首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mononeuropathy was induced by placing an ameroid ring around the sciatic nerve and was compared with chronic constriction injury (CCI) of the sciatic nerve [Pain 33 (1988) 87] in rats. Mechanical allodynia was assessed and the role of sciatic and saphenous afferents (Adelta and C) in thermal hyperalgesia investigated. A shorter duration of mechanical allodynia in ameroid rats as compared to CCI rats was observed. Thermal hyperalgesia was observed in the saphenous innervated skin of the hindpaw for Adelta and C nociceptors in ameroid and for Adelta nociceptors only in CCI rats, respectively. The sciatic innervated skin showed a thermal hypoalgesia with a fast onset for Adelta afferents and a slower onset for C afferents in CCI and ameroid rats. The duration of both thermal hypo- and hyperalgesia was longer in ameroid rats. We conclude that ameroid rings are a useful tool for the investigation of long-duration hyperalgesic effects of nerve injury, as the effects were more stable and seen for a longer time (>8 weeks) as compared to the CCI model. The uninjured saphenous afferents, in particular C fibers, mediate thermal hyperalgesia after chronic constriction of the sciatic nerve using an ameroid ring.  相似文献   

2.
Evidence suggests that nerve growth factor (NGF) is an important mediator in inflammatory pain states: NGF levels increase in inflamed tissue, and neutralization of endogenous NGF prevents the hyperalgesia which normally develops during inflammation of the skin. Here we asked whether NGF contributes to sensitization of primary afferent nociceptors, which are an important component of pain and hyperalgesia in inflamed tissue. An in vitro skin nerve preparation of the rat was used to directly record the receptive properties of thin myelinated (Adelta) and unmyelinated (C) nociceptors innervating normal hairy skin, carrageenan-inflamed skin and carrageenan-inflamed skin where endogenous NGF had been neutralized by application of a trkA-IgG (tyrosine kinase Aimmunoglobulin G) fusion molecule. Following carrageenan inflammation, there was a marked increase in the proportion of nociceptors which displayed ongoing activity (50% of nociceptors developed spontaneous activity compared to 4% of nociceptors innervating normal uninflamed skin), and this was reflected in a significant increase in the average ongoing discharge activity. Spontaneously active fibres were sensitized to heat and displayed a more than twofold increase in their discharge to a standard noxious heat stimulus. Furthermore, the number of nociceptors responding to the algesic mediator bradykinin increased significantly from 28% to 58%. By contrast, the mechanical threshold of nociceptive afferents did not change during inflammation. When the NGF-neutralizing molecule trkA-IgG was coadministered with carrageenan at the onset of the inflammation, primary afferent nociceptors did not sensitize and displayed essentially normal response properties, although the inflammation as evidenced by tissue oedema developed normally. We therefore conclude that NGF is a crucial component for the sensitization of primary afferent nociceptors associated with tissue inflammation.  相似文献   

3.
Radiant heat is often used for studying thermal nociception, although inherent characteristics such as the broad spectrum of applied wavelengths of typical light sources limit control over and repeatability of stimuli. To overcome these problems, we used a diode infrared laser-based stimulator (wavelength: 980 nm) for selectively stimulating trigeminal Adelta or C thermonociceptors in rats. To provide indirect evidence for nociceptor-selective stimulation, we tested the effects of capsaicin, dimethylsulfoxide (DMSO), and morphine on withdrawal latencies for long pulses with a low current (hypothesized to selectively stimulate C nociceptors) and for threshold currents of short pulses with high current (hypothesized to selectively stimulate Adelta nociceptors) in lightly anesthetized rats. Nonmem analysis was used to perform pharmacodynamic modeling. The measured baseline withdrawal latency for long pulses was 12.5 +/- 0.3 s which was changed significantly to 6.7 +/- 0.4 s after applying topical capsaicin which selectively sensitizes C nociceptors and to 16.5 +/- 1.3 s after 1.0 mg/kg morphine which preferentially attenuates C fiber nociception. Topical DMSO which appears to selectively sensitize Adelta afferents did not significantly alter withdrawal latencies to the long pulses. Fitted threshold currents for short pulses after DMSO were however significantly lower (974 +/- 53 mA vs. 1113 +/- 12 mA for baseline) indicating Adelta sensitization. Capsaicin and morphine did not significantly change threshold currents. Best Nonmem fits for the long pulse were obtained using a model assuming no DMSO effect, but a different inter-individual variability after applying this substance. For the short pulse, a model assuming no capsaicin or morphine effect, but again allowing different inter-individual variabilities after applying these drugs, best described the data. We conclude that different settings of the stimulator used in this study were capable of selectively activating trigeminal Adelta or C thermonociceptors.  相似文献   

