首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EGFR is a validated therapeutic target in many human cancers. EGFR targeted therapies are in widespread clinical use in patients with non-small cell lung cancer and other tumor types. Despite the clinical success of EGFR targeted therapy, resistance to treatment is a significant barrier to the optimized use of EGFR inhibitors to cure patients with lung and other cancers. Here, we review established and emerging mechanisms of resistance to EGFR targeted therapy and highlight strategies that could overcome treatment resistance and therefore enhance clinical outcomes.  相似文献   

2.
The epidermal growth factor receptor (EGFR) is widely expressed in head and neck squamous cell carcinomas (HNSCC) and can activate many growth and survival pathways within tumor cells. Despite ubiquitous EGFR expression, therapies targeting the receptor are only modestly effective in the treatment of HNSCC. A consistent mechanism of resistance to EGFR targeting agents has not yet been identified in HNSCC likely due, in part, to the paucity of preclinical models. We assessed the in vitro and in vivo responses of a panel of 10 genotypically validated HNSCC cell lines to the EGFR inhibitors erlotinib and cetuximab to determine their validity as models of resistance to these agents. We defined a narrow range of response to erlotinib in HNSCC cells in vitro and found a positive correlation between EGFR protein expression and erlotinib response. We observed cross-sensitivity in one HNSCC cell line, 686LN, between erlotinib and cetuximab in vivo. We attempted to generate models of cetuximab resistance in HNSCC cell line-derived xenografts and heterotopic tumorgrafts generated directly from primary patient tumors. While all 10 HNSCC cell line xenografts tested were sensitive to cetuximab in vivo, heterotopic patient tumorgrafts varied in response to cetuximab indicating that these models may be more representative of clinical responses. These studies demonstrate the limitations of using HNSCC cell lines to reflect the heterogeneous clinical responses to erlotinib and cetuximab, and suggest that different approaches including heterotopic tumorgrafts may prove more valuable to elucidate mechanisms of clinical resistance to EGFR inhibitors in HNSCC.  相似文献   

3.
The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for use in oncology. Despite clinical success the majority of patients do not respond to cetuximab and those who initially respond frequently acquire resistance. To understand how tumor cells acquire resistance to cetuximab we developed a model of resistance using the non-small cell lung cancer line NCI-H226. We found that cetuximab-resistant (CtxR) clones manifested strong activation of EGFR, PI3K/AKT and MAPK. To investigate the role of AKT signaling in cetuximab resistance we analyzed the activation of the AKT pathway effector molecules using a human AKT phospho-antibody array. Strong activation was observed in CtxR clones for several key AKT substrates including c-jun, GSK3β, eIF4E, rpS6, IKKα, IRS-1 and Raf1. Inhibition of AKT signaling by siAKT1/2 or by the allosteric AKT inhibitor MK-2206 resulted in robust inhibition of cell proliferation in all CtxR clones. Moreover, the combinational treatment of cetuximab and MK-2206 resulted in further decreases in proliferation than either drug alone. This combinatorial treatment resulted in decreased activity of both AKT and MAPK thus highlighting the importance of simultaneous pathway inhibition to maximally affect the growth of CtxR cells. Collectively, our findings demonstrate that AKT activation is an important pathway in acquired resistance to cetuximab and suggests that combinatorial therapy directed at both the AKT and EGFR/MAPK pathways may be beneficial in this setting.  相似文献   

4.

Background:

Although it is accepted that metastatic colorectal cancers (mCRCs) that carry activating mutations in KRAS are unresponsive to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, a significant fraction of KRAS wild-type (wt) mCRCs are also unresponsive to anti-EGFR therapy. Genes encoding EGFR ligands amphiregulin (AREG) and epiregulin (EREG) are promising gene expression-based markers but have not been incorporated into a test to dichotomise KRAS wt mCRC patients with respect to sensitivity to anti-EGFR treatment.

Methods:

We used RT–PCR to test 110 candidate gene expression markers in primary tumours from 144 KRAS wt mCRC patients who received monotherapy with the anti-EGFR antibody cetuximab. Results were correlated with multiple clinical endpoints: disease control, objective response, and progression-free survival (PFS).

Results:

Expression of many of the tested candidate genes, including EREG and AREG, strongly associate with all clinical endpoints. Using multivariate analysis with two-layer five-fold cross-validation, we constructed a four-gene predictive classifier. Strikingly, patients below the classifier cutpoint had PFS and disease control rates similar to those of patients with KRAS mutant mCRC.

