and nasal RSV A2 virus load up to at least 30 weeks after immunization. Cotton rats were also completely protected against challenge with a RSV B strain (B15/97) after heterologous prime-boost immunization. Lungs from vaccinated animals showed minimal damage or inflammatory infiltrates post-challenge, in contrast to animals vaccinated with formalin-inactivated virus. Our results suggest that recombinant human adenoviral Ad26 and Ad35 vectors encoding the RSV F gene have the potential to provide broad and durable protection against RSV in humans, and appear safe to be investigated in infants.  相似文献   

4.
Priming with the major surface glycoprotein G of respiratory syncytial virus (RSV) expressed by recombinant vaccinia leads to strong Th2 responses and lung eosinophilia during viral challenge. We now show that DNA vaccination in BALB/c mice with plasmids encoding G attenuated RSV replication but also enhanced disease with lung eosinophilia and increased IL-4/5 production. However, formulating the DNA with PLG microparticles reduced the severity of disease during RSV challenge without significantly lessening protection against viral replication. PLG formulation greatly reduced lung eosinophilia and prevented the induction of IL-4 and IL-5 during challenge, accompanied by a less marked CD4+ T cell response and a restoration of the CD8+ T cell recruitment seen during infection of non-vaccinated animals. After RSV challenge, lung eosinophilia was enhanced and prolonged in mice vaccinated with DNA encoding a secreted form of G; this effect was virtually prevented by PLG formulation. Therefore, PLG microparticulate formulation modifies the pattern of immune responses induced by DNA vaccination boosts CD8+ T cell priming and attenuates Th2 responses. We speculate that PLG microparticles affect antigen uptake and processing, thereby influencing the outcome of DNA vaccination.  相似文献   

5.
Prevention of respiratory syncytial virus (RSV) disease will implicate neonatal priming. However, neonatal antigen exposure frequently results into Th2-like responses, some of which are critical for formalin-inactivated RSV (FI-RSV)-associated lung immunopathology. Neonatal immunization of mice may thus represent a more stringent model of RSV-enhanced pathology than adults. Indeed, after RSV challenge, lung cell infiltration, lymphocyte activation, and eosinophilia were higher following neonatal compared with adult FI-RSV priming of BALB/c mice. Unexpectedly, similar findings were obtained with Al(OH)(3)-adsorbed live RSV. In contrast, neonatal priming with BBG2Na, a recombinant RSV subunit vaccine candidate, formulated in either Al(OH)(3) or TiterMax (a Th1-driving adjuvant) resulted in predominant Th2- or Th1-like responses, respectively, but never elicited lung immunopathology post-challenge. Importantly, our data emphasize that the induction of Th2-like responses by RSV subunit vaccines do not necessarily imply lung immunopathology.  相似文献   

6.
Respiratory syncytial virus (RSV) is a common cause of serious lower respiratory tract illnesses in infants. Natural infections with RSV provide limited protection against reinfection because of inefficient immunological responses that do not induce long-term memory. RSV natural infection has been shown to induce unbalanced immune response. The effective clearance of RSV is known to require the induction of a balanced Th1/Th2 immune response, which involves the induction of cytotoxic T lymphocytes (CTL). In our previous study, recombinant AIK-C measles vaccine strains MVAIK/RSV/F and MVAIK/RSV/G were developed, which expressed the RSV fusion (F) protein or glycoprotein (G). These recombinant viruses elicited antibody responses against RSV in cotton rats, and no infectious virus was recovered, but small amounts of infiltration of inflammatory cells were observed in the lungs following RSV challenge. In the present study, recombinant AIK-C measles vaccine strains MVAIK/RSV/M2-1 and MVAIK/RSV/NP were developed, expressing RSV M2-1 or Nucleoprotein (NP), respectively. These viruses exhibited temperature-sensitivity (ts), which was derived from AIK-C, and expressed respective RSV antigens. The intramuscular inoculation of cotton rats with the recombinant measles virus led to the induction of CD8+ IFN-γ+ cells. No infectious virus was recovered from a lung homogenate following the challenge. A Histological examination of the lungs revealed a significant reduction in inflammatory reactions without alveolar damage. These results support the recombinant measles viruses being effective vaccine candidates against RSV that induce RSV-specific CTL responses with or without the development of an antibody response.  相似文献   

