首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antiplatelet effects of a novel guanidine derivative, KR-32570 ([5-(2-methoxy-5-chlorophenyl) furan-2-ylcarbonyl]guanidine), were investigated with an emphasis on the mechanisms underlying its inhibition of collagen-induced platelet aggregation. KR-32570 significantly inhibited the aggregation of washed rabbit platelets induced by collagen (10 microg/mL), thrombin (0.05 U/mL), arachidonic acid (100 microM), a thromboxane (TX) A2 mimetic agent U46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin F2, 1 microM) and a Ca2+ ATPase inhibitor thapsigargin (0.5 microM) (IC50 values: 13.8 +/- 1.8, 26.3 +/- 1.2, 8.5 +/- 0.9, 4.3 +/- 1.7 and 49.8 +/- 1.4 microM, respectively). KR-32570 inhibited the collagen-induced liberation of [3H]arachidonic acid from the platelets in a concentration dependent manner with complete inhibition being observed at 50 microM. The TXA2 synthase assay showed that KR-32570 also inhibited the conversion of the substrate PGH2 to TXB2 at all concentrations. Furthermore, KR-32570 significantly inhibited the [Ca2+]i mobilization induced by collagen at 50 microM, which is the concentration that completely inhibits platelet aggregation. KR-32570 also decreased the level of collagen (10 microg/mL)-induced secretion of serotonin from the dense-granule contents of platelets, and inhibited the NHE-1-mediated rabbit platelet swelling induced by intracellular acidification. These results suggest that the antiplatelet activity of KR-32570 against collagen-induced platelet aggregation is mediated mainly by inhibiting the release of arachidonic acid, TXA2 synthase, the mobilization of cytosolic Ca2+ and NHE-1.  相似文献   

2.
Platelet activation is involved in serious pathological situations, including atherosclerosis and restenosis. It is important to find efficient antiplatelet medicines to prevent fatal thrombous formation during the course of these diseases. Marchantinquinone, a natural compound isolated from Reboulia hemisphaerica, inhibited platelet aggregation and ATP release stimulated by thrombin (0.1 units mL(-1)), platelet-activating factor (PAF; 2 ng mL(-1)), collagen (10 microg mL(-1)), arachidonic acid (100 microM), or U46619 (1 microM) in rabbit washed platelets. The IC50 values of marchantinquinone on the inhibition of platelet aggregation induced by these five agonists were 62.0 +/- 9.0, 86.0 +/- 7.8, 13.6 +/- 4.7, 20.9 +/- 3.1 and 13.4 +/- 5.3 microM, respectively. Marchantinquinone inhibited thromboxane B2 (TxB2) formation induced by thrombin, PAF or collagen. However, marchantinquinone did not inhibit TxB2 formation induced by arachidonic acid, indicating that marchantinquinone did not affect the activity of cyclooxygenase and thromboxane synthase. Marchantinquinone did inhibit the rising intracellular Ca2+ concentration stimulated by the five platelet-aggregation inducers. The formation of inositol monophosphate induced by thrombin was inhibited by marchantinquinone. Platelet cAMP and cGMP levels were unchanged by marchantinquinone. The results indicate that marchantinquinone exerts antiplatelet effects by inhibiting phosphoinositide turnover.  相似文献   