Conclusion:

Gene expression appears to identify KRAS wt mCRC patients who receive little benefit from cetuximab. It will be important to test this model in an independent validation study.  相似文献   

5.
Overall benefits of EGFR‐TKIs are limited because these treatments are largely only for adenocarcinoma (ADC) with EGFR activating mutation. The treatments also usually lead to development of resistances. We have established a panel of patient‐derived xenografts (PDXs) from treatment naïve Asian NSCLC patients, including those containing “classic” EGFR activating mutations. Some of these EGFR‐mutated PDXs do not respond to erlotinib: LU1868 containing L858R/T790M mutations, and LU0858 having L858R mutation as well as c‐MET gene amplification, both squamous cell carcinoma (SCC). Treatment of LU0858 with crizotinib, a small molecule inhibitor for ALK and c‐MET, inhibited tumor growth and c‐MET activity. Combination of erlotinib and crizotinib caused complete response, indicating the activation of both EGFR and c‐MET promote its growth/survival. LU2503 and LU1901, both with wild‐type EGFR and c‐MET gene amplification, showed complete response to crizotinib alone, suggesting that c‐MET gene amplification, not EGFR signaling, is the main oncogenic driver. Interestingly, LU1868 with the EGFR L858R/T790M, but without c‐met amplification, had a complete response to cetuximab. Our data offer novel practical approaches to overcome the two most common resistances to EGFR‐TKIs seen in the clinic using marketed target therapies.  相似文献   

6.
BACKGROUND: KRAS mutation status is a candidate marker for predicting survival in patients with metastatic colorectal cancer (mCRC) treated with cetuximab (CTX). PATIENTS AND METHODS: We studied the KRAS mutation status of 113 patients with irinotecan refractory mCRC treated with CTX in clinical trials. A predictive model for objective response (OR), progression-free survival (PFS) and overall survival (OS) was constructed using logistic and Cox regression. RESULTS: OR was seen in 27 of 66 KRAS wild-type (WT) patients versus 0 of 42 in KRAS mutants. Median OS was significantly better in KRAS WT versus mutants (43.0 versus 27.3 weeks; P = 0.020). Decrease in tumor sizes was significantly larger at all time points in WT patients. KRAS WT patients with an initial relative decrease of tumor size >9.66% at week 6 had a significantly better median OS compared with all other patients (74.9 versus 30.6 weeks; P = 0.0000025). Within KRAS WT patients OS was significantly better in patients with an initial decrease compared with those without [median OS: 74.9 versus 30.6 weeks (P = 0.00000012)]. CONCLUSIONS: KRAS WT status is associated to survival benefit in CTX treated mCRC. This benefit is even more pronounced in those patients with early radiological response. These characteristics may be exploited for response prediction.  相似文献   

7.
Acquired resistance to epidermal growth factor receptor (EGFR) targeted antibodies represents a clinical challenge in the treatment of gastrointestinal tumors such as metastatic colorectal cancer, but its molecular mechanisms are incompletely understood. We scanned KRAS exon 2/3/4, NRAS exon 2/3/4 and the overlapping epitopes of the EGFR antibodies cetuximab and panitumumab for mutations in pre- and post-treatment tumor tissue of 21 patients with gastrointestinal cancer treated with chemotherapy +/− EGFR antibodies by next-generation sequencing (“tumor tissue” cohort). We describe a novel EGFR exon 12 mutation acquired in tumors of 1 out of 3 patients treated with panitumumab. The EGFR G465R mutation introduces a positive charge within the overlap of the panitumumab and cetuximab epitopes. It abrogates antibody binding and mediates cross-resistance to both antibodies in EGFR G465R-transfected Ba/F3 cells. In circulating tumor DNA from an independent “liquid biopsy” cohort of 27 patients, we found this novel mutation in 1 out of 6 panitumumab-treated cases while about one third of patients show acquired RAS mutations. We show that acquired resistance by epitope-changing mutations also emerges during panitumumab treatment, which can be easily detected by a liquid biopsy approach even before clinical resistance occurs and this may help in tailoring EGFR-targeted therapies.  相似文献   

