首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the Crumbs homologue 1 (CRB1) gene have been reported in patients with a variety of autosomal recessive retinal dystrophies, including retinitis pigmentosa (RP) with preserved paraarteriolar retinal pigment epithelium (PPRPE), RP with Coats-like exudative vasculopathy, early onset RP without PPRPE, and Leber congenital amaurosis (LCA). We extended our investigations of CRB1 in these retinal dystrophies, and identified nine novel CRB1 sequence variants. In addition, we screened patients with "classic" RP and classic Coats disease (without RP), but no pathologic sequence variants were found in the CRB1 gene. In total, 71 different sequence variants have been identified on 184 CRB1 alleles of patients with retinal dystrophies, including amino acid substitutions, frameshift, nonsense, and splice site mutations, in-frame deletions, and large insertions. Recent studies in two animal models, mouse and Drosophila, and in vivo high-resolution microscopy in patients with LCA, have shed light on the role of CRB1 in the pathogenesis of retinal dystrophies and its function in the photoreceptors. In this article, we provide an overview of the currently known CRB1 sequence variants, predict their effect, and propose a genotype-phenotype correlation model for CRB1 mutations.  相似文献   

2.
Mutations in the CRB1 gene are associated with variable phenotypes of severe retinal dystrophies, ranging from leber congenital amaurosis (LCA) to rod-cone dystrophy, also called retinitis pigmentosa (RP). Moreover, retinal dystrophies resulting from CRB1 mutations may be accompanied by specific fundus features: preservation of the para-arteriolar retinal pigment epithelium (PPRPE) and retinal telangiectasia with exudation (also referred to as Coats-like vasculopathy). In this publication, we report seven novel mutations and classify over 150 reported CRB1 sequence variants that were found in more that 240 patients. The data from previous reports were used to analyze a potential correlation between CRB1 variants and the clinical features of respective patients. This meta-analysis suggests that the differential phenotype of patients with CRB1 mutations is due to additional modifying factors rather than particular mutant allele combination.  相似文献   

3.
MER tyrosine kinase (MERTK) encodes a surface receptor localized at the apical membrane of the retinal pigment epithelium. It plays a critical role in photoreceptor outer segment internalization prior to phagocytosis. Mutations in MERTK have been associated with severe autosomal recessive retinal dystrophies in the RCS rat and in humans. We present here a comprehensive review of all reported MERTK disease causing variants with the associated phenotype. In addition, we provide further data and insights of a large cohort of 1,195 inherited retinal dystrophies (IRD) index cases applying state‐of‐the‐art genotyping techniques and summarize current knowledge. A total of 79 variants have now been identified underlying rod‐cone dystrophy and cone‐rod dystrophy including 11 novel variants reported here. The mutation spectrum in MERTK includes 33 missense, 12 nonsense, 12 splice defects, 12 small deletions, 2 small insertion–deletions, 3 small duplications, and 2 exonic and 3 gross deletions. Altogether, mutations in MERTK account for ~2% of IRD cases with a severe retinal phenotype. These data are important for current and future therapeutic trials including gene replacement therapy or cell‐based therapy.  相似文献   

4.
《Genetics in medicine》2015,17(4):245-252
Inherited eye disorders are a significant cause of vision loss. Genetic testing can be particularly helpful for patients with inherited retinal dystrophies because of genetic heterogeneity and overlapping phenotypes. The need to identify a molecular diagnosis for retinal dystrophies is particularly important in the era of developing novel gene therapy–based treatments, such as the RPE65 gene–based clinical trials and others on the horizon, as well as recent advances in reproductive options. The introduction of massively parallel sequencing technologies has significantly advanced the identification of novel gene candidates and has expanded the landscape of genetic testing. In a relatively short time clinical medicine has progressed from limited testing options to a plethora of choices ranging from single-gene testing to whole-exome sequencing. This article outlines currently available genetic testing and factors to consider when selecting appropriate testing for patients with inherited retinal dystrophies.Genet Med17 4, 245–252.  相似文献   