3.
5-Lipoxygenase/cyclooxygenase inhibitors, possessing anti-inflammatory action and gastric safety due to cyclooxygenase-2 and 5-lipoxygenase inhibition and antiplatelet activity due to cyclooxygenase-1 blockade, would be beneficial in the treatment of ischemic disease because they may reduce, at the same time, inflammation, underlying the atherosclerotic process, and platelet activation, responsible for acute thrombotic events. In this study, we characterized the antiplatelet effects of the new 5-lipoxygenase/cyclooxygenase inhibitor licofelone ([2,2-dimethyl-6-(4-chlorophenyl)-7-phenyl-2,3,dihydro-1H-pyrrolizine-5-yl]-acetic acid. Licofelone completely prevented platelet aggregation induced in platelet-rich plasma by threshold aggregating concentrations of arachidonic acid (0.87+/-0.14 mM) at threshold inhibitory concentrations of 0.75+/-0.35 microM (n=5). Platelet-rich plasma aggregation induced by threshold aggregating concentrations of collagen/adrenalin (0.3+/-0.05 microg/ml and 0.4+/-0.1 microM, respectively) was reduced to 3.2+/-2% of control at licofelone 100 microM, (P<0.05, n=6). Washed platelet aggregation induced by threshold aggregating concentrations of thrombin (0.07+/-0.01 U/ml) was only partially affected by licofelone at concentrations one or two order of magnitude higher than those fully preventing arachidonic acid-induced aggregation (44+/-11% of control at 100 microM, P<0.05, n=7). Failure to prevent aggregation triggered by high concentrations of collagen/adrenalin in aspirin-treated platelets supports cyclooxygenase-1 as a specific target of licofelone. In fact, licofelone inhibited thromboxane B(2) (TxB(2)) production by all the agonists tested at concentrations between 0.5 and 50 microM. At this concentration, TxB(2) production was reduced at values similar to those of unstimulated platelets. These results indicate that, at clinically relevant concentrations, licofelone exerts a potent antiplatelet effect mediated by the inhibition of cyclooxygenase-1 activity.  相似文献   

4.
In previous studies we have reported that NQ301, a synthetic 1,4-naphthoquinone derivative, displays a potent antithrombotic activity, and that this might be due to antiplatelet effect, which was mediated by the inhibition of cytosolic Ca(2+) mobilization in activated platelets. In the present study, the effect of NQ301 on arachidonic acid cascade in activated platelets has been examined. NQ301 concentration-dependently inhibited washed rabbit platelet aggregation induced by collagen (10 microg/ml), arachidonic acid (100 microM) and U46619 (1 microM), a thromboxane A2 receptor agonist, with IC50 values of 0.60+/-0.02, 0.78+/-0.04 and 0.58+/-0.04 microM, respectively. NQ301 also produced a shift to the right of the concentration-effect curve of U46619, indicating a competitive type of antagonism on thromboxane A2/prostaglandin H2 receptor. NQ301 slightly inhibited collagen-induced arachidonic acid liberation. In addition, NQ301 potently suppressed thromboxane B2 formation by platelets that were exposed to arachidonic acid in a concentration-dependent manner, but had no effect on the production of prostaglandin D2, indicating an inhibitory effect on thromboxane A2 synthase. This was supported by thromboxane A2 synthase activity assay that NQ301 concentration-dependently inhibited thromboxane B2 formation converted from prostaglandin H2. Moreover, NQ301 concentration-dependently inhibited 12-hydroxy-5,8,10,14-eicosatetraenoic acid formation by platelets that were exposed to arachidonic acid. Taken together, these results suggest that NQ301 has a potential to inhibit thromboxane A2 synthase activity with thromboxane A2/prostaglandin H2 receptor blockade, and modulate arachidonic acid liberation as well as 12-hydroxy-5,8,10,14-eicosatetraenoic acid formation in platelets. This may also be a convincing mechanism for the antithrombotic action of NQ301.  相似文献   

5.
Lee JJ  Jin YR  Lee JH  Yu JY  Han XH  Oh KW  Hong JT  Kim TJ  Yun YP 《Planta medica》2007,73(2):121-127
Carnosic acid is a major phenolic diterpene derived from Rosmarinus officinalis and has been reported to have antioxidant, antibacterial, anticancer, antiobese and photoprotective activities. This study investigated the antiplatelet activity of carnosic acid. carnosic acid significantly inhibited collagen-, arachidonic acid-, U46619- and thrombin-induced washed rabbit platelet aggregation in a concentration-dependent manner, with IC50 values of 39+/-0.3, 34+/-1.8, 29+/-0.8 and 48+/-2.9 microM, respectively, while it failed to inhibit PMA-(a direct PKC activator) and ADP-induced platelet aggregation. In agreement with its antiplatelet activity, carnosic acid blocked collagen-, arachidonic acid-, U46619- and thrombin-mediated cytosolic calcium mobilization. accordingly, serotonin secretion and arachidonic acid liberation were also inhibited in a similar concentration-dependent manner. However, in contrast to the inhibition of arachidonic acid-induced platelet aggregation, carnosic acid had no effect on the formation of arachidonic acid-mediated thromboxane A2 and prostaglandin D2, thus indicating that carnosic acid has no effect on the cyclooxygenase and thromboxane A2 synthase activity. Overall, these results suggest that the antiplatelet activity of carnosic acid is mediated by the inhibition of cytosolic calcium mobilization and that carnosic acid has the potential of being developed as a novel antiplatelet agent.  相似文献   