7.
《Vaccine》2019,37(30):4031-4039
Chitosan is a polysaccharide capable of augmenting immune responses with a proven safety record in animals and humans. These properties make it a potentially attractive agent for the prevention and treatment of infectious disease. Infection by respiratory syncytial virus (RSV) is the leading cause of serious lower respiratory disease in young children throughout the world. There is no licensed vaccine available against RSV whereas inactivated vaccine is known to cause enhanced respiratory disease instead of protection. Here, we investigated whether chitosan administered one or three days post-infection could protect animals against RSV infection and whether it could alter immune responses or immunopathology induced by inactivated RSV vaccine when administered twice before RSV infection. We found chitosan could modestly protect animals against RSV infection when given post-infection, while, in conjunction with inactivated RSV vaccine when given pre-infection, it could significantly reduce RSV infection in mice. Further mechanistic investigation revealed that chitosan enhanced antigen-specific immune responses through augmenting the induction of regulatory T cells, lung resident T cells and neutralizing antibodies while reversing Th2-skewed immune responses induced by inactivated RSV vaccine but, surprisingly, failing to reverse lung histopathology. Overall, this study sheds more light on the molecular mechanisms underlying inactivated RSV vaccine-induced disease.  相似文献   

8.
Inactivated respiratory syncytial virus (RSV) vaccines tend to predispose for immune mediated enhanced disease, characterized by Th2 responses and airway hypersensitivity reactions. We show in a C57BL/6 mouse model that the early innate response elicited by the challenge virus (RSV versus influenza virus) influences the outcome of the Th1/Th2 balance in the lung after intramuscular priming with inactivated vaccine. Priming of CD4+/IFN-γ+ T cells by mature dendritic cells administered intravenously and/or priming of a virus specific CD8+ T cell response ameliorated the Th2-mediated inflammatory response in the lung, suggesting that vaccination procedures are feasible that prevent vaccine induced immune pathology.  相似文献   

9.
A safe and effective vaccine against respiratory syncytial virus (RSV) is still unavailable. Proteosome-based adjuvants are derived from the outer membrane proteins (OMP) of Neisseria species and are potent inducers of both mucosal and systemic immunity in humans and animals. Candidate RSV subunit vaccines comprising enriched RSV proteins (eRSV) formulated with proteosomes alone or with LPS (Protollin) were produced. Administered intranasally in BALB/c mice, both vaccines elicited long-lasting systemic and mucosal RSV-specific antibodies and fully protected against challenge. In vitro restimulation of lymphocytes from the Protollin-eRSV immunized mice with F (MHC-I) and G (MHC-II) peptides elicited F peptide-specific CD8(+) T cells and supernatant IFNgamma, TNFalpha, IL-2 and IL-10 while the formalin-inactivated RSV (FI-RSV) vaccine elicited predominantly IL-5. Pulmonary eosinophilia did not develop following immunization with either proteosome-based vaccine following challenge compared to mice immunized with FI-RSV. Proteosome-based eRSV vaccines can therefore protect against RSV challenge in mice without increasing the risk of pulmonary immunopathologic responses.  相似文献   

10.
《Vaccine》2016,34(2):252-260
Baculovirus has been exploited for use as a novel vaccine vector. To investigate the feasibility and efficacy of recombinant baculoviruses (rBVs) expressing respiratory syncytial virus (RSV) fusion (F) proteins, four constructs (Bac-tF/64, Bac-CF, Bac-CF/tF64 and Bac-CF/tF64-VISA) were generated. Bac-tF64 displays the F ectodomain (tF) on the envelope of rBVs, whereas Bac-CF expresses full-length F protein in transduced mammalian cells. Bac-CF/tF64 not only displays tF on the envelope but also expresses F in cells. Bac-CF/tF64-VISA comprises Bac-CF/tF64 harboring the virus-induced signaling adaptor (VISA) gene. After administration to BALB/c mice, all four vectors elicited RSV neutralizing antibody (Ab), systemic Ab (IgG, IgG1, and IgG2a), and cytokine responses. Compared with Bac-tF64, mice inoculated with Bac-CF and Bac-CF/tF64 exhibited an increased mixed Th1/Th2 cytokine response, increased ratios of IgG2a/IgG1 antibody responses, and reduced immunopathology upon RSV challenge. Intriguingly, co-expression of VISA reduced Th2 cytokine (IL-4, IL-5, and IL-10) production induced by Bac-CF/tF64, thus relieving lung pathology upon a subsequent RSV challenge. Our results indicated that the Bac-CF/tF64 vector incorporated with the VISA molecule may provide an effective vaccine strategy for protection against RSV.  相似文献   