5.
The advent of next generation sequencing (NGS) techniques has greatly simplified the molecular diagnosis and gene identification in very rare and highly heterogeneous Mendelian disorders. Over the last two years, these approaches, especially whole exome sequencing (WES), alone or combined with homozygosity mapping and linkage analysis, have proved to be successful in the identification of more than 25 new causative retinal dystrophy genes. NGS-approaches have also identified a wealth of new mutations in previously reported genes and have provided more comprehensive information concerning the landscape of genotype-phenotype correlations and the genetic complexity/diversity of human control populations. Although whole genome sequencing is far more informative than WES, the functional meaning of the genetic variants identified by the latter can be more easily interpreted, and final diagnosis of inherited retinal dystrophies is extremely successful, reaching 80%, particularly for recessive cases. Even considering the present limitations of WES, the reductions in costs and time, the continual technical improvements, the implementation of refined bioinformatic tools and the unbiased comprehensive genetic information it provides, make WES a very promising diagnostic tool for routine clinical and genetic diagnosis in the future.  相似文献   

6.
Conventional next‐generation sequencing methods, used in most gene panels, cannot separate maternally and paternally derived sequence information of distant variants. In recessive diseases, two or more equally plausible causative variants with unsolved phase information prevent accurate molecular diagnosis. In reality, close relatives might be unavailable for segregation analysis. Here, we utilized whole genome linked‐read sequencing to assign variants to haplotypes in two patients with inherited retinal dystrophies. Patient 1 with macular dystrophy had variants c.3442T>C, p.(Cys1148Arg), c.4209G>T, p.(Glu1403Asp), and c.1182C>T, p.(Cys394=) in CRB1, and Patient 2 with nonsyndromic retinitis pigmentosa had c.1328T>A, p.(Val443Asp) and c.3032C>G, p.(Ser1011*) in AHI1. The relatives were not available for genotyping. Using whole genome linked‐read sequencing we phased the variants to haplotypes providing genetic background for the retinal dystrophies. In future, when the price of sequencing methods that provides long‐read data decreases and their read‐depth and accuracy increases, they are probably considered the primary or adjunctive sequencing methods in genetic testing, allowing the immediate collection of phase information and thus obviating the need for the carrier testing and segregation analysis.  相似文献   

7.
Maternally inherited deafness associated with a T1095C mutation in the mDNA   总被引:3,自引:0,他引:3  
Hearing loss is a relatively frequent defect in children with a genetic or predisposition basis in about 50% of cases. Mitochondrial DNA (mtDNA)-associated disorder often present with sensorineural hearing loss (SNHL) either in isolation or as a part of a multisystem disorder in adults but the frequency in pediatric cases is unknown. We analysed deafness-related mtDNA mutations in 80 deaf children to assess the relative frequency of alterations in childhood-onset SNHL. In 16 patients in whom maternal inheritance was possible, we screened for new mutations likely to affect mitochondrial protein synthesis. In one child we detected a novel mutation (T1095C) in the 12S rRNA gene. This mutation fulfils the suggested criteria for definition of a disease-related nucleotide variant. No mutations were found in other patients. Although we cannot exclude the presence of still undefined new mtDNA mutations, our data suggest that mtDNA defect are not common in childhood-onset SNHL.  相似文献   

8.
《Genetics in medicine》2016,18(6):554-562
PurposeRetinal dystrophies (RD) are heterogeneous hereditary disorders of the retina that are usually progressive in nature. The aim of this study was to clinically and molecularly characterize a large cohort of RD patients.MethodsWe have developed a next-generation sequencing assay that allows known RD genes to be sequenced simultaneously. We also performed mapping studies and exome sequencing on familial and on syndromic RD patients who tested negative on the panel.ResultsOur panel identified the likely causal mutation in >60% of the 292 RD families tested. Mapping studies on all 162 familial RD patients who tested negative on the panel identified two novel disease loci on Chr2:25,550,180-28,794,007 and Chr16:59,225,000-72,511,000. Whole-exome sequencing revealed the likely candidate as AGBL5 and CDH16, respectively. We also performed exome sequencing on negative syndromic RD cases and identified a novel homozygous truncating mutation in GNS in a family with the novel combination of mucopolysaccharidosis and RD. Moreover, we identified a homozygous truncating mutation in DNAJC17 in a family with an apparently novel syndrome of retinitis pigmentosa and hypogammaglobulinemia.ConclusionOur study expands the clinical and allelic spectrum of known RD genes, and reveals AGBL5, CDH16, and DNAJC17 as novel disease candidates.  相似文献   