8.
Cetuximab is the single targeted therapy approved for the treatment of head and neck cancer (HNSCC). Predictive biomarkers have not been established and patient stratification based on molecular tumor profiles has not been possible. Since EGFR pathway activation is pronounced in basal subtype, we hypothesized this activation could be a predictive signature for an EGFR directed treatment. From our patient‐derived xenograft platform of HNSCC, 28 models were subjected to Affymetrix gene expression studies on HG U133+ 2.0. Based on the expression of 821 genes, the subtype of each of the 28 models was determined by integrating gene expression profiles through centroid‐clustering with previously published gene expression data by Keck et al. The models were treated in groups of 5–6 animals with docetaxel, cetuximab, everolimus, cis‐ or carboplatin and 5‐fluorouracil. Response was evaluated by comparing tumor volume at treatment initiation and after 3 weeks of treatment (RTV). Tumors distributed over the 3 signature‐defined subtypes: 5 mesenchymal/inflamed phenotype (MS), 15 basal type (BA), 8 classical type (CL). Cluster analysis revealed a strong correlation between response to cetuximab and the basal subtype. RTV MS 3.32 vs. BA 0.78 (MS vs. BA, unpaired t‐test, p 0.0002). Cetuximab responders were distributed as following: 1/5 in MS, 5/8 in CL and 13/15 in the BA group. Activity of classical chemotherapies did not differ between the subtypes. In conclusion basal subtype was associated with response to EGFR directed therapy in head and neck squamous cell cancer patient‐derived xenografts.  相似文献   

9.
Epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitor (TKI) therapy often provides a dramatic response in lung cancer patients with EGFR mutations. In addition, moderate clinical efficacy of the EGFR‐TKI, erlotinib, has been shown in lung cancer patients with the wild‐type EGFR. Numerous molecular mechanisms that cause acquired resistance to EGFR‐TKIs have been identified in lung cancers with the EGFR mutations; however, few have been reported in lung cancers with the wild‐type EGFR. We used H358 lung adenocarcinoma cells lacking EGFR mutations that showed modest sensitivity to erlotinib. The H358 cells acquired resistance to erlotinib via chronic exposure to the drug. The H358 erlotinib‐resistant (ER) cells do not have a secondary EGFR mutation, neither MET gene amplification nor PTEN downregulation; these have been identified in lung cancers with the EGFR mutations. From comprehensive screening of receptor tyrosine kinase phosphorylation, we observed increased phosphorylation of insulin‐like growth factor 1 receptor (IGF1R) in H358ER cells compared with parental H358 cells. H358ER cells responded to combined therapy with erlotinib and NVP‐AEW541, an IGF1R‐TKI. Our results indicate that IGF1R activation is a molecular mechanism that confers acquired resistance to erlotinib in lung cancers with the wild‐type EGFR.  相似文献   

10.

Introduction

This exploratory subgroup analysis of the MARQUEE study evaluated the efficacy and safety of erlotinib plus tivantinib in patients with EGFR-mutant NSCLC.

Methods

Patients with advanced, nonsquamous, EGFR and mesenchymal-epithelial transition inhibitor–naive NSCLC previously treated with one or two lines of systemic therapy were randomized to oral erlotinib (150 mg once daily) plus tivantinib (360 mg twice daily) or to erlotinib plus placebo. The primary end point was overall survival.

Results

Among 1048 patients enrolled, 109 (10.4%) had EGFR-mutant disease. Erlotinib plus tivantinib improved progression-free survival in this subpopulation; median progression-free survival was 13.0 months for erlotinib plus tivantinib (n = 56) and 7.5 months for erlotinib plus placebo (n = 53) (hazard ratio = 0.49, 95% confidence interval: 0.31–0.77). Deaths occurred in 73 patients (67%), and median overall survival was 25.5 months in the erlotinib plus tivantinib arm versus 20.3 months in the erlotinib plus placebo arm (hazard ratio = 0.68, 95% confidence interval: 0.43–1.08). Common adverse events included diarrhea, rash, and asthenia. Neutropenia and febrile neutropenia were more common with erlotinib plus tivantinib.

Conclusions

Erlotinib plus tivantinib was tolerable and showed improved efficacy over erlotinib monotherapy in previously treated EGFR-mutant NSCLC.  相似文献   

11.
Cetuximab resistance is a key barrier in treating metastatic colorectal cancer (mCRC). Targeting of metabolic resources import could resensitize drug‐resistant cancer cells to anticancer treatments. Here we showed that the expression of the glutamine transporter solute carrier 1 family member 5 (SLC1A5) in clinical CRC samples of patients resisted to cetuximab was significantly higher than in those of patients responded to cetuximab. Inhibition of SLC1A5 by shRNA‐mediated gene silencing or pharmacological inhibitor significantly suppressed the growth of CRC. Moreover, inhibition of SLC1A5 significantly enhanced the inhibitory efficacy of cetuximab on CRC proliferation both in vitro and in vivo. Mechanistically, SLC1A5 inhibition facilitated EGFR degradation through the ubiquitin‐proteasome pathway, and decreased the expression of nuclear EGFR, both of which might have contribution to the improved response to cetuximab. This study provides the metabolic molecule SLC1A5 as a potential therapeutic target to increase the efficacy of cetuximab on CRC.  相似文献   

12.

