首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Bcl-2 family proteins regulate programmed cell death, and may play an important role in the selection of lymphocytes. We investigated the expression of Bcl-2, Bcl-x, Bax, Bak and Bim in human lymphocytes using flow-cytometry. Bcl-2 was down-regulated in CD4(+)8(+) (DP) thymocytes and CD19(+)38(+) tonsillar lymphocytes (GC B cells). Among DP thymocytes, cells co-expressing CD69 up-regulated Bcl-2, suggesting that the role of Bcl-2 is promoting survival of positively selected DP cells. Unexpectedly, the expression level of Bcl-x was higher in DP cells than in Single Positive (SP) cells and in CD69(+) DP thymocytes it was lower than in CD69(+) DP thymocytes. Expression of Bim was low in DP thymocytes but high in a subset of GC B cells. Bim and Bax were expressed more highly in SP than in DP thymocytes. Among peripheral blood lymphocytes (PBL), CD8(+) T cells expressed an approximately ten-fold higher level of Bcl-x than CD4(+) T cells while both subsets expressed similar levels of Bcl-2. Bak expression was low and Bim expression was absent in PBL. These results suggest that not only Bcl-2 but other members of the Bcl-2 family are involved in T cell development in the thymus and affinity maturation of B cells in the germinal center.  相似文献   

2.
3.
4.
5.
6.
GATA-3 is expressed at higher levels in CD4 than in CD8 SP thymocytes. Here we show that upregulation of GATA-3 expression in DP thymocytes is triggered by TCR stimulation, and the extent of upregulation correlates with the strength of the TCR signal. Overexpression of GATA-3 or a partial GATA-3 agonist during positive selection inhibits CD8 SP cell development but is not sufficient to divert class I-restricted T cell precursors to the CD4 lineage. Conversely, expression of the GATA-3 antagonist ROG or of a GATA-3 siRNA hairpin markedly enhances development of CD8 SP cells and reduces CD4 SP development. We propose that GATA-3 contributes to linking the TCR signal strength to the differentiation program of CD4 and CD8 thymocytes.  相似文献   

7.
8.
Several studies have shown that of the four major thymocyte subsets, the CD4/CD8 double positive (DP) thymocytes are the most sensitive to in vivo glucocorticoid hormone (GC)-induced apoptosis. Our aim was to analyse fine molecular differences among thymocyte subgroups that could underlie this phenomenon. Therefore, we characterised the glucocorticoid hormone receptor (GR) expression of thymocyte subgroups both at the mRNA and protein levels by real-time PCR and flow cytometry, and correlated these features to their apoptotic sensitivity. We also investigated the time-dependent effects of the GC agonist dexamethasone (DX) with or without GC antagonist (RU486) treatments on GR mRNA/protein expression. We also analysed the expression of two apoptosis-related gene products: dexamethasone-induced gene 2 (Dig2) mRNA and Bcl-2 protein. We found that DN thymocytes had the highest GR expression, followed by CD8 single positive (SP), CD4 SP and DP thymocytes in 4-week-old BALB/c mice, both at the mRNA and protein levels, respectively. In DP cells, the Dig2 expression was significanty higher, while the Bcl-2 expression was significantly lower than in DN, CD4 SP and CD8 SP thymocytes. Single high dose DX treatment caused time-dependent depletion of DP thymocytes due to their higher apoptosis rate, which could not be abolished with RU486 pretreatment. After a single high dose DX treatment, there was a transient, significant increase of the GR mRNA and protein level of unsorted thymocytes after 8 and 16 h, followed by a significant decrease at 24 h, respectively. The time-dependent GR expression changes after DX administration could not be inhibited by the GC antagonist RU486. Twenty-four hours after exposure to high dose DX the DN, CD4 SP and CD8 SP cells showed a significant decrease of GR mRNA and protein expression, whereas the DP thymocytes, showed no significant alteration of GR mRNA or protein expression. The kinetical analysis of GR expression and apoptotic marker changes upon single high dose GC analogue administration revealed a two-phase process in thymocytes: early events, within 4–8 h, include GR upregulation and early apoptosis induction, while the late events appear most prominently at 16–20 h, when the GR is already downregulated and apoptotic cell ratio reaches its peak, with marked DP cell depletion. The low GR, high Dig2 and low Bcl-2 expression, coupled with the absence of homologous downregulation of GR after exogenous GC analogue treatment, could contribute to the high GC sensitivity of DP thymocytes. The downregulated GR and Bcl-2 together with the upregulated Dig2 level in DP cells indicates the significance of intrathymic GC effects at this differentiation stage. Since GR expression changes and apoptotic events could not be completely inhibited by GC antagonist, we propose the involvement of non-genomic GR mechanisms in these processes.  相似文献   

