首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
We have examined the origin and topography of cortical projections to area PO, an extrastriate visual area located in the parieto-occipital sulcus of the macaque. Distinguishable retrograde fluorescent tracers were injected into area PO at separate retinotopic loci identified by single-neuron recording. The results indicate that area PO receives retinotopically organized inputs from visual areas V1, V2, V3, V4, and MT. In each of these areas the projection to PO arises from the representation of the periphery of the visual field. This finding is consistent with neurophysiological data indicating that the representation of the periphery is emphasized in PO. Additional projections arise from area MST, the frontal eye fields, and several divisions of parietal cortex, including four zones within the intraparietal sulcus and a region on the medial dorsal surface of the hemisphere (MDP). On the basis of the laminar distribution of labeled cells we conclude that area PO receives an ascending input from V1, V2, and V3 and receives descending or lateral inputs from all other areas. Thus, area PO is at approximately the same level in the hierarchy of visual areas as areas V4 and MT. Area PO is connected both directly and indirectly, via MT and MST, to parietal cortex. Within parietal cortex, area PO is linked to particular regions of the intraparietal sulcus including VIP and LIP and two newly recognized zones termed here MIP and PIP. The wealth of connections with parietal cortex suggests that area PO provides a relatively direct route over which information concerning the visual field periphery can be transmitted from striate and prestriate cortex to parietal cortex. In contrast, area PO has few links with areas projecting to inferior temporal cortex. The pattern of connections revealed in this study is consistent with the view that area PO is primarily involved in visuospatial functioning.  相似文献   

2.
The brain location, extent and functional organization of the cortical visual area V6A was investigated in macaque monkeys by using single cell recording techniques in awake, behaving animals. Six hemispheres of four animals were studied. Area V6A occupies a horseshoe-like region of cortex in the caudalmost part of the superior parietal lobule. It extends from the medial surface of the brain, through the anterior bank of the parieto-occipital sulcus, up to the most lateral part of the fundus of the same sulcus. Area V6A borders on areas V6 ventrally, PEc dorsally, PGm medially and MIP laterally. Of 1348 neurons recorded in V6A, 61% were visual and 39% non-visual in nature. The visual neurons were particularly sensitive to orientation and direction of movement of visual stimuli. The inferior contralateral quadrant was the most represented one. Visual receptive fields were also found in the inferior ipsilateral quadrant and in the upper visual field. Receptive fields were on average smaller in the lower visual field than in the upper one. Both central and peripheral parts of the visual field were represented. Large parts of the visual field were represented in small regions of area V6A, and the same regions of the visual field were re-represented many times in different parts of this area, without any apparent topographical order. The only reliable sign of retinotopic organization was the predominance of central representation dorsally and far periphery ventrally. The functional organization of area V6A is discussed in the view that this area could be involved in the control of reaching out and grasping objects.  相似文献   

3.
Visual attention selects behaviorally relevant information for detailed processing by resolving competition for representation among stimuli in retinotopically organized visual cortex. The signals that control this attentional biasing are thought to arise in a frontoparietal network of several brain regions, including posterior parietal cortex. Recent studies have revealed a topographic organization in the intraparietal sulcus (IPS) that mirrors the retinotopic organization in visual cortex, suggesting that connectivity between these regions might provide the mechanism by which attention acts on early cortical representations. Using white-matter imaging and functional MRI, we examined the connectivity between two topographic regions of IPS and six retinotopically defined areas in visual cortex. We observed a strong positive correlation between attention modulations in visual cortex and connectivity of posterior IPS, suggesting that these white-matter connections mediate the attention signals that resolve competition among stimuli for representation in visual cortex. Furthermore, we found that connectivity between IPS and V1 consistently respects visuotopic boundaries, whereas connections to V2 and V3/VP disperse by 60%. This pattern is consistent with changes in receptive field size across regions and suggests that a primary role of posterior IPS is to code spatially specific visual information. In summary, we have identified white-matter pathways that are ideally suited to carry attentional biasing signals in visuotopic coordinates from parietal control regions to sensory regions in humans. These results provide critical evidence for the biased competition theory of attention and specify neurobiological constraints on the functional brain organization of visual attention.  相似文献   