Background:

Epidermal growth factor receptor (EGFR) promoter methylation may be responsible for the loss of EGFR expression in neoplastic cells. The primary aim of our study was to verify a possible correlation between EGFR gene promoter methylation and clinical outcome in metastatic colorectal cancer patients receiving chemotherapy with irinotecan and cetuximab.

Methods:

Colorectal samples from patients treated with irinotecan–cetuximab were analysed for EGFR promoter methylation and EGFR immunohistochemistry.

Results:

Fifty-two patients were analysed. Thirty patients (58%) showed EGFR promoter hypermethylation. In EGFR promoter methylated and EGFR promoter unmethylated patients, we observed a partial response in 3 (10%) and 13 (59%) patients, respectively (P=0.03), progressive disease was obtained in 19 (63%) and 2 (9%) patients, respectively, with EGFR promoter methylated and EGFR promoter unmethylated tumours (P=0.0001). Median progression-free survival was 2.4 months in patients showing EGFR promoter methylated tumours and 7.4 months for those who had EGFR promoter unmethylated tumours (P<0.0001; Figure 1). Median overall survival was 6.1 months in patients showing EGFR promoter methylated tumours and 17.8 months for those who had EGFR promoter unmethylated tumours (P<0.0001; Figure 2). EGFR promoter hypermethylation, after confirmation in larger data set, may represent a valuable asset in further studies investigating EGFR as a therapeutic target in colorectal cancer.Open in a separate windowFigure 1Kaplan–Meier curves for median progression-free survival (PFS) of colorectal cancer patients treated with irinotecan and cetuximab with EGFR promoter methylated and without EGFR promoter methylated tumours (2.4 vs 7.4 months, P<0.0001).Open in a separate windowFigure 2Kaplan–Meier curves for median overall survival (OS) of colorectal cancer patients treated with irinotecan and cetuximab with EGFR promoter methylated and without EGFR promoter methylated tumours (6.1 vs 17.8 months, P<0.0001).  相似文献   

13.

Purpose

Although activating mutations in the epidermal growth factor receptor (EGFR) gene are predictive markers for response to EGFR inhibitors, 30–40% of EGFR-mutant non-small cell lung cancer (NSCLC) patients are de novo non-responders. Hence, we sought to explore additional biomarkers of response.

Methods

We conducted a prospective pilot study to characterize the expression and/or activation of key receptor tyrosine kinases (RTKs) in stage IIIB-IV NSCLC tumors. A total of 37 patients were enrolled and 34 underwent EGFR inhibitor treatment.

Results

As expected, patients bearing activating EGFR mutations showed increased progression free survival (PFS) compared to patients with wild-type EGFR status (9.3 vs 1.4 months, p = 0.0629). Analysis of baseline tumor RTK profiles revealed that, regardless of EGFR mutation status, higher levels of EGFR relative to MET correlated with longer PFS. At multiple EGFR/MET ratio cut-offs, including 1, 2 and 3, median PFS according to below vs. above cut-offs were 0.4 vs. 6.1 (p = 0.0001), 0.5 vs. 9.3 (p = 0.0006) and 1.0 vs. 11.2 months (p = 0.0008), respectively.

Conclusion

The EGFR/MET ratio measured in tumors at baseline may help identify NSCLC patients most likely to benefit from prolonged PFS when treated with EGFR inhibitors.  相似文献   

14.
Afatinib is an irreversible epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitor (TKI) that is known to be effective against the EGFR T790M variant, which accounts for half of the mechanisms of acquired resistance to reversible EGFR‐TKIs. However, acquired resistance to afatinib was also observed in clinical use. Thus, elucidating and overcoming the mechanisms of resistance are important issues in the treatment of non‐small cell lung cancer. In this study, we established various afatinib‐resistant cell lines and investigated the resistance mechanisms. EGFR T790M mutations were not detected using direct sequencing in established resistant cells. Several afatinib‐resistant cell lines displayed MET amplification, and these cells were sensitive to the combination of afatinib plus crizotinib. As a further investigation, a cell line that acquired resistance to afatinib plus crizotinib, HCC827‐ACR, was established from one of the MET amplified‐cell lines. Several afatinib‐resistant cell lines including HCC827‐ACR displayed epithelial‐to‐mesenchymal transition (EMT) features and epigenetic silencing of miR‐200c, which is a suppresser of EMT. In addition, these cell lines also exhibited overexpression of ALDH1A1 and ABCB1, which are putative stem cell markers, and resistance to docetaxel. In conclusion, we established afatinib‐resistant cells and found that MET amplification, EMT, and stem cell‐like features are observed in cells with acquired resistance to EGFR‐TKIs. This finding may provide clues to overcoming resistance to EGFR‐TKIs.  相似文献   