9.
Inherited retinal diseases (IRDs) cause visual loss due to dysfunction or progressive degeneration of photoreceptors. These diseases show marked phenotypic and genetic heterogeneity. The Israeli IRD consortium (IIRDC) was established in 2013 with the goal of performing clinical and genetic mapping of the majority of Israeli IRD patients. To date, we recruited 2,420 families including 3,413 individuals with IRDs. On the basis of our estimation, these patients represent approximately 40% of Israeli IRD patients. To the best of our knowledge, this is, by far, the largest reported IRD cohort, and one of the first studies addressing the genetic analysis of IRD patients on a nationwide scale. The most common inheritance pattern in our cohort is autosomal recessive (60% of families). The most common retinal phenotype is retinitis pigmentosa (43%), followed by Stargardt disease and cone/cone–rod dystrophy. We identified the cause of disease in 56% of the families. Overall, 605 distinct mutations were identified, of which 12% represent prevalent founder mutations. The most frequently mutated genes were ABCA4, USH2A, FAM161A, CNGA3, and EYS. The results of this study have important implications for molecular diagnosis, genetic screening, and counseling, as well as for the development of new therapeutic strategies for retinal diseases.  相似文献   

10.
Mutations in the 12S rRNA gene of the mitochondrial genome are responsible for maternally inherited non-syndromic hearing loss (NSHL), and for increased susceptibility to the ototoxicity of aminoglycoside antibiotics. Among these mutations, 1555A-->G is the most prevalent in all populations tested so far. Recently, the 1494C-->T mutation was reported in two large Chinese pedigrees with maternally inherited NSHL. In this study, sequencing of the 12S rRNA gene in a Spanish family with maternally inherited NSHL showed the presence of the 1494C-->T mutation. An additional screening of 1339 unrelated Spanish patients with NSHL allowed the authors to find two other families with the mutation. Audiological data were obtained from 17 confirmed 1494C-->T carriers, which showed that the hearing loss was sensorineural, bilateral and symmetrical, with a remarkable variability in age of onset and severity. Three carriers were asymptomatic. Three affected carriers had a history of treatment with aminoglycoside antibiotics. The mitochondrial genome of one affected person from each of these three families was entirely sequenced, and it was established that they belong to different mitochondrial haplogroups (H, U5b, U6a). The study results further support the pathogenic role of 1494C-->T on hearing, and show that this mutation can be found in different Caucasian mitochondrial DNA backgrounds.  相似文献   

11.
12.
Genotype-phenotype correlations highlighted the function of ABCA4 in retinitis pigmentosa (RP),cone-rod dystrophy (CRD) and Stargardt/Fundus Flavimaculatus disease (STGD/FFM). Initial screening of ABCA4 variants showed a correlation between the type of mutation and the severity of the disease. In the present study we have undertaken mutational and haplotype analysis of ABCA4 in three mixed pedigrees segregating different retinal dystrophies. In family I, we have shown cosegregation of different ABCA4 alleles with CRD (homozygosity for L1940P) and three subtypes of STGD/FFM. The first, a mild form, consisting on fundus flavimaculatus-like distribution of flecks, but good visual acuity and absence of dark choroid, was found to cosegregate with alleles R1097C and F553L; the second, a conventional Stargardt phenotype was associated to alleles L1940P/R1097C and the third, displaying severely reduced visual acuity and dark choroid (named FFM), was associated to L1940P/F553L. In family II, segregating STGD and RP phenotypes, while the involvement of ABCA4 in STGD seems clear this is not the case for RP. Finally, in family III, also segregating STGD and RP, ABCA4 fails to explain either phenotype. Our data highlight the wide allelic heterogeneity involving this gene and support the genetic variability (beyond ABCA4) of mixed STGD/RP pedigrees.  相似文献   