4.
The successful integration of visual and auditory stimuli requires information about whether visual and auditory signals originate from corresponding places in the external world. Here we report crossmodal effects of spatially congruent and incongruent audio-visual (AV) stimulation. Visual and auditory stimuli were presented from one of four horizontal locations in external space. Seven healthy human subjects had to assess the spatial fit of a visual stimulus (i.e. a gray-scaled picture of a cartoon dog) and a simultaneously presented auditory stimulus (i.e. a barking sound). Functional magnetic resonance imaging (fMRI) revealed two distinct networks of cortical regions that processed preferentially either spatially congruent or spatially incongruent AV stimuli. Whereas earlier visual areas responded preferentially to incongruent AV stimulation, higher visual areas of the temporal and parietal cortex (left inferior temporal gyrus [ITG], right posterior superior temporal gyrus/sulcus [pSTG/STS], left intra-parietal sulcus [IPS]) and frontal regions (left pre-central gyrus [PreCG], left dorsolateral pre-frontal cortex [DLPFC]) responded preferentially to congruent AV stimulation. A position-resolved analysis revealed three robust cortical representations for each of the four visual stimulus locations in retinotopic visual regions corresponding to the representation of the horizontal meridian in area V1 and at the dorsal and ventral borders between areas V2 and V3. While these regions of interest (ROIs) did not show any significant effect of spatial congruency, we found subregions within ROIs in the right hemisphere that showed an incongruency effect (i.e. an increased fMRI signal during spatially incongruent compared to congruent AV stimulation). We interpret this finding as a correlate of spatially distributed recurrent feedback during mismatch processing: whenever a spatial mismatch is detected in multisensory regions (such as the IPS), processing resources are re-directed to low-level visual areas.  相似文献   

5.
The organisation of extrastriate cortex was studied in anaesthetised flying foxes (Pteropus poliocephalus) by using multiunit recording techniques. Based on the visuotopic organisation and response characteristics, the cortex immediately rostral to the second visual area (V2) was subdivided into two fields: visual area 3 (V3) laterally and the occipitoparietal area (OP) medially. Area V3 is a 1.0-1.5 mm wide strip of cortex that represents the entire contralateral hemifield as a mirror image of the representation found in V2. The representation of the vertical meridian and the area centralis form the rostral border of V3. In area OP, receptive fields are much larger than those of V3 and form a separate visuotopic map, with the upper quadrant represented rostral to the lower quadrant. Multiunit clusters in the cortex rostral to area OP (posterior parietal area) respond to both visual and somatosensory stimuli. Farther laterally, in the cortex rostral to V3, the occipitotemporal area (OT) was found to form yet another map of the visual field. Similar to the middle temporal area in primates, area OT in the flying fox forms a first-order representation of the visual field, with the lower quadrant represented medially, the upper quadrant represented laterally, the area centralis represented caudally, and the visual field periphery represented rostrally. The cortex surrounding area OT rostrally and ventrally is also visually responsive but could not be subdivided due to the large receptive fields. Finally, visual responses were elicited from an area adjacent to the peripheral representation in the first visual area (V1) in the splenial sulcus. These results demonstrate that nearly half of the flying fox cortex is related to vision, which contrasts with that of microchiropteran bats, in which auditory areas predominate. A comparison of the flying fox with other mammals suggests that several areas, including homologues of V1, V2, V3, OT, and the splenial area, may have originated early in mammalian evolution and have been inherited by most present-day eutherians. However, studies in other species will be needed to distinguish patterns of common ancestry from parallel evolution.  相似文献   