6.
1. The cytochrome P-450 metabolite of arachidonic acid, 20-hydroxyeicosatetraenoic acid (20-HETE), was found to be a potent, dose-dependent inhibitor of platelet aggregation and inhibitor of thromboxane biosynthesis induced by arachidonic acid (IC50 5.2 +/- 1.5 microM), A23187 (IC50 16.2 +/- 5.4 microM), and U46619 (IC50 7.8 +/- 2.4 microM). 20-HETE did not inhibit thrombin-induced aggregation. 2. The human platelet metabolized 20-HETE to a series of novel metabolites formed by cyclo-oxygenase as well as lipoxygenase pathways. The structures of the metabolites were identified by mass spectrometry as 20-hydroxy-thromboxane B2, 12,17-dihydroxyheptadecatrienoic acid, 12,20-dihydroxyeicosatetraenoic acid, and 11,20-dihydroxyeicosatetraenoic acid. 3. The identification of the 11-hydroxy metabolite of 20-HETE suggests that 20-HETE is less efficiently cyclized to an endoperoxide intermediate by cyclo-oxygenase than is arachidonate. 4. Although some biological activity of 20-HETE may be related to competition with endogenous arachidonate for cyclo-oxygenase metabolism, the predominant mechanism of action of 20-HETE appears to be through antagonism of the prostaglandin H2/thromboxane A2 receptor.  相似文献   

7.
Carnosol, a naturally occurring phenolic diterpene found in rosemary, has been reported to exhibit antioxidant, anticancer and hepatoprotective effects. In the present study, the antiplatelet activity of carnosol was investigated. Carnosol concentration-dependently inhibited washed rabbit platelet aggregation induced by collagen and arachidonic acid (AA), with IC(50) values of 5.5+/-0.3 and 42.5+/-0.9 microM, respectively, while failed to inhibit that induced by, ADP and thrombin. Consist with inhibition of collagen-induced platelet aggregation, carnosol revealed blocking of collagen-mediated cytosolic calcium mobilization, serotonin secretion and arachidonic acid liberation. However, contrary to the inhibition of AA-induced platelet aggregation, carnosol has no effect on AA-mediated TXA(2) and PGD(2) formation, indicating carnosol may directly inhibit TXA(2) receptor, which was supported by the finding that carnosol potently inhibited U46619 (a TXA(2) mimic)-induced platelet aggregation, with an IC(50) value of 22.0+/-2.5 microM. In addition, the U46619-induced concentration-response curve was downward shifted by the application of carnosol at concentrations of 22 and 50 microM, indicating a typical non-competitive antagonism on TXA(2) receptor. Taken together, these results suggest that antiplatelet activity of carnosol may be mediated by the inhibition of TXA(2) receptor and cytosolic calcium mobilization, and carnosol has a potential to be developed as a novel-antiplatelet agent.  相似文献   

