首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
OBJECTIVES: The purpose of this study was to validate cardiac measurements derived from real-time cardiac magnetic resonance imaging (MRI) as compared with well-validated conventional cine MRI. BACKGROUND: Although cardiac MRI provides accurate assessment of left ventricular (LV) volume and mass, most techniques have been relatively slow and required electrocardiogram (ECG) gating over many heart beats. A newly developed real-time MRI system allows continuous real-time dynamic acquisition and display without cardiac gating or breath-holding. METHODS: Fourteen healthy volunteers and nine patients with heart failure underwent real-time and cine MRI in the standard short-axis orientation with a 1.5T MRI scanner. Nonbreath-holding cine MRI was performed with ECG gating and respiratory compensation. Left ventricular end-diastolic volume (LVEDV), left ventricular endsystolic volume (LVESV), ejection fraction (EF) and LV mass calculated from the images obtained by real-time MRI were compared to those obtained by cine MRI. RESULTS: The total study time including localization for real-time MRI was significantly shorter than cine MRI (8.6 +/- 2.3 vs. 24.7 +/- 3.5 min, p < 0.001). Both imaging techniques yielded good quality images allowing cardiac measurements. The measurements of LVEDV, LVESV, EF and LV mass obtained with real-time MRI showed close correlation with those obtained with cine MRI (LVEDV: r = 0.985, p < 0.001; LVESV: r = 0.994, p < 0.001; EF: r = 0.975, p < 0.001; LV mass: r = 0.977, p < 0.001). CONCLUSIONS: Real-time MRI provides accurate measurements of LV volume and mass in a time-efficient manner with respect to image acquisition.  相似文献   

2.
Cardiovascular magnetic resonance(CMR) represents the reference standard for cardiac morphology and function assessment. Since introduction in 2009, CMR feature tracking(CMR-FT) has become a frequently used tool in the assessment of myocardial deformation and wall motion on the basis of routinely acquired b-SSFP cine images. Extensive validation has led to excellent intra-and inter-observer as well as inter-study reproducibility. CMR-FT derived myocardial deformation indices such as left ventricular(LV) strain have been shown to be impaired in cardiac diseases such as cardiomyopathies as well as myocardial infarction. Although LV ejection fraction(LVEF) is the routinely and frequently utilized parameter for systolic myocardial function assessment and major adverse clinical event(MACE) prediction, it fails to assess regional differences. Recently, LV strain has emerged as a superior measure for risk assessment and MACE prediction as compared to the established markers e.g., LVEF. This editorial aims to elucidate current discussions in the field of strain assessment in myocardial infarction in the light of recent data from a large prospective multicentre CMR study.  相似文献   

3.
Conventional assessment of left ventricular hypertrophy (LVH) using the electrocardiogram (ECG), for example, by the Sokolow–Lyon, Romhilt–Estes or Cornell criteria, have relied on assessing changes in the amplitude and/or duration of the QRS complex of the ECG to quantify LV mass. ECG measures of LV mass have typically been validated by imaging with echocardiography or cardiovascular magnetic resonance imaging (CMR). However, LVH can be the result of diverse etiologies, and LVH is also characterized by pathological changes in myocardial tissue characteristics on the genetic, molecular, cellular, and tissue level beyond a pure increase in the number of otherwise normal cardiomyocytes. For example, slowed conduction velocity through the myocardium, which can be due to diffuse myocardial fibrosis, has been shown to be an important determinant of conventional ECG LVH criteria regardless of LV mass. Myocardial tissue characterization by CMR has emerged to not only quantify LV mass, but also detect and quantify the extent and severity of focal or diffuse myocardial fibrosis, edema, inflammation, myocarditis, fatty replacement, myocardial disarray, and myocardial deposition of amyloid proteins (amyloidosis), glycolipids (Fabry disease), or iron (siderosis). This can be undertaken using CMR techniques including late gadolinium enhancement (LGE), T1 mapping, T2 mapping, T2* mapping, extracellular volume fraction (ECV) mapping, fat/water‐weighted imaging, and diffusion tensor CMR. This review presents an overview of current and emerging concepts regarding the diagnostic possibilities of both ECG and CMR for LVH in an attempt to narrow gaps in our knowledge regarding the ECG diagnosis of LVH.  相似文献   