6.
To identify the cortical connections of the medial superior temporal (MST) and fundus of the superior temporal (FST) visual areas in the extrastriate cortex of the macaque, we injected multiple tracers, both anterograde and retrograde, in each of seven macaques under physiological control. We found that, in addition to connections with each other, both MST and FST have widespread connections with visual and polysensory areas in posterior prestriate, parietal, temporal, and frontal cortex. In prestriate cortex, both areas have connections with area V3A. MST alone has connections with the far peripheral field representations of V1 and V2, the parieto-occipital (PO) visual area, and the dorsal prelunate area (DP), whereas FST alone has connections with area V4 and the dorsal portion of area V3. Within the caudal superior temporal sulcus, both areas have extensive connections with the middle temporal area (MT), MST alone has connections with area PP, and FST alone has connections with area V4t. In the rostral superior temporal sulcus, both areas have extensive connections with the superior temporal polysensory area (STP) in the upper bank of the sulcus and with area IPa in the sulcal floor. FST also has connections with the cortex in the lower bank of the sulcus, involving area TEa. In the parietal cortex, both the central field representation of MST and FST have connections with the ventral intraparietal (VIP) and lateral intraparietal (LIP) areas, whereas MST alone has connections with the inferior parietal gyrus. In the temporal cortex, the central field representation of MST as well as FST has connections with visual area TEO and cytoarchitectonic area TF. In the frontal cortex, both MST and FST have connections with the frontal eye field. On the basis of the laminar pattern of anterograde and retrograde label, it was possible to classify connections as forward, backward, or intermediate and thereby place visual areas into a cortical hierarchy. In general, MST and FST receive forward inputs from prestriate visual areas, have intermediate connections with parietal areas, and project forward to the frontal eye field and areas in the rostral superior temporal sulcus. Because of the strong inputs to MST and FST from area MT, an area known to play a role in the analysis of visual motion, and because MST and FST themselves have high proportions of directionally selective cells, they appear to be important stations in a cortical motion processing system.  相似文献   

7.
There are two basic types of photoreceptors in the retina: rods and cones. Using a single stimulus viewed at two different light levels, we tested whether input from rods and input from cones are topographically segregated at subsequent levels of human visual cortex. Here we show that rod-mediated visual input produces robust activation in area MT+, and in the peripheral representations of multiple retinotopic areas. However, such activation was selectively absent in: (1) a cortical area selectively activated by colored stimuli (V8) and (2) the foveal representations of lower tier retinotopic areas. These cortical differences reflect corresponding differences in perception between scotopic and photopic conditions.  相似文献   

8.
The cortico-cortical connections of area PG, 7a, in the parietal, occipital and temporal lobes have been studied after injections of HRP in this area and in certain of the areas connected with it. After such injections in PG there are labelled cells in architectonic areas OA and PE (visual area PO), the cingulate and retrosplenial areas situated medial to PG; posteriorly labelled cells are present in OA, visual areas MST, MT, V2, V3, V4 and in the walls and floor of the lower part of the superior temporal sulcus. Injections in PE and V4 show that these connections are reciprocal. Small injections in PG result in cell labelling in different parts of the areas connected to PG, suggesting that the connections are well organized and that there may be an ordered representation of the visual field in PG. In the lower wall of the lower part of the superior temporal sulcus there is overlap of the two visual pathways in the cortex, that to the temporal lobe with that to the parietal lobe; and in a restricted part of this sulcus there is convergence and overlap of the sequences of cortico-cortical connections related to the visual, somatic and auditory sensory systems. There may be certain common principles in the sequences of cortical connections to the parietal and temporal lobes from the primary visual and somatic sensory areas; in both there are well organized hierarchical and parallel pathways, and both are related to the superior temporal sulcus and to the cingulate cortex.  相似文献   