8.
1 The effects of YM-254890, a specific Galpha(q/11) inhibitor, on platelet functions, thrombus formation under high-shear rate condition and femoral artery thrombosis in cynomolgus monkeys were investigated. 2 YM-254890 concentration dependently inhibited ADP-induced intracellular Ca(2+) elevation, with an IC(50) value of 0.92+/-0.28 microM. 3 P-selectin expression induced by ADP or thrombin receptor agonist peptide (TRAP) was strongly inhibited by YM-254890, with IC(50) values of 0.51+/-0.02 and 0.16+/-0.08 microM, respectively. 4 YM-254890 had no effect on the binding of fibrinogen to purified GPIIb/IIIa, but strongly inhibited binding to TRAP-stimulated washed platelets. 5 YM-254890 completely inhibited platelet shape change induced by ADP, but not that induced by collagen, TRAP, arachidonic acid, U46619 or A23187. 6 YM-254890 attenuated ADP-, collagen-, TRAP-, arachidonic acid- and U46619-induced platelet aggregation with IC(50) values of <1 microM, whereas it had no effect on phorbol 12-myristate 13-acetate-, ristocetin-, thapsigargin- or A23187-induced platelet aggregation. 7 High-shear stress-induced platelet aggregation and platelet-rich thrombus formation on a collagen surface under high-shear flow conditions were concentration dependently inhibited by YM-254890. 8 The antithrombotic effect of YM-254890 was evaluated in a model of cyclic flow reductions in the femoral artery of cynomolgus monkeys. The intravenous bolus injection of YM-254890 dose dependently inhibited recurrent thrombosis without affecting systemic blood pressure or prolonging template bleeding time. 9 YM-254890 is a useful tool for investigating Galpha(q/11)-coupled receptor signaling and the physiological roles of Galpha(q/11).  相似文献   

9.
The effects of docosapentaenoic acid (DPA) on platelet aggregation and arachidonic acid metabolism were studied in comparison to those of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Collagen- or arachidonic acid-stimulated platelet aggregation was inhibited dose-dependently by n-3 fatty acids, among which DPA was the most potent inhibitor. These fatty acids inhibited U46619-induced aggregation but to almost the same extent. No effect of the acids on thrombin-induced aggregation was observed. Furthermore, these fatty acids suppressed thromboxane A2 formation by platelets which were exposed to collagen or thrombin, or by platelets to which arachidonic acid was added. In these experiments also, DPA was the most potent inhibitor, whereas DHA was the most effective inhibitor of cyclooxygenase-1 activity. DPA enhanced formation of 12-hydroxyeicosatetraenoic acid in response to collagen or from arachidonic acid by intact platelets, while the other two acids had less of an effect. These results suggest that DPA possesses potent activity for interfering with the cyclooxygenase pathway and accelerating the lipoxygenase pathway, thus inhibiting platelet aggregation most effectively.  相似文献   

10.
Aggregation, serotonin release and malondialdehyde (MDA) production via cyclooxygenase and thromboxane A2 synthetase were investigated in rabbit platelets. Trimetazidine dihydrochloride (TMZ) attenuated the collagen-induced aggregation more strongly than the arachidonic acid (AA)-, thromboxane A2 agonist (U-46619)-, Ca2+-ionophore (A-23187)- and ADP-induced aggregation: IC50 values were 1.0 +/- 0.1, 4.4 +/- 0.3, 4.3 +/- 0.4, 4.1 +/- 0.7 and 3.3 +/- 0.2 mM, respectively. TMZ decreased dose-dependently the serotonin release induced by collagen and A-23187, but did not decrease that induced by AA. TMZ also decreased the MDA production induced by collagen and A-23187 (IC50: 0.3 +/- 0.03 and 1.0 +/- 0.1 mM, respectively), but did not decrease the production induced by AA. Furthermore, TMZ decreased dose-dependently the MDA production induced by exogenous phospholipase A2. On the other hand, indomethacin (10 microM) attenuated the aggregation induced by collagen and AA, but not by the other agents, and decreased the serotonin release and the MDA production induced by collagen, A-23187 and AA. The present results suggest that TMZ may inhibit the process preceding the cyclooxygenase pathway in the AA cascade, and subsequently may attenuate the aggregation and the serotonin release via thromboxane A2 production from endogenous AA.  相似文献   