11.
Respiratory syncytial virus (RSV) is a major viral agent causing significant morbidity and mortality in young infants and the elderly. There is no licensed vaccine against RSV and it is a high priority to develop a safe RSV vaccine. We determined the immunogenicity and protective efficacy of combined virus-like particle and DNA vaccines presenting RSV glycoproteins (Fd.VLP) in comparison with formalin inactivated RSV (FI-RSV). Immunization of mice with Fd.VLP induced higher ratios of IgG2a/IgG1 antibody responses compared to those with FI-RSV. Upon live RSV challenge, Fd.VLP and FI-RSV vaccines were similarly effective in clearing lung viral loads. However, FI-RSV immunized mice showed a substantial weight loss and high levels of T helper type 2 (Th2) cytokines as well as extensive lung histopathology and eosinophil infiltration. In contrast, Fd.VLP immunized mice did not exhibit Th2 type cytokines locally and systemically, which might contribute to preventing vaccine-associated RSV lung disease. These results indicate that virus-like particles in combination with DNA vaccines represent a potential approach for developing a safe and effective RSV vaccine.  相似文献   

12.
RSV vaccine development has constraints due to safety issues encountered by formalin-inactivated FI-RSV vaccines. A desirable vaccine should induce Th(1) responses and a strong mucosal immunity to provide complete protection from RSV infection. In the present paper, we developed and evaluated a mucosal vaccine against RSV in a mouse model. The antigenic regions corresponding to residues 412-524 of RSV-F protein were amplified by RT-PCR and cloned into a vector containing the ctxA(2)B gene of the cholera toxin. The recombinant protein was expressed in E. coli and properties of the recombinant protein were analyzed by SDS-PAGE, Western blot and G(M1)-ELISA. The purified recombinant protein (rRF-412) was used to immunize BALB/c mice intranasally. The results from our studies show that the rRF-412 immunogen induced mucosal (IgA) and systemic antibody (IgG, IgG1, IgG2a, and IgG2b) responses which neutralized RSV. The IgG1/IgG2a ratios indicated a Th(1)-biased antibody response. The Th(1) (TNF-alpha, IL-12p70, IFN-gamma, IL-2) and Th(2) (IL-10, IL-4 and IL-5) cytokine profiles were analyzed after stimulation of spleen cells from mice immunized with purified RF-412 protein. Similar to the antibody response, we observed that the rRF-412 immunogen induced a mixed Th(1)/Th(2) cytokine immune response with a Th(1)-bias response. Serum antibodies were capable of neutralizing RSV and mice immunized with rRF-412 were significantly protected from live RSV challenge. Our data provides evidence that the rRF-412 immunogen may be a potential mucosal vaccine candidate against RSV.  相似文献   

13.
We evaluated individual and bivalent replicon vaccines against Clostridiumbotulinum neurotoxin serotypes A (BoNT/A) or B (BoNT/B). The DNA replicon vaccine (pSCARSBHc) encoding the Hc domain of BoNT/B (BHc) induced better responses and protection against BoNT/B mouse challenge than conventional DNA vaccine. The dual-expressing DNA vaccine (pSCARSA/BHc) protected similarly to a DNA replicon vaccine mixture (pSCARSAHc + pSCARSBHc). Additionally, recombinant SFV particles, VRP-AHc or VRP-BHc, protected mice from high-dose BoNT/A or BoNT/B challenge, respectively. Mice given either dual-expressing VRP-A/BHc or mixture of VRP-AHc and VRP-BHc were protected from challenge with serotype A/B mixtures. These data justify further testing in other animals or humans.  相似文献   