4.
The afferent properties of nerve fibres innervating the hairy skin of the pig hind limb were investigated by recording from 142 single units from the saphenous nerve. Identified single units were isolated using maximal electrical stimulation of the nerve trunk. Afferent units were classified on the basis of their responses to a range of stimuli, both thermal (heating to 60°C and cooling to 10°C) and mechanical (air jet, von Frey type filaments with forces of 0.1–250 mN, and strong pressure with a blunt needle). A-fibre units (conduction velocity 6.3–64 m/s, n= 60) fell into categories that have been described in hairy skin in other mammalian species. Most were mechanoreceptors, although seven typical A-fibre mechanical nociceptors with large, multipoint fields were also isolated. No cutaneous receptive field could be found for 15% of A-fibre units. Out of 62 C-fibre units (conduction velocity 0.49–2 m/s) 40% had no cutaneous field for pressure, heat or cold. Of the C-fibre units with cutaneous fields, 42% were polymodal nociceptors, 38% were mechanoreceptors with a variety of properties, including some excited by noxious heat, and 19% were heat-only nociceptors. C-polymodal nociceptors had large receptive fields up to 12.5 mm across and did not sensitize following strong heating. Twenty units conducted at 2–6.3 m/s, between the main C- and A-fibre bands, and were varied in their responses. Some had properties identical to C-fibre mechanoreceptors whilst four were sensitive cold thermoreceptors and one was a polymodal nociceptor. Two units were mechanical nociceptors with small receptive fields. The innervation of pig skin thus has some features like that of primates, such as the presence of C-heat nociceptors and the large receptive fields of C-polymodal nociceptors. However, other features were like non-primates (e.g. the minimal heat-sensitivity of A-mechanical nociceptors) or were unique (the heat-sensitive mechanoreceptors and the lack of heat sensitization in C-polymodal nociceptors from hairy skin).  相似文献   

5.
Recent studies have indicated that nociceptors can be classified into various types according to their physiological properties. These studies have clarified that the frequency distribution of various nociceptor types is different among body sites and animal species. In the present study, we investigated the physiological properties of rat's periodontal nociceptors in an in vitro jaw-nerve preparation. Responses were recorded from functional single filaments in the inferior alveolar nerve. To determine the nociceptor type, calibrated von Frey filaments, heat, and bradykinin (BK) stimuli were used. We found five subtypes of nociceptors in the periodontal ligaments of the lower incisor: Adelta-high threshold mechanonociceptors (Adelta-HTM, n=28), Adelta-mechanoheat nociceptors (Adelta-MH, n=6), Adelta-polymodal nociceptors (Adelta-POLY, n=26), C-high threshold mechanonociceptors (C-HTM, n=3) and C-polymodal nociceptors (C-POLY, n=4). Most nociceptors were Adelta-innervated, while only a small number of C-innervated nociceptors were found. The present results suggest that periodontal nociceptors transmit mainly fast pain, and may thus play a role in rapid detection of injure-related stimuli during mastication.  相似文献   