11.
1. The pharmacological effects of cinnamophilin, a new lignan, isolated from Cinnamomum philippinense, was determined in vitro in human platelet, rat isolated aorta and guinea-pig isolated trachea and in vivo in mice and guinea-pigs. 2. Cinnamophilin inhibited dose-dependently human platelet-rich plasma (PRP) aggregation induced by arachidonic acid (AA), collagen and U-46619 with IC50 of 5.0 +/- 0.4, 5.6 +/- 0.6 and 3.0 +/- 0.4 microM, respectively. The second wave of ADP- or adrenaline-induced platelet aggregation was inhibited by cinnamophilin, while the first wave was only slightly inhibited by cinnamophilin above 30 microM. 3. Cinnamophilin was found to be a thromboxane A2 (TXA2) receptor blocking agent in human platelet, rat aorta and guinea-pig trachea as revealed by its competitive antagonism of U-46619-induced aggregation of human-PRP, contraction of rat aortic rings and guinea-pig tracheal rings with pA2 values of 7.3 +/- 0.2, 6.3 +/- 0.1 and 5.2 +/- 0.2, respectively. 4. [3H]-inositol monophosphate formation and the rise of intracellular Ca2+ caused by U-46619 in human platelet was suppressed by cinnamophilin (10 microM). 5. Cinnamophilin induced a dose-dependent inhibition of thromboxane B2 (TXB2) formation, while the prostaglandin E2 (PGE2) formation was increased. Cinnamophilin did not affect unstimulated platelet adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels. When the platelets were challenged with AA, a dose-dependent rise in cyclic AMP was observed. Dazoxiben (a pure TX synthase inhibitor) and SQ 29548 (a pure TXA2 receptor antagonist) did not affect cyclic AMP levels in AA-treated platelets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The synthesis and the structure of N-isopropyl-N'-[2-(3'-methylphenylamino)-5-nitrobenzenesulfonyl] urea (14) was drawn from two thromboxane A2 receptor antagonists structurally related to torasemide. Compound 14 showed an IC50 value of 22 nM for the thromboxane A2 (TXA2) receptor of human washed platelets. Compound 14 prevented platelet aggregation induced by arachidonic acid (0.6 mM) and U-46619 (1 microM) with an IC50 value of 0.45 and 0.15 microM, respectively. Moreover, 14 relaxed the rat isolated aorta and guinea-pig trachea precontracted by U-46619, a TXA2 agonist. Its efficacy (IC50) was 20.4 and 5.47 nM, respectively. Finally, 14 (1 microM) completely inhibited TXA2 synthase of human platelets. The pKa value and the crystallographic data of 14 were determined and used to propose an interaction model between the TXA2 antagonists related to torasemide and their receptor.  相似文献   

13.
SM-10661 [(+/-)-(cis)-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one HCl] displayed marked in vitro inhibition of rabbit platelet aggregation induced by 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (alkyl-PAF), 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16-PAF), and 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine, with IC50, values of 5.50, 5.94, and 3.68 microM, respectively. It also inhibited alkyl-PAF-induced aggregation of human platelets with an IC50 of 3.00 microM, but it did not inhibit platelet aggregation induced by ADP, collagen, arachidonic acid, the thromboxane A2 agonist U46619, or the Ca ionophore A23187, at concentrations up to 400 microM. Furthermore, SM-10661 antagonized [3H]-C16-PAF binding to rabbit platelets competitively, with an IC50 of 1.0 microM. SM-10661 protected against alkyl-PAF-induced lethality in mice with an ID50 of 6.0 mg/kg intravenously or 24 mg/kg orally. In guinea pig, SM-10661 inhibited the alkyl-PAF (0.1 micrograms/kg)-induced increase in bronchial pressure, with an ID50 of 0.7 mg/kg intravenously or 15 mg/kg orally. Bronchial hyperreactivity to bombesin after the infusion of alkyl-PAF was also inhibited dose-dependently by the infusion of SM-10661, with an ID50 of 25 mg/kg. In addition, SM-10661 inhibited alkyl-PAF (0.01 micrograms/kg)-induced hypotension in rats, with an ID50 of 0.36 mg/kg intravenously or 33 mg/kg orally. SM-10661, when given orally, showed rapid absorption and good duration of pharmacological activity in rats and rabbits.  相似文献   