14.
Zeng R  Qi X  Gong W  Mei X  Wei L  Ma C  Yin X 《Vaccine》2007,25(42):7422-7428
Respiratory syncytial virus (RSV) is the primary cause of serious lower respiratory tract illness in young children. We have engineered a recombinant candidate vaccine G1F/M2, consisting of a cytotoxic T lymphocyte (CTL) epitope of RSV-M2 protein and a domain of RSV-G protein. In this study, the long-term immunogenicity and protective effect were evaluated. In G1F/M2-immunized mice, special antibodies lasted for more than 19 weeks, and the IgG1/IgG2a ratio remained a balanced level till the end of the study, suggesting mixed Th1/Th2 type of responses. Concomitantly, G1F/M2 elicited long-lived RSV-specific CTL activity that was detectable at 12 weeks after the final immunization. Stronger CTL responses were induced with immunization once more at 13 weeks after the last immunization in G1F/M2-primed mice than those in F/M2-primed mice. These results suggest that G1F/M2-induced long-lasting balanced humoral and cellular immunity responses, and immunological memory in mice. Furthermore, following RSV challenge, long-term protective efficacy was observed. RSV replication in lungs of G1F/M2-primed mice elicited also mixed Th1/Th2 responses, a property that is considered advantageous for the safety of an RSV vaccine. Therefore, G1F/M2 is a promising RSV subunit vaccine.  相似文献   

15.
An intranasal vaccine composed of Toll-like receptor 2 (TLR2) ligand Neisseria meningitidis outer membrane proteins and Toll-like receptor 4 (TLR4) ligand Shigella flexneri lipopolysaccharide (LPS) (Protollin) and enriched respiratory syncytial virus (RSV) proteins (eRSV) has been demonstrated to promote balanced Th1/Th2 responses without eosinophil recruitment and to protect against challenge in mouse models. We used TLR2, TLR4 and myeloid differentiation factor 88 (MyD88) knock-out (-/-) mice to investigate the roles of these signalling pathways on immunogenicity, protection and pulmonary infiltrates following RSV immunization and challenge. Antigen-specific systemic and mucosal antibody production was significantly impaired only in TLR4-/- mice following Protollin–eRSV immunization. In contrast, an intact MyD88 pathway was crucial to elicit a balanced type 1:type 2 immune response, characterized by increased splenocyte production of antigen-induced IFNγ and IL-10 with concomitant reduction of IL5, IgG2a isotype switching and abrogation of pulmonary eosinophil recruitment following challenge. MyD88-dependent signalling also contributed to neutrophil recruitment to the lungs following immunization with eRSV antigen, in the presence or absence of Protollin, compared to a mock antigen or vaccine. Both TLR4 and MyD88-signalling were required for optimal protection against challenge. The upregulation of early signalling molecules IFN-β, TNFα, CD40 and CD86 were studied in splenocytes isolated from naïve TLR2, TLR4 and MyD88-/- mice following stimulation with vaccine components. Splenocytes from TLR4-/- mice displayed reduced IFN-β while those of MyD88-/- mice elicited less TNFα and lower expression of CD40 and CD86 on CD11c+ cells. Together, our results suggest that optimal immunogenicity and protection against RSV without risk of enhanced pulmonary inflammation requires intact TLR4/MyD88-dependent signalling.  相似文献   

16.
Respiratory syncytial virus (RSV) is the most important cause of bronchiolitis and pneumonia in infants and young children. Immunopathology may play a role in RSV-induced disease and a severe RSV infection may also be associated with an increased risk of developing asthma. Vaccination with formalin-inactivated RSV (FI-RSV) prior to infection resulted both in human and in the mouse model in extensive lung pathology. In the mouse model, it has been shown that this aggravation of disease was associated with a shift in the balance between Th1 and Th2 cytokines towards a Th2-type response. The aim of the present study was to characterise the immunological and inflammatory responses in BALB/c mice upon RSV infection with or without prior vaccination with aluminium-adjuvanted FI-RSV or control antigens (FI-Mock). As previously reported by others, we also observed that a primary RSV infection in BALB/c mice resulted in a predominant Th1-type cytokine response, which was associated with slight bronchiolitis and alveolitis. FI-RSV vaccination prior to RSV challenge prevented virus replication and was associated with an aggravation of pulmonary histopathology and a shift towards a Th2-type response. Vaccination with FI-Mock did not prevent RSV replication in the lung but resulted in an even more pronounced Th2 response after infection while these mice were not sensitised to specific viral antigens. Thus, viral replication in a Th2 responding animal (induced by aluminium-adjuvanted mock vaccine) appears to boost the Th2 response upon RSV infection.  相似文献   