9.
When spatially separated objects appear and disappear in a synchronous manner, they perceptually group into a single global object that itself appears and disappears. We employed functional magnetic resonance imaging (fMRI) to identify brain regions involved in this type of perceptual grouping. Subjects viewed four chromatically-defined disks (one per visual quadrant) that flashed on and off. We contrasted %BOLD signal changes between blocks of synchronously flashing disks (Grouping) with blocks of asynchronously flashing disks (no-Grouping). RESULTS: A region of interest analysis revealed %BOLD signal change in the Grouping condition was significantly greater than in the no-Grouping condition within retinotopic areas V2, V3, and V4v. Within a single quadrant of the visual field, the spatio-temporal information present in the image was identical across the two stimulus conditions. As such, the two conditions could not be distinguished from each other on the basis of the rate or pattern of flashing within a single visual quadrant. The observed results must therefore arise through nonlocal interactions between or within these retinotopic areas, or arise from outside these retinotopic areas. Furthermore, when V2 and V3 were split into ventral and dorsal sub-ROIs, ventral retinotopic areas V2v and V3v preferentially differentiated between the two conditions whereas the corresponding dorsal areas V2d and V3d did not. In contrast, within hMT+, %BOLD signal was significantly greater in the no-Grouping condition. CONCLUSION: Nonlocal processing within, between, or to ventral retinotopic cortex at least as early as V2v, and including V3v, and V4v, underlies perceptual grouping via temporal synchrony.  相似文献   

10.
Patterns of thalamocortical connections were related to architectonically defined subdivisions of the pulvinar complex and the dorsolateral geniculate nucleus (LGN) in tree shrews (Tupaia belangeri). Tree shrews are of special interest because they are considered close relatives of primates, and they have a highly developed visual system. Several distinguishable tracers were injected within and across cortical visual areas in individual tree shrews in order to reveal retinotopic patterns and cortical targets of subdivisions of the pulvinar. The results indicate that each of the three architectonic regions of the pulvinar has a distinctive pattern of cortical connections and that one of these divisions is further divided into two regions with different patterns of connections. Two of the pulvinar nuclei have similar retinotopic patterns of projections to caudal visual cortex. The large central nucleus of the pulvinar (Pc) projects to the first and second visual areas, V1 and V2, and an adjoining temporal dorsal area (TD) in retinotopic patterns indicating that the upper visual quadrant is represented dorsal to the lower quadrant in Pc. The smaller ventral nucleus (Pv) which stains darkly for the Cat-301 antigen, projects to these same cortical areas, with a retinotopic pattern. Pv also projects to a temporal anterior area, TA. The dorsal nucleus (Pd), which densely expresses AChE, projects to posterior and ventral areas of temporal extrastriate cortex, areas TP and TPI. A posterior nucleus, Pp, projects to anterior areas TAL and TI, of the temporal lobe, as well as TPI. Injections in different cortical areas as much as 6 mm apart labeled overlapping zones in Pp and double-labeled some cells. These results indicate that the visual pulvinar of tree shrews contains at least four functionally distinct subdivisions, or nuclei. In addition, the cortical injections revealed that the LGN projects topographically and densely to V1 and that a significant number of LGN neurons project to V2 and TD.  相似文献   

11.
Plasticity after central lesions may result in the reorganization of cortical representations of the sensory input. Visual cortex reorganization has been extensively studied after peripheral (retinal) lesions, but focal cortical lesions have received less attention. In this study, we investigated the organization of retinotopic and orientation preference maps at different time points after a focal ischemic lesion in the primary visual cortex (V1). We induced a focal photochemical lesion in V1 of kittens and assessed, through optical imaging of intrinsic signals, the functional cortical layout immediately afterwards and at 4, 13, 33, and 40 days after lesion. We analyzed histologic sections and evaluated temporal changes of functional maps. Histological analysis showed a clear lesion at all time points, which shrank over time. Imaging results showed that the retinotopic and orientation preference maps reorganize to some extent after the lesion. Near the lesion, the cortical retinotopic representation of one degree of visual space expands over time, while at the same time the area of some orientation domains also increases. These results show that different cortical representations can reorganize after a lesion process and suggest a mechanism through which filling-in of a cortical scotoma can occur in cortically damaged patients.  相似文献   