4.
Cardiac magnetic resonance imaging (CMR) has become a reference standard modality for imaging of left ventricular (LV) structure and function and, using late gadolinium enhancement, for imaging myocardial infarction. Emerging CMR techniques enable a more comprehensive examination of the heart, making CMR an excellent tool for use in translational cardiovascular research. Specifically, emerging CMR methods have been developed to measure the extent of myocardial edema, changes in ventricular mechanics, changes in tissue composition as a result of fibrosis, and changes in myocardial perfusion as a function of both disease and infarct healing. New CMR techniques also enable the tracking of labeled cells, molecular imaging of biomarkers of disease, and changes in calcium flux in cardiomyocytes. In addition, MRI can quantify blood flow velocity and wall shear stress in large blood vessels. Almost all of these techniques can be applied in both pre-clinical and clinical settings, enabling both the techniques themselves and the knowledge gained using such techniques in pre-clinical research to be translated from the lab bench to the patient bedside.  相似文献   

5.
Proper assessment of the physiologic impact of coronary artery stenosis on the LV myocardium can affect patient prognosis and treatment decisions. Cardiac magnetic resonance imaging (CMR) assesses myocardial perfusion by imaging the myocardium during a first-pass transit of an intravenous gadolinium bolus, with spatial and temporal resolution substantially higher than nuclear myocardial perfusion imaging. Coupled with late gadolinium enhancement (LGE) imaging for infarction during the same imaging session, CMR with vasodilating stress perfusion imaging can qualitatively and quantitatively assess the myocardial extent of hypoperfusion from coronary stenosis independent of infarcted myocardium. This approach has been validated experimentally, and multiple clinical trials have established its diagnostic robustness when compared to stress single-photon emission computed tomography. In specialized centers, dobutamine stress CMR has been shown to have incremental diagnostic value above stress echocardiography due to its high imaging quality and ability to image the heart with no restriction of imaging window. This paper reviews the technical aspects, diagnostic utility, prognostic values, challenges to clinical adaptation, and future developments of stress CMR imaging.  相似文献   

6.
Cardiovascular magnetic resonance (CMR) is the reference standard for the assessment of ventricular dimensions, function, and mass in terms of accuracy and reproducibility. It has been thoroughly validated both ex vivo and against other imaging techniques. Measurements are highly accurate and no geometrical assumptions need to be made about the ventricle. A routine ventricular dataset of images can be acquired in less than 5 minutes and analyzed in about the same time. The field is rapidly advancing with increasing automation and simplification in both image acquisition and analysis. Using parallel and real time imaging techniques, good quality data can be obtained even in patients who are unable to hold their breath. While providing useful information in all patients with suspected heart failure, CMR should particularly be considered in those with poor echo windows, where it can also be combined with myocardial stress. Tagging techniques can provide highly detailed information about myocardial torsion and strain for individual myocardial segments. In a research environment, the very high degree of interscan reproducibility can dramatically reduce the number of patients needed to perform clinical trials.  相似文献   

7.
In patients with chronic coronary artery disease different therapeutic strategies, such as optimal medical therapy, revascularization by percutaneous coronary intervention or coronary artery bypass grafting have been shown to improve the prognosis and symptoms and yield proven superiority over other treatment strategies in different patient populations. Thus, individual assessment of cardiac function and structure is of paramount importance to choose the optimal therapeutic strategy and subsequently improve patient prognosis. In this setting cardiac magnetic resonance imaging (CMR) has been shown to provide important diagnostic information. Myocardial ischemia can be detected by either perfusion stress CMR demonstrating perfusion deficits indicative of hemodynamically relevant coronary artery stenosis or dobutamin stress CMR for objectifying wall motion abnormalities during stress. Both techniques are superior to single photon emission computerized tomography and stress echocardiography in specific patient populations. Myocardial viability can be assessed by means of end-diastolic wall thickness or delayed enhancement imaging which allows quantification of the transmural extent of scarring. Furthermore, low-dose dobutamin stress CMR can detect a contractile reserve. Delayed enhancement imaging leads to accurate results due to its high resolution, can be performed at rest requiring no stress within a short time period and is easy to analyze. Thus this technique can be recommended as the favored technique to assess myocardial viability. In the following article the CMR techniques for ischemia and viability testing will be presented and their role in diagnosis and therapy of chronic myocardial ischemia will be discussed.  相似文献   