17.
Respiratory syncytial virus (RSV) is divided into subgroups A and B, based primarily on variation within the G glycoprotein. A safe vaccine that protects against both would be the ideal. BBG2Na is a recombinant subunit RSV vaccine candidate derived in part from the G protein of RSV-A. Interestingly, BBG2Na formulated in alum protected against RSV-B challenge at early time points following vaccination in mice. Over 6 months, however, BBG2Na-induced immunogenicity and protective efficacy progressively diminished, such that few animals were considered protected at the end. To study the safety of BBG2Na relative to RSV-B challenge, we established a novel enhanced immunopathology mouse model. We confirmed that RSV-B challenge of formalin-inactivated RSV-A (FI-RSV-A)-immunized BALB/c mice results in enhanced pulmonary pathology. Therefore, this phenomenon is neither subgroup-specific nor dependent on a previously incriminated Th epitope in the RSV-A G protein. In stark contrast, BBG2Na did not induce any signs of enhanced pulmonary pathology. In conclusion, our data indicate that BBG2Na, formulated in alum, induces safe and protective immune responses against RSV-B challenge in mice. However, the duration of protective immunity will probably be insufficient to prevent RSV-B infection for the duration of the RSV epidemic season.  相似文献   

18.
Parainfluenza virus type 3 (PIV3) infections continue to be a significant health risk for infants, young children, and immunocompromised adults. We describe a gene-based vaccine strategy against PIV3 using replication-defective alphavirus vectors. These RNA replicon vectors, delivered as virus-like particles and expressing the PIV3 hemagglutinin-neuraminidase glycoprotein, were shown to be highly immunogenic in mice and hamsters, inducing PIV3-specific neutralizing antibody responses. Importantly, the replicon particle-based vaccine administered intramuscularly or intranasally protected against mucosal PIV3 challenge in hamsters, preventing virus replication in both nasal turbinates and lungs. These data suggest that the alphavirus replicon platform can be useful for a PIV3 vaccine and possibly other respiratory viruses.  相似文献   

19.
Respiratory syncytial virus (RSV) causes severe respiratory disease in children and the elderly. There is no registered RSV vaccine. Early experimental non-replicating vaccines have been found to exacerbate RSV symptoms upon infection causing enhanced respiratory disease. Here we show that immunization of mice with reconstituted virosomes produced from RSV envelopes and containing the lipopeptide adjuvant (P3CSK4), induces high-titer virus-neutralizing antibodies, and the secretion of IFN-γ through both MHC-I and MHC-II presentation of antigen, with a balanced Th1/Th2 profile. Immunization with RSV virosomes provides sterilizing immunity to virus challenge in mice and cotton rats, while not producing symptoms of enhanced disease. Therefore, these virosomes represent a promising candidate inactivated RSV vaccine formulation.  相似文献   

20.
Yu YZ  Zhang SM  Sun ZW  Wang S  Yu WY 《Vaccine》2007,25(52):8843-8850
In current study, the immunogenicity of a plasmid DNA replicon vaccine (pSCARSHc) encoding the Hc domain of Clostridium botulinum neurotoxin serotype A (AHc) was investigated and compared with a conventional plasmid DNA vaccine (pcDNASHc) encoding the same antigen. In vitro, pSCARSHc incorporating Semliki Forest virus (SFV) replicon could express AHc protein and induce apoptosis of transfected cells. Comparison with the conventional plasmid DNA vaccine (pcDNASHc) yielded several interesting results. First, our self-designed pSCARSHc could induce relatively higher AHc-specific antibodies and lymphocyte proliferative responses in immunized Balb/c mice, especially at low doses. Second, while both pSCARSHc and pcDNASHc induced Th2-type immune responses, the ratio of IgG1 to IgG2a was lower in pSCARSHc groups and the Th2- and Th1-type humoral immune responses induced by pSCARSHc were also stronger than that of the pcDNASHc vaccine. Third, it was shown that the sera from pSCARSHc-vaccinated mice conferred more efficient protection than those from pcDNASHc-vaccinated mice by BoNT/A neutralization assay. Finally, mice immunized with pSCARSHc could also elicit more efficient protection against BoNT/A than pcDNASHc. These results indicate that our plasmid DNA replicon vaccine can provide strong immunogenicity and should be a potential alternative strategy to conventional DNA vaccines in developing an efficacious vaccine against C. botulinum neurotoxin serotype A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号