15.
BACKGROUND: Standardized conditions to distinguish subpopulations of colorectal cancer (CRC) patients more and less sensitive to cetuximab therapy remain undefined. Materials and methods: We retrospectively analyzed epidermal growth factor receptor (EGFR) copy number by fluorescence in situ hybridization (FISH) in paraffin-embedded tumor blocks from 85 chemorefractory CRC patients treated with cetuximab. Results were analyzed according to different score systems previously reported in colorectal and lung cancers. The primary end point of the study was identification of the EGFR FISH score that best associates with response rate (RR). RESULTS: Using receiver operating characteristic (ROC) analysis, the cut-off that best discriminated responders versus nonresponders to cetuximab was a mean of 2.92 EGFR gene copies per cell. This model showed sensitivity of 58.6% [95% confidence interval (CI) = 47.1-70.1) and specificity of 93.3% (95% CI = 80.6-100). EGFR FISH-positive patients (N = 43, 50.6%) had significantly higher RR (P = 0.0001) and significantly longer time to disease progression (P = 0.02) than EGFR FISH negative (N = 42, 49.4%). Other scoring systems resulted less accurate in discriminating patients with the highest likelihood of response to cetuximab therapy. CONCLUSIONS: CRC patients with high EGFR gene copy number have an increased likelihood to respond to cetuximab therapy. Prospective clinical trials with a careful standardization of assay conditions and pattern interpretation are urgently needed.  相似文献   

16.

BACKGROUND:

In addition to the mutational status of KRAS, the epidermal growth factor receptor (EGFR) ligands amphiregulin (AREG) and epiregulin (EREG) might function as bona fide biomarkers of cetuximab (Ctx) sensitivity for most EGFR-driven carcinomas.

METHODS:

Lentivirus-delivered small hairpin RNAs were employed to specifically reduce AREG or EREG gene expression in wild-type KRAS A431 squamous cell carcinoma cells. Colony-forming assays were used to monitor the impact of AREG and EREG knockdown on Ctx efficacy. Amphiregulin and EREG protein expression levels were assessed by quantitative ELISA in parental A431 cells and in pooled populations of A431 cells adapted to grow in the presence of Ctx. A phosphoproteomic platform was used to measure the relative level of phosphorylation of 42 distinct receptor tyrosine kinases before and after the acquisition of resistance to Ctx.

RESULTS:

Stable gene silencing of either ligand was found to notably reduce the expression of the other ligand. Parental A431 cells with normal expression levels of AREG/EREG exhibited significantly increased growth inhibition in response to Ctx, compared with derivatives that are engineered to produce minimal AREG/EREG. The parental A431 cells acutely treated with Ctx exhibited reduced basal expression levels of AREG/EREG. Pooled populations of Ctx-resistant A431 cells expressed significantly lower levels of AREG/EREG and were insensitive to the downregulatory effects of Ctx. Phosphoproteomic screen identified a remarkable hyperactivation of FGFR3 in Ctx-resistant A431 cells, which gained sensitivity to the cytotoxic and apoptotic effects of the FGFR3 TK inhibitor PD173074. The A431 parental cells acutely treated with Ctx rapidly activated FGFR3 and their concomitant exposure to Ctx and PD173074 resulted in synergistic apoptosis.