8.
OBJECTIVES: The purpose of this study was to evaluate whether structural left ventricular (LV) abnormalities can be observed in hypertrophic cardiomyopathy (HCM) mutation carriers who have not yet developed echocardiographic signs of hypertrophy by using cardiac magnetic resonance imaging (CMR). BACKGROUND: Hypertrophic cardiomyopathy is caused by mutations of genes encoding for sarcomeric proteins. Myocyte disarray and interstitial fibrosis precede the development of regional hypertrophy in HCM mutation carriers (carriers). No macroscopic LV structural abnormalities have been observed in carriers without LV hypertrophy. METHODS: A CMR, echocardiogram, and electrocardiogram (ECG) were performed in 16 carriers. Delayed contrast enhancement imaging was used with CMR to detect fibrosis. In 16 age- and gender-matched control subjects, CMR and ECG were performed and an echocardiogram was made when structural abnormalities were detected with CMR. All carriers had an LV wall thickness <13 mm in the year before the study, measured by echocardiography. RESULTS: In 13 carriers (81%), crypts were discerned with CMR in the basal and mid inferoseptal LV wall, not detected by routine echocardiography and not observed in healthy volunteers. In 4 of the crypt-positive carriers, both the echocardiogram and ECG were normal. Two HCM carriers revealed regional hypertrophy of the inferoseptum not detected by echocardiography, and in both carriers, focal fibrosis was present. CONCLUSIONS: In carriers who have not yet developed frank hypertrophy, crypts can be detected with CMR in the inferoseptal LV wall, even when echocardiography and ECG are normal. The crypts might represent one of the early pathological alterations of myocardium in carriers that ultimately progress into manifest HCM.  相似文献   

9.
Over the last years the indications for cardiac magnetic resonance (CMR) imaging have rapidly broadened, in particular those dealing with the non-invasive detection of myocardial ischemia. This review describes the imaging technique, methodology and safety aspects of stress cine magnetic resonance imaging and summarizes the current knowledge with regard to its applicability in clinical routine.  相似文献   

10.
ObjectivesThis study sought to clinically validate a novel 3-dimensional (3D) ultrafast cardiac magnetic resonance (CMR) protocol including cine (anatomy and function) and late gadolinium enhancement (LGE), each in a single breath-hold.BackgroundCMR is the reference tool for cardiac imaging but is time-consuming.MethodsA protocol comprising isotropic 3D cine (Enhanced sensitivity encoding [SENSE] by Static Outer volume Subtraction [ESSOS]) and isotropic 3D LGE sequences was compared with a standard cine+LGE protocol in a prospective study of 107 patients (age 58 ± 11 years; 24% female). Left ventricular (LV) mass, volumes, and LV and right ventricular (RV) ejection fraction (LVEF, RVEF) were assessed by 3D ESSOS and 2D cine CMR. LGE (% LV) was assessed using 3D and 2D sequences.ResultsThree-dimensional and LGE acquisitions lasted 24 and 22 s, respectively. Three-dimensional and LGE images were of good quality and allowed quantification in all cases. Mean LVEF by 3D and 2D CMR were 51 ± 12% and 52 ± 12%, respectively, with excellent intermethod agreement (intraclass correlation coefficient [ICC]: 0.96; 95% confidence interval [CI]: 0.94 to 0.97) and insignificant bias. Mean RVEF 3D and 2D CMR were 60.4 ± 5.4% and 59.7 ± 5.2%, respectively, with acceptable intermethod agreement (ICC: 0.73; 95% CI: 0.63 to 0.81) and insignificant bias. Both 2D and 3D LGE showed excellent agreement, and intraobserver and interobserver agreement were excellent for 3D LGE.ConclusionsESSOS single breath-hold 3D CMR allows accurate assessment of heart anatomy and function. Combining ESSOS with 3D LGE allows complete cardiac examination in <1 min of acquisition time. This protocol expands the indication for CMR, reduces costs, and increases patient comfort.  相似文献   