9.
The present study aimed to determine whether the frequency of double positive (DP) thymocytes expressing alphabeta T-cell receptor (TCR) clonotypes at the time of selection regulates peripheral CD4 T-cell compartment size. Scid recipients were inoculated with various ratios of TCR Calpha(0/0) and wild-type bone marrow (BM) stem cells. Increasing the frequency of TCR Calpha(0/0) thymocytes at steady-state introduced a graded decrease in the maturation probability of the total DP thymocyte pool. At 12-14 weeks following BM inoculation, the frequency of TCR Calpha(0/0) DP thymocytes was inversely correlated with that of CD4 single positive (SP) thymocytes. Notwithstanding, a decreased frequency of wild-type DP thymocytes led to a marked increase in their transit efficiency from the DP to SP compartments. The frequency-dependent increase in thymocyte transit efficiency was associated with a CD4 SP cell surface phenotype indicative of increased antigenic experience. Importantly, the frequency of DP thymocytes capable of expressing TCR clonotypes dictated the steady-state size of the peripheral CD4 T cell compartment and its potential for homeostatic proliferation. Collectively, these results indicate that the efficiency of DP to CD4 SP transit is a frequency dependent process, which determines (1) the steady-state size of the peripheral T cell compartment and (2) the threshold for homeostatic expansion of peripheral CD4 T cells.  相似文献   

10.
Cytokines play critical roles during T cell development; however, it is unclear to what extent development is altered by the high levels of cytokines produced during immune responses. A potential mechanism to shield developing cells from cytokine influence is attenuation of cytokine signaling. Using intracellular staining and flow cytometry to detect cytokine-induced Stat phosphorylation, we analyzed the cytokine responsiveness of developmentally defined mouse T cells. We assessed CD4(-)CD8(-) (DN), CD4(+)CD8(+) (DP), CD4(+)CD8(-) (SP4), and CD4(-)CD8(+) (SP8) in the thymus, and CD4(+)CD44(lo) (naive), CD4(+)CD44(hi) (memory), CD8(+)CD44(lo) (naive), and CD8(+)CD44(hi) (memory) in the periphery for responsiveness to interleukin-2 (IL-2), IL-4, IL-6, IL-7, IL- 10, IL-15, interferon-alpha (IFN-alpha), and IFN-gamma. SP thymocytes responded to a wider range of cytokines than did the less mature DN and DP subpopulations. DP thymocytes were nonresponsive to all cytokines tested except for modest responses to IL-4 and IFN-alpha. Peripheral naive and memory T cells also displayed differential cytokine sensitivity. Memory T cells were less responsive to the proinflammatory cytokines IL-6 and IFN-gamma when compared with naive T cells, and the memory CD4(+) subset was less responsive to IL-4. In summary, developing thymocytes and memory T cells appear to be resistant to the influences of numerous cytokines produced during immune responses.  相似文献   

11.
12.
The thymus harbors HIV-1 and supports its replication. Treatment with PI-containing ART restores thymic output of na?ve T cells. This study demonstrates that CXCR4-using WT viruses are more sensitive to PI in fetal thymcocytes than mature T cells with average IC(50) values for two PIs, RTV and IDV, of 1.5 nM (RTV) and 4.4 nM (IDV) in thymocytes versus 309.4 nM (RTV) and 27.3 nM (IDV) in mature T cells. P-gp activity, as measured using Rh123 efflux and quantitation of P-gp mRNA, increased with thymocyte maturation into CD4 and CD8 lineage T cells. P-gp activity is developmentally regulated in the thymus. Thymocytes developed increased levels of P-gp activity as maturation from DP to SP CD4 or CD8 T cells occurred, although CD4 T cells acquired activity more rapidly. Reduced P-gp activity in thymocytes is one mechanism for effectiveness of PI therapy in suppressing viral replication in the thymus and in reconstitution of na?ve T cells, particularly among children receiving PI-containing ART.  相似文献   

13.
Self versus non-self discrimination is a key feature of immunorecognition. Through TCR-activated apoptotic mechanisms, autoreactive thymocytes are purged at the CD4(+)CD8(+) double-positive (DP) precursor stage prior to maturation to CD4(+) or CD8(+) single-positive (SP) thymocytes. To investigate this selection process in vivo, gene expression analysis by oligonucleotide array was performed in TCR transgenic mice. In total, 244 differentially expressed DP thymocyte genes induced or repressed by TCR triggering in vivo were identified. Genes involved in the biological processes of apoptosis, DNA recombination, antigen processing and adhesion are coordinately engaged. Moreover, analysis of gene expression in thymocyte subsets revealed that TCR ligand-induced expression profiles vary according to their developmental stage, with 48 genes showing DP preference and nine showing SP thymocyte preference. Finally, our data suggest that both the extrinsic and the intrinsic apoptosis pathways are operating in thymic selection.  相似文献   