12.
fMRI studies have revealed three scene-selective regions in human visual cortex [the parahippocampal place area (PPA), transverse occipital sulcus (TOS), and retrosplenial cortex (RSC)], which have been linked to higher-order functions such as navigation, scene perception/recognition, and contextual association. Here, we document corresponding (presumptively homologous) scene-selective regions in the awake macaque monkey, based on direct comparison to human maps, using identical stimuli and largely overlapping fMRI procedures. In humans, our results showed that the three scene-selective regions are centered near-but distinct from-the gyri/sulci for which they were originally named. In addition, all these regions are located within or adjacent to known retinotopic areas. Human RSC and PPA are located adjacent to the peripheral representation of primary and secondary visual cortex, respectively. Human TOS is located immediately anterior/ventral to retinotopic area V3A, within retinotopic regions LO-1, V3B, and/or V7. Mirroring the arrangement of human regions fusiform face area (FFA) and PPA (which are adjacent to each other in cortex), the presumptive monkey homolog of human PPA is located adjacent to the monkey homolog of human FFA, near the posterior superior temporal sulcus. Monkey TOS includes the region predicted from the human maps (macaque V4d), extending into retinotopically defined V3A. A possible monkey homolog of human RSC lies in the medial bank, near peripheral V1. Overall, our findings suggest a homologous neural architecture for scene-selective regions in visual cortex of humans and nonhuman primates, analogous to the face-selective regions demonstrated earlier in these two species.  相似文献   

13.
Slotnick SD  Moo LR 《Neuroreport》2003,14(9):1209-1213
It has been conventionally assumed that cortically based quadrantic visual field deficits (homonymous quadrantanopias) are caused by lesions in striate cortex (V1), extending precisely to the horizontal meridian representation. A more recent model, supported by anatomic MRI evidence, consists of an exclusively extrastriate cortical basis (e.g. V2, V3, VP, V4v). Employing fMRI, we sought to distinguish between these models through retinotopic mapping of a patient with an upper right homonymous quadrantanopia. As expected, maps of the lower right quadrant and left hemifield were normal. The map corresponding to the impaired upper right quadrant was normal in V1 and V2, with little or no activity in VP and V4v. These results provide functional evidence that extrastriate cortical lesions can elicit homonymous quadrantanopias.  相似文献   

14.
Functional anatomy of macaque striate cortex. II. Retinotopic organization   总被引:15,自引:0,他引:15  
Macaque monkeys were shown retinotopically-specific visual stimuli during 14C-2-deoxy-d-glucose (DG) infusion in a study of the retinotopic organization of primary visual cortex (V1). In the central half of V1, the cortical magnification was found to be greater along the vertical than along the horizontal meridian, and overall magnification factors appeared to be scaled proportionate to brain size across different species. The cortical magnification factor (CMF) was found to reach a maximum of about 15 mm/deg at the representation of the fovea, at a point of acute curvature in the V1-V2 border. We find neither a duplication nor an overrepresentation of the vertical meridian. The magnification factor did not appear to be doubled in a direction perpendicular to the ocular dominance strips; it may not be increased at all. The DG borders in parvorecipient layer 4Cb were found to be as sharp as 140 micron (half-amplitude, half width), corresponding to a visual angle of less than 2' of arc at the eccentricity measured. In other layers (including magnorecipient layer 4Ca), the retinotopic borders are broader. The retinotopic spread of activity is greater when produced by a low-spatial-frequency grating than when produced by a high-spatial-frequency grating. Orientation-specific stimuli produced a pattern of activation that spread further than 1 mm across cortex in some layers. Some DG evidence suggests that the spread of functional activity is greater near the foveal representation than near 5 degrees eccentricity.  相似文献   