11.
Cardiovascular magnetic resonance (CMR) is an important cardiac imaging tool for assessing the prognostic extent of myocardial injury after myocardial infarction (MI). Within the context of clinical trials, CMR is also useful for assessing the efficacy of potential cardioprotective therapies in reducing MI size and preventing adverse left ventricular (LV) remodelling in reperfused MI. However, manual contouring and analysis can be time-consuming with interobserver and intra-observer variability, which can in turn lead to reduction in accuracy and precision of analysis. There is thus a need to automate CMR scan analysis in MI patients to save time, increase accuracy, increase reproducibility and increase precision. In this regard, automated imaging analysis techniques based on artificial intelligence (AI) that are developed with machine learning (ML), and more specifically deep learning (DL) strategies, can enable efficient, robust, accurate and clinician-friendly tools to be built so as to try and improve both clinician productivity and quality of patient care. In this review, we discuss basic concepts of ML in CMR, important prognostic CMR imaging biomarkers in MI and the utility of current ML applications in their analysis as assessed in research studies. We highlight potential barriers to the mainstream implementation of these automated strategies and discuss related governance and quality control issues. Lastly, we discuss the future role of ML applications in clinical trials and the need for global collaboration in growing this field.  相似文献   

12.
Opinion statement Cardiac magnetic resonance (CMR) has emerged as a versatile noninvasive tool for the comprehensive evaluation of patients with suspected or established coronary artery disease (CAD). In a single imaging session, CMR can assess left ventricular anatomy and function, myocardial perfusion, viability, and coronary luminal stenosis. Using specific pulse sequences, left ventricular global and regional function can be assessed by cine CMR at rest and in response to inotropic stress; first-pass perfusion quantified by vasodilator stress; myocardial viability evaluated by delayed enhancement imaging and also by functional reserve; and coronary artery stenosis assessed by angiography. All these modalities can be achieved with high spatial resolution and image contrast, without exposure to ionizing radiation, and within a reasonable time frame of about 1 hour of scan time. Also, the imaging planes can be programmed to provide identical views of the heart for each type of image, thereby facilitating intermodality comparisons. There is early but accumulating evidence that the accuracy and prognostic values of many of these modalities are comparable or superior to radionuclide scintigraphy and echocardiography in head-to-head studies. Current limitations unique to CMR include the inability to perform exercise stress testing inside the CMR suite and exclusion of patients with indwelling metallic devices such as defibrillators and pacemakers. Despite these limitations, CMR is unique in its multifaceted approach that can be specifically tailored to the clinical question at hand, making it arguably the best tool for the diagnosis and management of CAD. With the rapid pace of advancement in CMR hardware and pulse sequence technologies, the clinical use of this powerful technique is likely to grow even greater in this area.  相似文献   

13.
Cardiac magnetic resonance imaging (CMR) has matured into a robust, accurate and highly reproducible imaging modality for the assessment of cardiac function and ischaemic heart disease. The unique physical properties of CMR permit depiction of pathology-specific tissue contrast based on differences in tissue composition, such as myocardial oedema, necrosis and fibrosis. This can be imaged at high spatial resolution allowing characterisation of the acuity of an ischaemic event, the presence and extent of myocardial ischaemia, necrosis and viability. Prognostically important information obtained from CMR evaluation of ischaemic heart disease, such as left ventricular ejection fraction, infarct size and transmurality, infarct location and the presence of intraventricular mechanical dyssynchrony may be used to guide coronary revascularisation, device and medical therapies.  相似文献   