14.
SATB1 is required for CD8 coreceptor reversal   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
Effect of phorbol ester and calcium ionophore on human thymocytes   总被引:2,自引:0,他引:2  
Positive selection of immature thymocytes is a developmental process in which TCR ligation with low avidity induces generation of mature T cells. In mouse thymocytes, CD4(+)8(+) double-positive (DP) cells which were treated with a proper combination of calcium ionophore ionomycin and phorbol 12-myristate 13-acetate (PMA) have been reported to differentiate into CD4 single positive cells. However, in human thymocytes the effects of PMA and ionomycin have remained unclear. Here we report that DP cells that were treated with PMA and ionomycin up-regulated bcl-2 and down-regulated CD1 expression. However, CD3 expression remained low. This treatment induced prolonged CD4 down-regulation in DP cells which was an effect also seen in mature peripheral blood T cells. PMA/ionomycin-treated DP cells showed high cell proliferation and resistance to dexamethasone-induced apoptosis. These results indicate that PKC activation and calcium elevation may be part of the biochemical signals that induce positive selection of human DP cells and the system described in this paper may be a useful model to study the signals involved in the selection of human thymocytes.  相似文献   

17.
C J Ong  J P Dutz  D Chui  H S Teh    J D Marth 《Immunology》1997,91(1):95-103
T-cell development is arrested at the CD4+CD8+ (DP; double-positive) stage of thymocyte development in CD45 null mice. However, the mechanism by which CD45 participates in the positive selection of T cells remains to be investigated. In this report we describe a DP thymocyte population that associates positive selection with expression of high levels of CD45, CD4 and CD8. DP thymocytes of this phenotype are large, cycling cells and represent approximately 20% of DP thymocytes in normal mice. In mice expressing a transgenic T-cell receptor (TCR) specific for the male antigen presented by H-2Db (H-Y TCR), the up-regulation of TCR, CD5 and CD69 in this large DP population occurred in a major histocompatibility complex (MHC)-restricted manner. To investigate further the role of CD45 in positive selection, we determined whether thymocytes that expressed a transgenic CD45RO molecule under the control of the proximal lck promoter can influence the positive selection of T cells in H-Y TCR transgenic mice. It was found that in female H-Y TCR transgenic mice, MHC-restricted positive selection of CD4- CD8+ H-Y TCR+ thymocytes was enhanced by increased CD45RO expression. Thus, CD45 increases the efficacy of positive selection of CD4- CD8+ thymocytes that express H-Y TCR.  相似文献   

18.
Developmental stage-, subset-, and lineage-specific CD8 enhancers have been identified recently by transgenic reporter analyses. Enhancer E8(II) (CIV-4,5) is active in both immature double-positive thymocytes (DP) and mature CD8 single-positive (SP) thymocytes and T cells, whereas E8(I) (CIII-1,2) directs expression only in mature cells. In mice lacking either E8(I) (CIII-1,2) or E8(II) (CIV-4,5), there was no effect on CD8 expression in DP thymocytes. However, deletion of both enhancers resulted in variegated expression of CD8, with appearance of CD4(+)CD8(-) SP thymocytes expressing surface markers characteristic of DP thymocytes. Consequently, fewer mature CD8(+) T cells developed from the reduced pool of DP cells. These results suggest that the initiation of CD8 expression is mediated by cis-regulatory elements that are distinct from any that may be involved in maintenance of expression.  相似文献   

19.
20.
To determine the effect of thymic stromal cells on the functional maturation of CD4 single-positive (SP) thymocytes, the functional status of isolated CD4 SP thymocyte subgroups was investigated by means of cell proliferation and cytokine production in response to concanavalin A (Con A) prior and after co-culturing with a murine thymic epithelial cell line (MTEC1). Mouse medullary CD4 SP thymocytes were phenotypically divided into seven discrete subgroups predicted to reflect the maturation pathway from newly emerging CD4 SP thymocytes to terminally differentiated cells. For functional analysis, six major subgroups (6C10(+)CD69(+), 6C10(-)CD69(+), 6C10(-)CD69(-)3G11(+)Qa-2(-), 6C10(-)CD69(-)3G11(+)Qa-2(+), 6C10(-)CD69(-)3G11(-)Qa-2(-) and 6C10(-)CD69(-)3G11(-)Qa-2(+)) cells were isolated and their functional status in response to Con A stimulation assessed. A functional hierarchy is revealed among these subgroups, consistent with their phenotypic maturation status, which may imply that these cells undergo a functional maturation process within thymic medulla. The function of cytokine production by CD4 SP thymocytes is acquired in a stepwise manner from a low to high level and characterized by T(h)0-type cytokines in the main stream of differentiation pathway. However, a minor subgroup that appeared at the late stage as 3G11(-)6C10(-) cells was biased to produce T(h)2-type cytokines. Nevertheless, the functional capacity of the final two Qa-2(+) subgroups of CD4 SP thymocytes was still significantly lower than that of spleen CD4(+) T cells. After co-cultivation with MTEC1 cells, four subgroups of TCRalphabeta(+)CD4(+)CD8(-) thymocytes exhibited significantly higher levels of proliferation capability and modulation in cytokine production capability. However, co-culturing with MTEC1 cells did not change the pattern of T(h)0- or T(h)2-like cytokine production by respectively medullary CD4 SP thymocyte subgroups nor could MTEC1 induce CD4 SP thymocytes to secrete T(h)1-type cytokines. The results suggest that MTEC1 can regulate the functional status of these thymocyte subgroups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号