6.
7.
To evaluate the involvement of paratrigeminal nucleus (Pa5) nociceptive neurons in temporomandibular joint (TMJ) inflammation-induced pain and its autonomic correlates, we conducted behavioral, single unit recording and Fos immunohistochemical studies in anesthetized rats. Nocifensive behaviors to mechanical, heat or cold stimulation of the lateral face over the TMJ region were significantly enhanced in the TMJ-inflamed rats for 10–14 days after injection of complete Freund's adjuvant (CFA) into the TMJ and gradually decreased at the end of the 14-day observation period. Lowering of the nocifensive threshold in TMJ-inflamed rats lasted longer in vagus nerve-transected rats than vagus nerve-intact rats. A large number of Fos-like immunoreactive (LI) cells were observed in the Pa5, and half of them were retrogradely labeled with Fluorogold (FG) injected into the parabrachial nucleus. Background activity of Pa5 wide dynamic range and nociceptive specific neurons was significantly higher in the TMJ-inflamed rats when compared with controls. Responses to mechanical stimuli were significantly higher in NS neurons in the TMJ-inflamed rats. All thermal responsive Pa5 neurons were exclusively sensitive to cold and the response to cold was significantly higher in the TMJ-inflamed rats compared with control rats. Vagus nerve stimulation significantly decreased responses to mechanical and cold stimuli as well as the background activity in TMJ-treated rats but not in TMJ-untreated rats. The present findings suggest that populations of Pa5 neurons are nociceptive and involved in TMJ inflammation-induced pain as well as in autonomic processes related to TMJ pain.  相似文献   

8.
Sensory endings that respond to local cooling were identified electrophysiologically in the cat's sclera. Functionally identified scleral thermal fibers were then used to analyze the structural characteristics of cold receptor endings. Four Adelta units sensitive to controlled cooling of their scleral receptive fields were recorded. The receptive areas were mapped, demarcated with pins and examined electron microscopically using extensive three-dimensional reconstructions. The supporting tissue within the receptive areas of cold units consisted of dense collageneous tissue with a small number of blood vessels that were either veins or capillaries. Adelta nerve fibers were found within these tissue blocks presumably corresponding with cold sensitive fibers. Small nerves and single nerve fibers devoid of a perineurium were found in all parts of the tissue, only occasionally passing a blood vessel. The terminal portions showed axonal swellings all along the unmyelinated segment filled with mitochondria, glycogen particles, and some vesicles. About 30% of the terminal axonal membrane is not covered by Schwann cells. In the unmyelinated distal portion, the mitochondrial content ranged from 0.012 to 0.038 microm(3) mitochondrial volume per microm(2) nerve fiber membrane. In comparison with sensory endings in the cat's knee joint, cold receptors in the cat sclera showed many similarities in their three-dimensional structure with polymodal nociceptor endings of the knee joint but contain less mitochondria. This suggests that cold sensory endings do not require specialized cellular processes for the transduction of cold stimuli, as is the case for multimodal transduction and sensitization in the terminal portion of polymodal nociceptors.  相似文献   

9.
In anaesthetized rats, we tested whether the unit activity of dorsal horn neurons that receive nociceptive input is modulated by electrical stimulation of the hypothalamic paraventricular nucleus (PVN). An electrophysiological mapping of dorsal horn neurons at L3-L4 let us choose cells responding to a receptive field located in the toes region of the left hindpaw. Dorsal horn neurons were classified according to their response properties to peripheral stimulation. Wide Dynamic Range (WDR) cells responding to electrical stimulation of the peripheral receptive field and presenting synaptic input of Adelta, Abeta, and C-fibers were studied. Suspected interneurons that are typically silent and lack peripheral receptive field responses were also analyzed. PVN electrical stimulation inhibits Adelta (-55.0+/-10.2%), C-fiber (-73.1+/-6.7%), and post-discharge (-75.0+/-8.9%) peripheral activation in WDR cells, and silent interneurons were activated. So, this last type of interneuron was called a PVN-ON cell. In WDR cells, the inhibition of peripheral responses caused by PVN stimulation was blocked by intrathecal administration of a specific oxytocin antagonist or bicuculline. However, PVN-ON cell activation was blocked by the same specific oxytocin antagonist, but not by bicuculline. Our results suggest that PVN stimulation inhibits nociceptive peripheral-evoked responses in WDR neurons by a descending oxytocinergic pathway mediated by GABAergic PVN-ON cells. We discuss our observation that the PVN electrical stimulation selectively inhibits Adelta and C-fiber activity without affecting Abeta fibers. We conclude that Adelta and C-fibers receive a presynaptic inhibition mediated by GABA.  相似文献   