13.
14.
Inherited retinal degeneration (IRD) affects around 1/3000 of the population in Europe and the United States. It is a diverse group of conditions that results from mutations in any one of over 100 different genes. Many of the genes have now been identified and their functions elucidated, providing a major impetus to develop gene-based treatments. Whilst gene replacement and gene silencing strategies offer prospects for the treatment of specific inherited retinal disorders, other disorders may be less amenable to these corrective approaches. These conditions include, in particular, those associated with abnormal retinal development and those in which retinal degeneration is advanced at birth. Furthermore, the development of individualized corrective gene therapy strategies for patients with disorders due to very rare mutations may be unfeasible. However, generic gene therapy strategies that aim not to correct the gene defect but to ameliorate its consequences offer the possibility of therapies that are widely applicable across a range of conditions. One potential strategy in these cases is to halt or delay the process of cell death, so that useful visual function can be maintained throughout the lifetime of an affected individual. It has been shown in variety of experimental models over the last three decades, that neurotrophic factors have the potential to delay neuronal apoptosis. Neurotrophic factors are small proteins which have relatively short half lives and a requirement for repeated administration has limited their clinical application. Since these proteins do not ordinarily cross the blood-brain barrier, previous approaches have relied upon intrathecal infusion pumps or similar complex devices to sustain elevated neurotrophin levels within the central nervous system (CNS). However, sustained delivery through viral vector mediated expression of genes encoding neurotrophic factors may circumvent the potential side effects of repeated administration. In this review we shall explore some of the concepts of neurotrophic gene therapy and how this might be applicable to preserving vision in inherited retinal degenerations.  相似文献   

15.
《Genetics in medicine》2020,22(6):1079-1087
PurposeCurrent sequencing strategies can genetically solve 55–60% of inherited retinal degeneration (IRD) cases, despite recent progress in sequencing. This can partially be attributed to elusive pathogenic variants (PVs) in known IRD genes, including copy-number variations (CNVs), which have been shown as major contributors to unsolved IRD cases.MethodsFive hundred IRD patients were analyzed with targeted next-generation sequencing (NGS). The NGS data were used to detect CNVs with ExomeDepth and gCNV and the results were compared with CNV detection with a single-nucleotide polymorphism (SNP) array. Likely causal CNV predictions were validated by quantitative polymerase chain reaction (qPCR).ResultsLikely disease-causing single-nucleotide variants (SNVs) and small indels were found in 55.6% of subjects. PVs in USH2A (11.6%), RPGR (4%), and EYS (4%) were the most common. Likely causal CNVs were found in an additional 8.8% of patients. Of the three CNV detection methods, gCNV showed the highest accuracy. Approximately 30% of unsolved subjects had a single likely PV in a recessive IRD gene.ConclusionCNV detection using NGS-based algorithms is a reliable method that greatly increases the genetic diagnostic rate of IRDs. Experimentally validating CNVs helps estimate the rate at which IRDs might be solved by a CNV plus a more elusive variant.  相似文献   

16.
Prevalence of AIPL1 mutations in inherited retinal degenerative disease   总被引:3,自引:0,他引:3  
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy and the most frequent cause of inherited blindness in children. LCA is usually inherited in an autosomal recessive fashion, although rare dominant cases have been reported. One form of LCA, LCA4, maps to chromosome 17p13 and is genetically distinct from other forms of LCA. We recently identified the gene associated with LCA4, AIPL1 (aryl-hydrocarbon interacting protein-like 1) and identified three mutations that were the cause of blindness in five families with LCA. In this study, AIPL1 was screened for mutations in 512 unrelated probands with a range of retinal degenerative diseases to determine if AIPL1 mutations cause other forms of inherited retinal degeneration and to determine the relative contribution of AIPL1 mutations to inherited retinal disorders in populations worldwide. We identified 11 LCA families whose retinal disorder is caused by homozygous or compound heterozygous AIPL1 mutations. We also identified affected individuals in two apparently dominant families, diagnosed with juvenile retinitis pigmentosa or dominant cone-rod dystrophy, respectively, who are heterozygous for a 12-bp AIPL1 deletion. Our results suggest that AIPL1 mutations cause approximately 7% of LCA worldwide and may cause dominant retinopathy.  相似文献   