CONCLUSION:

Cross-suppression of AREG/EREG expression may explain the tight co-expression of AREG and EREG, as well as their tendency to be more highly expressed than other EGFR ligands to determine Ctx efficacy. The positive selection for Ctx-resistant tumour cells exhibiting AREG/EREG cross-suppression may have an important role in the emergence of Ctx resistance. As de-repression of FGFR3 activity rapidly replaces the loss of EGFR-ligand signalling in terms of cell proliferation and survival, combinations of Ctx and FGFR3-targeted drugs may be a valuable strategy to enhance the efficacy of single Ctx while preventing or delaying acquired resistance to Ctx.  相似文献   

17.
18.
Cetuximab (Erbitux®) targets the epidermal growth factor receptor (EGFR) and is approved for treatment of colorectal and head and neck cancer. Despite wide expression of EGFR, only a subgroup of cancer patients responds to cetuximab therapy. In the present study we assessed the cetuximab response in vivo of 79 human patient-derived xenografts originating from five tumour histotypes. We analysed basic tumour characteristics including EGFR expression and activation, mutational status of KRAS, BRAF and NRAS, the expression of EGFR ligands and the activation of HER3 (ErbB3) and the hepatocyte growth factor receptor MET. Based on these results, a cetuximab response score including positive and negative factors affecting therapeutic response is proposed. Positive factors are high expression and activation of EGFR and its ligands epiregulin or amphiregulin, negative factors are markers for downstream pathway activation independent of EGFR. In cetuximab resistant NSCL adenocarcinoma LXFA 526 and LXFA 1647, overexpression due to gene amplification and strong activation of MET was identified. Knock-down of MET by siRNA in the corresponding cell lines showed that anchorage-independent growth and migration are dependent on MET. MET knock down sensitized LXFA 526L and LXFA 1647L to EGF. Combined treatments of a MET inhibitor and cetuximab were additive. Therefore, combination therapy of cetuximab and a MET inhibitor in selected lung cancer patients could be of high clinical significance.  相似文献   

19.
Background: The efficacy of erlotinib is controversial in patients with unknown EGFR mutational status.The aim of this study was to identify the clinicopathological factors that are predictive of erlotinob treatmentoutcomes for NSCLC patients with unknown EGFR mutational status. Materials and Methods: A retrospectiveanalysis of 109 patients with advanced NSCLC who had previously failed at least one line of chemotherapy andreceived subsequent treatment with erlotinib (150 mg/day orally) was performed. A Cox proportional hazardmodel for univariate and multivariate analyses was used to identify the baseline clinical parameters correlatingwith treatment outcome, expressed in terms of hazard ratios (HRs) and 95% confidence intervals. Results: Themedian treatment duration was 15 weeks (range, 4-184). The disease control rate was 55%, including diseasestability for ≥3 months for 40% of the patients. Median progression-free survival and median overall survival(OS) were 4.2 and 8.5 months, respectively. The Cox model indicated that an Eastern Cooperative OncologyGroup performance status (ECOG PS) ≥2 (HR 3.82; p<0.001), presence of intra-abdominal metastasis (HR 3.42;p=0.002), 2 or more prior chemotherapy regimens (HR 2.29; p=0.021), and weight loss >5% (HR 2.05; p=0.034)were independent adverse prognostic factors for OS in NSCLC patients treated with erlotinib. Conclusions: Thisstudy suggests that NSCLC patients should be enrolled in erlotinib treatment after a first round of unsuccessfulchemotherapy to improve treatment success, during which they should be monitored for intra-abdominalmetastasis and weight loss.  相似文献   

20.
Eukaryotic translation initiation factor 4E (eIF4E) is the rate-limiting factor for cap-dependent translation initiation, which is known to regulate oncogenesis. Elevated eIF4E and its negative impact on prognosis in human non-small cell lung cancer (NSCLC) have been reported previously. However, its potential as a therapeutic target and role in regulation of sensitivity to EGFR inhibitors is an area of ongoing investigations. In this study, we detected increased levels of eIF4E in 16 human NSCLC cell lines compared with their normal bronchial epithelial cells. Consistently, human tissue array analysis showed that eIF4E expression was significantly higher in human NSCLC tissues than normal tissues. Inhibition of eIF4E using eIF4E siRNA inhibited the growth and invasion of NSCLC cells. These data suggest that eIF4E overexpression plays a crucial role in positive regulation of the growth and invasion of NSCLC cells. By proteomics, we found that eIF4E levels were elevated in erlotinib-resistant cell lines compared with the sensitive parental cell line. In agreement, assembly of the eIF4F cap complex and several oncogenic proteins regulated by the cap-dependent translation mechanism, were also increased in erlotinib-resistant cells. Thus, erlotinib-resistant cells exhibit elevated eIF4E expression and cap-dependent translation. Inhibition of eIF4F with different means (e.g., gene knockdown) downregulated c-Met expression and partially restored cell sensitivity to erlotinib, suggesting that elevated eIF4E contributes to development of erlotinib resistance, likely through positive regulation of c-Met expression. Taken together, we suggest that elevated eIF4E in NSCLC cells is associated with proliferation, invasion and acquired erlotinib resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号