10.
Zhang Q  Zhao Y  Guo Y  Cao DY  Tang XD  Tian YL  Yao FR  Wang HS 《Brain research》2006,1102(1):78-85
The present study investigated the activation and sensitization effects of local injection of P2X receptor agonist alpha,beta-methylene ATP (alphabeta-meATP) into the receptive fields of afferent fibers innervating dorsal hairy skin in anesthetized rats. Single unit activities of afferent fibers were recorded by means of isolation of the fiber filaments from the dorsal cutaneous nerve branch. A total of 237 fibers were obtained. Of these, 67 were classed as C fibers, 104 as Adelta fibers and 66 as Abeta fibers. When alphabeta-meATP (0.1-100 microM, 10 microl) was injected subcutaneously into the receptive fields of these units, C and Adelta fibers demonstrated a dose-related increase in the discharge rates of the response. The activated proportion of C and Adelta fibers with a response to the drug also increased with dose. However, Abeta fibers did not exhibit significant activation. Furthermore, injection of alphabeta-meATP (10 microl) at a concentration of 100 microM resulted in a significant decrease of mechanical thresholds in C and Adelta fibers compared with pre-injection baseline (P < 0.05). In control experiments, injection of the vehicle phosphate-buffered saline (PBS, 10 microl) had no effect on all units tested. alphabeta-meATP (100 microM, 10 microl) followed by pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a P2X receptor antagonist, successfully blocked the activation and sensitization effects of alphabeta-meATP on C and Adelta fibers tested. These results suggest that peripheral P2X receptors are involved in mediating peripheral excitation of C and Adelta fibers.  相似文献   

11.
Electrophysiological responses of nociceptive sensory afferent fibres in the skeletal muscle of the chicken (Gallus domesticus) were examined using mechanical and chemical stimulation. The activity of single nociceptive afferent fibres was recorded from micro-dissected filaments of the fibular and lateral tibial nerves, which innervate the fibularis longus and lateral gastrocnemius muscles. Seventeen putative nociceptive fibres were identified by mechanical stimulation (muscle compression). Conduction velocities (CVs) ranged from 2.8 to 11.3 m/s (mean 5.8; S.E.M.±0.9 m/s). Response thresholds to tissue compression ranged from 38 to 126 kPa (mean 81; S.E.M.±4 kPa). Increases in pressure intensity, above individual fibre thresholds (×2 moderate; ×3 noxious), produced intensity dependent increases in discharge rates. Fibres exhibited slowly adapting, irregular discharges lasting the duration of the stimulus and showed no spontaneous activity in the absence of mechanical stimulation. Intramuscular injection of acetic acid (1% v/v in isotonic saline; pH 2.8) in to the receptive field area stimulated discharge activity in 13 of the 17 (76%) pressure sensitive fibres. Acid injection resulted in prolonged irregular single or intermittent clustered discharges, which continued beyond the 15-min recording period. This study demonstrates the existence of nociceptive sensory fibres in chicken skeletal muscle that are able to respond to and encode acute tissue threatening and subjectively painful stimuli. The physiological characteristics of these nociceptive afferents are consistent with mammalian group III skeletal muscle nociceptors. These findings support the suggestion of a common, acute nociceptive response function in skeletal muscle in avians and other vertebrate classes.  相似文献   