14.
The antiplatelet effect of the pyridazinone analogue, 4, 5-dihydro-6-[4-[2-hydroxy-3-(3,4 dimethoxybenzylamino)propoxy]naphth-1-yl]-3(2H)-pyridazinone (HCL-31D), was investigated in vitro with rabbit platelets. HCL-31D dose-dependently inhibited the platelet aggregation and ATP release induced by collagen (10 microg/ml), arachidonic acid (100 microM) or thrombin (0.1 U/ml) with an IC(50) of about 0.95-5.41 microM. HCL-31D (0.5-5 microM) increased the platelet cyclic AMP level in a dose-dependent manner. Furthermore, HCL-31D potentiated cyclic AMP formation caused by prostaglandin E(1) but not that caused by 3-isobutyl-1-methylxanthine (IBMX). HCL-31D also attenuated phosphoinositide breakdown and intracellular Ca(2+) elevation induced by collagen, arachidonic acid or thrombin. HCL-31D inhibited the formation of thromboxane B(2) induced by collagen or thrombin but not by arachidonic acid. In addition, HCL-31D did not affect platelet cylooxygenase and thromboxane synthase activity. These data indicate that HCL-31D is an inhibitor of phosphodiesterase and that its antiplatelet effect is mainly mediated by elevation of cyclic AMP levels.  相似文献   

15.
BM-531 (N-tert-butyl-N'-[(2-cyclohexylamino-5-nitrobenzene)sulfonyl]urea), a torasemide derivative, is a novel noncarboxylic thromboxane receptor antagonist and thromboxane synthase inhibitor. Indeed, its affinity for human washed platelet TXA2 receptors labeled with [3H]SQ-29548 (IC50 = 0.0078 microM) is higher than sulotroban (IC50 = 0.93 microM) and SQ-29548 (IC50 = 0.021 microM). Moreover, BM-531 is characterized by a potent antiaggregatory property. Indeed, on one hand, in human citrated platelet-rich plasma BM-531 prevents platelet aggregation induced by arachidonic acid (600 microM) (ED100 = 0.125 microM), U-46619, a stable TXA2 agonist (1 microM) (ED50 = 0.482 microM) or collagen (1 microgram/mL) (percentage of inhibition: 42.9% at 10 microM) and inhibits the second wave of ADP (2 microM)-induced aggregation. On the other hand, when BM-531 is incubated in whole blood from healthy donors, the closure time measured by the recently developed platelet function analyser (PFA-100) is significantly prolonged. In addition, at the concentrations of 10 and 1 microM, BM-531 totally prevents the production of TXB2 by human platelets activated by arachidonic acid. Finally, at 10 microM, BM-531 significantly prevents rat fundus contractions induced by U-46619 but not by prostacyclin. These results suggest that BM-531, which is devoid of the diuretic property of torasemide, can be regarded as a promising antiplatelet agent.  相似文献   

16.
In the scope of a research program aiming at the synthesis and pharmacological evaluation of novel possible antiplatelet prototype compounds, exploring bioisosterism principles for molecular design, we describe in this paper the synthesis of new aryl-sulfonamides derivatives, structurally similar to known thromboxane A2 receptor antagonists. The synthetic route used to access the new compounds described herein starts from safrole, an abundant Brazilian natural product, which occurs in Sassafras oil (Ocotea pretiosa). The results from preliminary evaluation of these novel aryl-sulfonamide compounds by the platelet aggregation inhibitory test, using rabbit PRP, induced by ADP, collagen, arachidonic acid, and U46619, identified the N-[2-(4-carboxymethoxyphenyl)ethyl]-6-methyl-3,4-methylenedioxyphe nyl- sulfonamido derivative as the most active among them, presenting in IC50 value for the U-46619-induced platelet aggregation in rabbit platelet-rich plasma: 329 microM.  相似文献   

17.
The direct acylation of trimethoxyphenol (1) with substituted cinnamoyl chlorides followed by Fries rearrangement and cyclization afforded a practical route for the synthesis of novel baicalein derivatives 4 functionalized on the B-ring in good overall yields. In the methylthiazoletetrazolium bromide (MTT) assay, none of the synthetic polyhydroxyflavonoids were cytotoxic at concentrations up to 200 microM on lipopolysaccharide (LPS)-activated murine RAW 264.7 macrophages over 24 h, while in the same cells they significantly inhibited NO production. Among the derivatives, 4d (IC50=46.1 +/- 0.3 microM) was found to exhibit the most potent activity compared with N-nitro-(L)-arginine methyl ester (L-NAME, IC50 >300 microM). Compounds 4b, 4e, 4f, 4h and 4i remarkably inhibited platelet aggregation induced by arachidonic acid and collagen in rabbit washed platelets compared with aspirin. Analysis of their structure-activity relationships indicated that, in the structural modification on the B-ring of baicalein (4a), introduction of appropriate electro-withdrawing substituents such as 2-Cl (4b), 4-Cl (4d), and 4-phenyl (4i) notably increased the potency on the inhibition of LPS-activated NO production and arachidonic acid- and collagen-induced aggregation. Baicalein itself was equally effective in the inhibition of LPS-activated NO production and collagen-induced aggregation but less active against arachidonic acid-induced aggregation. Our in-vitro results suggested that by appropriate structural modification of baicalein it may be possible to develop novel therapeutic agents against platelet-aggregation and inflammation.  相似文献   