17.
Ten new and seventeen previously reported Enhanced S Cone Syndrome (ESCS) subjects were used to search for genetic heterogeneity. All subjects were diagnosed with ESCS on the basis of clinical, psychophysical and/or electroretinography testing using published criteria. Mutation analysis was performed on the NR2E3 nuclear receptor gene by single strand conformation analysis and direct sequencing, which revealed either homozygous (N=13) or compound heterozygous (N=11) mutations in 24 subjects (89%), heterozygous mutations in 2 subjects (7%) and no mutations in 1 subject (4%). Fifteen different mutations were identified, including six not previously reported. The subject (Patient A) with no detected NR2E3 mutation had features not usually associated with ESCS, in particular moderate rod photoreceptor function in peripheral retina and an abnormally thick retinal nerve fibre layer. Mutation analysis of the NRL, CRX, NR1D1 and THRB genes in this individual revealed a heterozygous one base-pair insertion in exon 2 of the NRL gene, which results in a predicted truncation of the NRL protein. Loss-of-function NRL alleles have not been described previously in humans, but since the same mutation was present in unaffected family members, it raises the possibility that the abnormal ESCS phenotype in Patient A may result from a digenic mechanism, with a heterozygous NRL mutation and a mutation in another unknown gene.  相似文献   

18.
19.
PurposeIn Mendelian disease diagnosis, variant analysis is a repetitive, error-prone, and time consuming process. To address this, we have developed the Mendelian Analysis Toolkit (MATK), a configurable, automated variant ranking program.MethodsMATK aggregates variant information from multiple annotation sources and uses expert-designed rules with parameterized weights to produce a ranked list of potentially causal solutions. MATK performance was measured by a comparison between MATK-aided and human-domain expert analyses of 1060 families with inherited retinal degeneration (IRD), analyzed using an IRD-specific gene panel (589 individuals) and exome sequencing (471 families).ResultsWhen comparing MATK-assisted analysis with expert curation in both the IRD-specific gene panel and exome sequencing (1060 subjects), 97.3% of potential solutions found by experts were also identified by the MATK-assisted analysis (541 solutions identified with MATK of 556 solutions found by conventional analysis). Furthermore, MATK-assisted analysis identified 114 additional potential solutions from the 504 cases unsolved by conventional analysis.ConclusionMATK expedites the process of identification of likely solving variants in Mendelian traits, and reduces variability stemming from human error and researcher bias. MATK facilitates data reanalysis to keep up with the constantly improving annotation sources and next-generation sequencing processing pipelines. The software is open source and available at https://gitlab.com/matthew_maher/mendelanalysis.  相似文献   

20.
Inherited prion diseases (IPD) are a set of rare neurodegenerative diseases that are always caused by mutation of the prion protein gene (PRNP). These are highly heterogeneous in clinical presentation and best described by the specific gene mutation, but traditionally include the canonical syndromes familial Creutzfeldt-Jakob disease, Gerstamann-Straussler-Scheinker syndrome, and fatal familial insomnia. In the UK, care of IPD patients and clinical PRNP sequencing have been carried out almost exclusively by the National Prion Clinic and affiliated laboratories since the disease gene was discovered in 1989. Using data obtained over 30 years (1990–2019), this study aimed to provide a greater understanding of the genetic prevalence of IPD using multiple complementary methods. A key source of bias in rare disorders is ascertainment, so we included an analysis based on capture-recapture techniques that may help to minimise ascertainment bias. 225 patients, with 21 different IPD mutations were identified, varying in frequency (with 8/21 mutations comprising over 90% observed cases), derived from 116 kindreds and 151 3-generation families. We estimated a total of 303 UK families (95% CI = 222, 384) segregate IPD mutations, 1091 (95% CI = 720, 1461) UK mutation carriers and a lifetime risk of approximately 1 in 60,000. Simpler methods of measuring prevalence based on extrapolation from the annual incidence of disease, and large scale genomic studies, result in similar estimates of prevalence. These estimates may be of value for planning preventive trials of therapeutics in IPD mutation carriers, prevention of prion disease transmission and provision of specialist services.Subject terms: Neurodegeneration, Alzheimer''s disease  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号