12.
Proteinase-activated receptor 2 (PAR-2) is expressed on many nociceptive neurons. Application of PAR-2 agonists has been shown to induce behavioral signs of hyperalgesia. We investigated effects of the rat PAR-2 agonist SLIGRL-NH2 in the isolated rat skin-saphenous nerve preparation. SLIGRL-NH2 (100 microM) excited 20% of all C-fiber nociceptors tested. In addition, C-fiber nociceptors were sensitized to heat after SLIGRL-NH2 application resulting in an increase in response magnitude and a decrease of heat threshold. The PAR-2-inactive control peptide LRGILS-NH2 had no effect. The mechanical sensitivity of C-fibers was not affected by SLIGRL-NH2. PAR-2-mediated excitation and sensitization of primary nociceptors may contribute to PAR-2-mediated hyperalgesia.  相似文献   

13.
Previous studies have shown that sensations of burning, stinging or pricking can be evoked by warming or cooling the skin to innocuous temperatures [low‐threshold thermal nociception (LTN)] below the thresholds of cold‐ and heat‐sensitive nociceptors. LTN implies that some primary afferent fibers classically defined as warm and cold fibers relay stimulation to the nociceptive system. We addressed this question in humans by determining if different adaptation temperatures (ATs) and rates of temperature change would affect thermal sensation and LTN similarly. In Experiment 1 subjects rated the intensity of warmth, cold and nociceptive sensations produced by increasing steps in temperature (±0.5°C increments) from ATs of 35, 33 and 31°C for cooling, and 30, 32 and 34°C for heating. Depending upon the AT, thresholds for nociceptive and thermal sensations estimated from the rating data differed by as little as ?1.0°C for cooling and +1.5°C for heating. Thresholds of thermal and nociceptive sensations shifted by similar amounts across the three ATs during cooling, whereas during heating the nociceptive threshold was significantly affected only between ATs of 32 and 34°C. In Experiment 2, increasing the rate of temperature change from 0.5 to 4.0°C/s increased the intensity of thermal and nociceptive sensations significantly but the effect was greatest for nociceptive sensations during heating. The results of both experiments are consistent with the mediation of LTN by low‐threshold thermoreceptors, although LTN caused by heating may depend on a subset of fibers that express less sensitive TRP channels than those that serve sensations of warmth at the mildest temperatures.  相似文献   

14.
The technique of intraneural microstimulation (INMS) combined with microneurography was used to excite and to record impulse activity in identified afferent peroneal nerve fibers from skeletal muscle of human volunteers. Microelectrode position was minutely adjusted within the impaled nerve fascicle until a reproducible sensation of deep pain projected to the limb was obtained during INMS. During INMS trains of 5–10 s in duration and at threshold for sensation, volunteers perceived a well defined area of deep pain projected to muscle. Psychophysical judgements of the magnitude of pain increased with increasing rates of INMS between 5 and 25 Hz. Also, the area of the painful projected field (PF) evoked during trains of INMS of various duration but constant intensity and rate typically expanded with duration of INMS. The intraneural microelectrode was alternatively used to record neural activity originating from primary muscle afferents. Eight slowly adapting units with moderate to high mechanical threshold were identified by applying pressure within or adjacent to the painful PF. Conduction velocities ranged from 0.9 to 6.0 m/s, and fibers were classed as Group III or Group IV. Capsaicin (0.01%) injected into the RF of two slowly conducting muscle afferents (one Group III and one Group IV) produced spontaneous discharge of each fiber and caused intense cramping pain, suggesting that the units recorded were nociceptive. Our results endorse the concept that the primary sensory apparatus that encodes the sensation of cramping muscle pain in humans is served by mechanical nociceptors with slowly conducting nerve fibers. Results also reveal that muscle pain can be precisely localized, although the human cortical function of locognosia for muscle pain becomes blunted as a function of duration of the stimulus.  相似文献   