18.
A methanol extract of Sophora japonica was subjected to anti-platelet activity guided fractionation affording the isolation of four flavonoids and six flavonoid-glycosides: biochanin A (1), irisolidone (2), genistein (3), sissotrin (4), sophorabioside (5), genistin (6), tectoridin (7), apigenin (8), quercitrin (9), and rutin (10). The structure of each compound was determined by a variety of spectroscopic methods. Among the compounds, 1, 3, and 7 showed approximately 2.5-6.5 fold greater inhibitory effects on arachidonic acid (AA) and U46619 induced platelet aggregation (IC50: 19.9 and 99.8 microM; 20.3 and 53.8 microM; 25.9 and 123.4 microM, respectively) than acetylsalicylic acid (ASA, IC50: 63.0 and 350.0 microM). Compound 2 was an approximately 22-40 fold stronger inhibitor than ASA on AA and U46619 induced aggregation (IC50: 1.6 and 15.6 microM, respectively).  相似文献   

19.
NQ12, an antithrombotic agent, has been reported to display a potent antiplatelet activity. This study was undertaken to reveal the effect of NQ12 on rabbit platelet aggregation and signal transduction involved in the arachidonic acid (AA) cascade. NQ12 concentration-dependently suppressed collagen-, AA-, and U46619-induced rabbit platelet aggregation, with IC(50) values of 0.71 +/- 0.2, 0.82 +/- 0.3, and 0.45 +/- 0.1 microM, respectively. In addition, the concentration-response curve of U46619 was shifted to the right after NQ12 treatment, indicating an antagonism on thromboxane (TX) A(2) receptors. The collagen-stimulated AA liberation was inhibited by NQ12 in the same pattern as its inhibition of platelet aggregation. Further study revealed that NQ12 potently suppressed AA-mediated TXA(2) formation, but had no effect on the PGD(2) production, indicating an inhibitory effect on TXA(2) synthase, which was supported by a TXA(2) synthase activity assay indicating that NQ12 concentration-dependently inhibited TXA(2) formation converted from PGH(2). On the other hand, the AA-stimulated 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) formation was also suppressed by NQ12. Taken together, these results suggest that NQ12 has a potential to inhibit TXA(2) synthase activity and TXA(2) receptors, and it can modulate AA liberation as well as 12-HETE formation in platelets. This may be a convincing mechanism for the antithrombotic action of NQ12.  相似文献   

20.
p-Chlorobiphenyl (1–50 μm ) concentration-dependently inhibited the aggregation and release reaction of rabbit washed platelets induced by arachidonic acid and collagen, but not those induced by platelet-activating factor (PAF), U46619 and thrombin. The IC50 values of p-chlorobiphenyl on the arachidonic acid and collagen-induced platelet aggregation were 2.9 ± 0.5 and 12.8 ± 2.3 μm , respectively. The formation of both platelet thromboxane B2 and prostaglandin D2 caused by arachidonic acid was inhibited by p-chlorobiphenyl concentration-dependently. In myo-[3H]inositol-labeled and fura-2-loaded platelets, [3H]inositol monophosphate generation and the rise in intracellular Ca2+ stimulated by arachidonic acid were inhibited by p-chlorobiphenyl. In human platelet-rich plasma, p-chlorobiphenyl and indomethacin prevented the secondary aggregation and blocked ATP release from platelets induced by adenosine 5′-diphosphate and adrenaline without affecting the primary aggregation. It is concluded that p-chlorobiphenyl may be a cyclo-oxygenase inhibitor and its antiplatelet action is mainly due to the inhibition of thromboxane formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号