15.
The ability to discriminate between stimuli relies on a chain of neural operations associated with perception, memory and decision-making. Accumulating studies show learning-dependent plasticity in perception or decision-making, yet whether perceptual learning modifies mnemonic processing remains unclear. Here, we trained human participants of both sexes in an orientation discrimination task, while using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to separately examine training-induced changes in working memory (WM) representation. fMRI decoding revealed orientation-specific neural patterns during the delay period in primary visual cortex (V1) before, but not after, training, whereas neurodisruption of V1 during the delay period led to behavioral deficits in both phases. In contrast, both fMRI decoding and disruptive effect of TMS showed that intraparietal sulcus (IPS) represented WM content after, but not before, training. These results suggest that training does not affect the necessity of sensory area in representing WM information, consistent with the sensory recruitment hypothesis in WM, but likely alters the coding format of the stored stimulus in this region. On the other hand, training can render WM content to be maintained in higher-order parietal areas, complementing sensory area to support more robust maintenance of information.SIGNIFICANCE STATEMENT There has been accumulating progresses regarding experience-dependent plasticity in perception or decision-making, yet how perceptual experience moulds mnemonic processing of visual information remains less explored. Here, we provide novel findings that learning-dependent improvement of discriminability accompanies altered WM representation at different cortical levels. Critically, we suggest a role of training in modulating cortical locus of WM representation, providing a plausible explanation to reconcile the discrepant findings between human and animal studies regarding the recruitment of sensory or higher-order areas in WM.  相似文献   

16.
OBJECTIVE: Despite mapping tools for central visual field, delineation of peripheral visual field representations in the human cortex has remained a challenge. Access to large visual field and differentiation of retinotopic areas with robust mapping procedures and automated analysis are beneficial in basic research and could accelerate development of clinical applications. METHODS: We constructed a simple optical near view system for wide visual field stimulation, and examined the topology of retinotopic areas. We used multifocal (mf) design, which enables analysis with general linear model and standard fMRI softwares and is easily automated. RESULTS: Our stimulation method enabled individual mapping of visual field up to 50 degrees of eccentricity and showed that retinotopic visual areas extended through posterior cerebrum. In addition, we located a separate peripheral upper visual field representation in parieto-occipital (PO) sulcus. CONCLUSIONS: These functional results are in line with earlier histological data, and support recent findings on human V6, a retinotopic area in the medial PO sulcus with an apparent emphasis on peripheral visual field. SIGNIFICANCE: Our projection system and mf-design together enable efficient and robust retinotopic mapping of wide visual field, which can at low cost be adapted to any clinical environment with visual back-projection system.  相似文献   

17.
We studied cortical connections of functionally distinct movement zones of the posterior parietal cortex (PPC) in galagos identified by intracortical microstimulation with long stimulus trains (~500 msec). All these zones were in the anterior half of PPC, and each of them had a different pattern of connections with premotor (PM) and motor (M1) areas of the frontal lobe and with other areas of parietal and occipital cortex. The most rostral PPC zone has major connections with motor and visuomotor areas of frontal cortex as well as with somatosensory areas 3a and 1‐2 and higher order somatosensory areas in the lateral sulcus. The dorsal part of anterior PPC region representing hand‐to‐mouth movements is connected mostly to the forelimb representation in PM, M1, 3a, 1‐2, and somatosensory areas in the lateral sulcus and on the medial wall. The more posterior defensive and reaching zones have additional connections with nonprimary visual areas (V2, V3, DL, DM, MST). Ventral aggressive and defensive face zones have reciprocal connections with each other as well as connections with mostly face, but also forelimb representations of premotor areas and M1 as well as prefrontal cortex, FEF, and somatosensory areas in the lateral sulcus and areas on the medial surface of the hemisphere. Whereas the defensive face zone is additionally connected to nonprimary visual cortical areas, the aggressive face zone is not. These differences in connections are consistent with our functional parcellation of PPC based on intracortical long‐train microstimulation, and they identify parts of cortical networks that mediate different motor behaviors. J. Comp. Neurol. 517:783–807, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
When multiple stimuli are concurrently displayed in the visual field, they must compete for neural representation at the processing expense of their contemporaries. This biased competition is thought to begin as early as primary visual cortex, and can be driven by salient low-level stimulus features. Stimuli important for an organism's survival, such as facial expressions signaling environmental threat, might be similarly prioritized at this early stage of visual processing. In the present study, we used ERP recordings from striate cortex to examine whether fear expressions can bias the competition for neural representation at the earliest stage of retinotopic visuo-cortical processing when in direct competition with concurrently presented visual information of neutral valence. We found that within 50 msec after stimulus onset, information processing in primary visual cortex is biased in favor of perceptual representations of fear at the expense of competing visual information (Experiment 1). Additional experiments confirmed that the facial display's emotional content rather than low-level features is responsible for this prioritization in V1 (Experiment 2), and that this competition is reliant on a face's upright canonical orientation (Experiment 3). These results suggest that complex stimuli important for an organism's survival can indeed be prioritized at the earliest stage of cortical processing at the expense of competing information, with competition possibly beginning before encoding in V1.  相似文献   