15.
The function of populations of nociceptors in muscle pain syndromes remain poorly understood. We compared the contribution of two major classes, isolectin B4-positive (IB4(+)) and IB4-negative (IB4(-)) nociceptors, in acute and chronic inflammatory and ergonomic muscle pain. Baseline mechanical nociceptive threshold was assessed in the gastrocnemius muscle of rats treated with IB4-saporin, which selectively destroys IB4(+) nociceptors. Rats were then submitted to models of acute inflammatory (intramuscular carrageenan)- or ergonomic intervention (eccentric exercise or vibration)-induced muscle pain, and each of the three models also evaluated for the transition from acute to chronic pain, manifest as prolongation of prostaglandin E2 (PGE(2))-induced hyperalgesia, after recovery from the hyperalgesia induced by acute inflammation or ergonomic interventions. IB4-saporin treatment did not affect baseline mechanical nociceptive threshold. However, compared to controls, IB4-saporin treated rats exhibited shorter duration mechanical hyperalgesia in all three models and attenuated peak hyperalgesia in the ergonomic pain models. And, IB4-saporin treatment completely prevented prolongation of PGE(2)-induced mechanical hyperalgesia. Thus, IB4(+) and IB4(-) neurons contribute to acute muscle hyperalgesia induced by diverse insults. However, only IB4+ nociceptors participate in the long term consequence of acute hyperalgesia.  相似文献   

16.
H A Martin 《Brain research》1990,509(2):273-279
We have recently shown that leukotriene B4 (LTB4), a product of the 5-lipoxygenase pathway of arachidonic acid metabolism, sensitizes nociceptors to mechanical stimuli. The present study examined whether LTB4 also induces a thermal sensitization of cutaneous C-fiber high-threshold mechanonociceptors (C-HTMs). C-HTMs were characterized according to their responsiveness to noxious mechanical, thermal and chemical stimuli, including glacial acetic acid, bradykinin and capsaicin. C-HTMs were found to be either heat responsive (heat C-HTMs) or heat and chemically responsive (polymodal C-HTMs). Ninety-four percent of polymodal C-HTMs and 60% of C-HTMs were sensitized to thermal and mechanical stimuli by LTB4 (75 ng). All sensitized C-HTMs showed decreases in both thermal and mechanical thresholds. LTB4 lowered in both subclasses of C-HTMs average thermal threshold from 45 to 35 degrees C and produced an average decrease in the mechanical threshold of approximately 82-86%. For both heat and polymodal C-HTMs, the magnitude of LTB4-evoked decreases in thermal and mechanical thresholds was similar to that produced by 75 ng of PGE2. The possibility was discussed that LTB4 may contribute to the component of hyperalgesia that is resistant to non-steroidal anti-inflammatory agents.  相似文献   

17.
Peripheral sensitization of skin nociceptors by nerve growth factor (NGF) was explored in pig skin in vivo. As an objective output measure, the area of axon‐reflex‐mediated erythema was assessed upon mechanical, thermal, chemical, and electrical stimuli delivered at 1, 3, and 7 days after i.d. injection of 1 μg NGF into the pig's back skin (n = 8). Pretreatment with NGF provoked a sensitization to mechanical (600 mN), thermal (10 sec 49°C) and chemical (15 μl, pH 3) stimuli that lasted for 7 days. No sensitization, however, was found in response to weak mechanical (100 mN), weak thermal (10 sec 45°C), or electrical stimuli. Irrespective of the skin pretreatment (NGF or PBS vehicle control), the area of electrically induced erythema decreased upon repetition (days 1–7) by 70% (P < 0.05). Sensitization of sensory endings by NGF upon mechanical, heat, and chemical stimuli suggests recruitment of sensory transducer molecules [e.g., TRPV1, acid‐sensing ion channels (ASICs)]. In contrast, the gradual decrease in electrically induced erythema over 7 days might be attributable to axonal desensitization and possibly activity‐dependent down‐regulation of sodium channels. Thus, long‐lasting sensitization processes of nociceptor endings or axonal sodium channel desensitization mechanisms can be explored in the pig as a translational experimental animal model. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is involved in the generation of inflammatory and neuropathic pain. This study investigated if TNF-alpha has any effect on spinal synaptic and/or sensory transmission by using whole-cell recordings of substantia gelatinosa (SG) neurons in transverse lumbar spinal cord slices of adult rats and by using behavioral tests. After intrathecal administration of TNF-alpha in adult rats, spontaneous hind paw withdrawal behavior and thermal hyperalgesia were rapidly induced (approximately 30 min), while mechanical allodynia slowly developed. Bath application of TNF-alpha (0.1-1 nM, 8 min) depressed peak amplitude of monosynaptic Adelta and C fiber-evoked excitatory postsynaptic currents (EPSCs) without changing in holding currents and input resistances, whereas this application generally potentiated polysynaptic Adelta fiber-evoked EPSCs. Moreover, the frequencies, but not the amplitudes, of spontaneous and miniature EPSCs and spontaneous inhibitory postsynaptic currents were significantly increased by bath-applied TNF-alpha in most of the SG neurons. The effects of TNF-alpha on Adelta/C fiber-evoked monosynaptic and polysynaptic or spontaneous EPSCs were significantly blocked by 5 microM TNF-alpha antagonist that inhibits TNF-alpha binding to its type 1 receptor (TNFR1). Because this study also found high protein expression of TNFR1 in the adult dorsal root ganglion and no change of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) induced whole-cell currents by TNF-alpha, we conclude that presynaptic TNFR1 at Adelta/C primary afferent terminals contributes to the rapid alteration of synaptic transmission in the spinal SG, and the development of abnormal pain hypersensitivity by exogenous TNF-alpha.  相似文献   

19.
Shaw FZ  Chen RF  Tsao HW  Yen CT 《Brain research》1999,824(2):84-196
Field potentials and multiunit activities from chronically implanted cortical electrodes were used to study tactile and nociceptive information processing from the tail of the rat. Fourteen stainless steel screws implanted in the skull were used as electrodes to record field potentials in different cortical areas. Electrical, mechanical, and laser pulses were applied to the tail to induce evoked cortical field potentials. Evoked responses were compared before and after sodium pentobarbital anesthesia (50 mg/kg, i.p.). In both electrical- and mechanical-evoked potential (EEP and MEP) studies, two major peaks were found in the conscious animal. The polarity of the late component was modified after pentobarbital anesthesia. In the laser-evoked potential (LEP) study, two distinct negative peaks were found. Both peaks were very sensitive to anesthesia. Following quantitative analysis, our data suggest that the first positive peak of EEP and MEP corresponded to the activation of the Abeta fiber, the second negative peak of MEP and the first peak of LEP corresponded to Adelta fiber activation, while the second peak of LEP corresponded to C fiber activation. The absolute magnitudes of all cortical components were positively related to the intensity of the stimulation. From spatial mapping analysis, a localized concentric source of field potential was observed in the primary somatosensory cortex (SI) only after activation of the Abeta fiber. Larger responsive cortical areas were found in response to Adelta and C fiber activation. In an intracortical recording experiment, both tactile and nociceptive stimulation evoked heightened unit activity changes at latencies corresponding to respective field potentials. We conclude that different cortical areas are involved in the processing of A and C fiber afferent inputs, and barbiturate anesthesia modifies their processing.  相似文献   

20.
A novel in vitro TMJ-nerve preparation was developed to quantitatively study peripheral sensory mechanisms of temporomandibular joint (TMJ). The TMJ region on one side (including mandibular head, disc, retrodiscal tissue and mandibular fossa) of adult Wistar albino rats was excised together with the auriculo-temporal nerve. The block was preserved in a modified Krebs-Henseleit solution saturated with O(2)/CO(2) (95/5%) gas mixture. Using a calibrated von Frey type apparatus, mechanical noxious stimulation was applied directly to various sites within the TMJ region. In addition, thermal and chemical noxious stimuli were also attempted. Stable recordings of single unit activities from the auriculo-temporal nerve could be obtained for as long as 5 h, which was sufficient to analyze the response properties of the TMJ units to various stimuli. This new preparation would be useful for investigating TMJ peripheral sensory mechanisms, especially pain, and potentially makes it possible to reveal neural mechanisms of temporomandibular arthralgia, a syndrome that has recently shown an increased incidence in clinical dentistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号