19.
Monkey neurophysiology and human neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates a cortical network of temporal, parietal, insular, and cingulate visual motion regions. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self‐motion are also activated by active lower limb movements, and hence are likely involved in guiding human locomotion. To this aim, we used a combined approach of task‐evoked activity and resting‐state functional connectivity by fMRI. We localized a set of six egomotion‐responsive visual areas (V6+, V3A, intraparietal motion/ventral intraparietal [IPSmot/VIP], cingulate sulcus visual area [CSv], posterior cingulate sulcus area [pCi], posterior insular cortex [PIC]) by using optic flow. We tested their response to a motor task implying long‐range active leg movements. Results revealed that, among these visually defined areas, CSv, pCi, and PIC responded to leg movements (visuomotor areas), while V6+, V3A, and IPSmot/VIP did not (visual areas). Functional connectivity analysis showed that visuomotor areas are connected to the cingulate motor areas, the supplementary motor area, and notably to the medial portion of the somatosensory cortex, which represents legs and feet. We suggest that CSv, pCi, and PIC perform the visual analysis of egomotion‐like signals to provide sensory information to the motor system with the aim of guiding locomotion.  相似文献   

20.
The representation of the visual field in the second visual area (V2) was reconstructed from multiunit visual responses and anatomical tracers. Receptive field plotting was performed during multiple recording sessions in seven Cebus apella monkeys under N2O/O2 and immobilized with pancuronium bromide. V2 forms a continuous belt of variable width around striate cortex (V1) except at the most anterior portion of the calcarine sulcus. In each hemisphere V2 contains a visuotopic representation of the contralateral visual hemifield. The representation of the vertical meridian is adjacent to that of V1 and forms the posterior border of V2. The representation of the fovea of V2 is adjacent to that of V1. The representation of the horizontal meridian (HM) is continuous with that of V1; then it splits to form the anterior border of V2, both dorsally and ventrally. The lower quadrant of the visual field is represented dorsally and the upper quadrant ventrally. The visual topography of V2 is coarser than that of V1. In V2, receptive fields corresponding to recording sites separated by a cortical distance of up to 4 mm may represent the same portion of the visual field. In three additional animals, combined injections of fluorescent tracers along the HM representation in V1 yielded two projection sites at the anterior border of V2. The split of the HM representation is estimated to occur at an eccentricity below 1 degree. Quantitative analysis showed that in V2 the representation of the central visual field is magnified relative to that of the periphery. The cortical magnification factor is greater along the isopolar dimension than along the isoeccentric one. Receptive field size in V2 increases with increasing eccentricity. In sections stained for myelin by the Heidenhein-W?elcke method V2 can be distinguished from the surrounding cortex for most of its extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号