14.
In Takotsubo cardiomyopathy, or transient left ventricular (LV) apical ballooning syndrome, normalization of wall motion can occur after as long as 3 months. We report 1 of the largest series to date outside Japan and emphasize the utility of cardiac magnetic resonance imaging (CMR) to show a lack of irreversible damage in the acute setting, thereby reliably predicting recovery. During the previous 6 years, we saw 22 patients who met the following criteria: (1) a suspected myocardial infarction based on symptoms, an abnormal electrocardiogram, and/or elevated serum cardiac markers; (2) an anteroapical wall motion abnormality; and (3) no significant occlusive epicardial coronary artery disease or observed vasospasm. Ten patients underwent delayed enhancement CMR to assess myocardial viability during the index presentation. All 10 patients had an absence of irreversible damage, as evidenced by lack of gadolinium "hyperenhancement"; later, their LV function returned to normal. Eight other patients, available for outpatient follow-up evaluation, also had normalization of LV function. Takotsubo cardiomyopathy is increasingly being recognized outside Japan and must be distinguished from acute myocardial infarction. In conclusion, CMR is useful to document segmental LV dysfunction and lack of irreversible damage and to predict functional recovery.  相似文献   

15.
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy with substantial heterogeneity in phenotypic expression and clinical course. Traditionally, two-dimensional echocardiography has been the easiest and most reliable technique for establishing a diagnosis of HCM. However, cardiovascular magnetic resonance (CMR) has emerged as a novel, three-dimensional tomographic imaging technique, which provides high spatial and temporal resolution images of the heart in any plane and without ionizing radiation. As a result, CMR is particularly well suited to provide detailed characterization of the HCM phenotype, including precise assessment of the location and distribution of left ventricular (LV) wall thickening. In this regard, CMR can identify hypertrophy (particularly in the anterolateral free wall and apex), not well appreciated (or underestimated) by two-dimensional echocardiography, with important implications for diagnosis. CMR can also provide detailed characterization of other myocardial structures such as the papillary muscles, which may impact on preoperative management strategies for patients who are candidates for surgical myectomy. Furthermore, CMR enables an accurate assessment of total LV mass, a robust marker of the overall extent of hypertrophy, which may have implications for risk stratification. In addition, a subgroup of HCM patients have normal LV mass (with focal hypertrophy), suggesting that a limited extent of hypertrophy is consistent with a diagnosis of HCM. Finally, following the intravenous administration of gadolinium, first-pass perfusion sequences can identify myocardial perfusion abnormalities, while late gadolinium enhancement (LGE) sequences can characterize areas of myocardial fibrosis/scarring. LGE is associated with systolic dysfunction and likelihood for ventricular tachyarrhythmias on ambulatory Holter monitoring in patients with HCM. However, the precise clinical implications of myocardial perfusion abnormalities and LGE in HCM are still uncertain; this information may have important implications with regard to identifying HCM patients at risk of sudden death and adverse LV remodeling associated with systolic dysfunction. Therefore, at present, CMR provides important information impacting on diagnosis and clinical management strategies in patients with HCM and will likely have an expanding role in the evaluation of patients with this complex disease.  相似文献   

16.
OBJECTIVES: This study sought to evaluate the diagnostic value of contrast-enhanced magnetic resonance imaging (CMR) and single-photon emission computed tomography (SPECT) for detection of myocardial necrosis after acute myocardial infarction (AMI). BACKGROUND: Single-photon emission computed tomography is widely accepted in the clinical setting for detection and estimation of myocardial infarction. Contrast-enhanced magnetic resonance imaging offers technical advantages and is therefore a promising new method for identification of infarcted tissue. METHODS: Seventy-eight patients with AMI were examined by CMR and SPECT 7 days after percutaneous coronary intervention. Contrast-enhanced magnetic resonance imaging and SPECT images were scored for presence and location of infarction using a 17-segment model. Results were compared with the peak troponin T level, electrocardiographic, and angiographic findings. RESULTS: Acute myocardial infarction was detected significantly more often by CMR than SPECT (overall sensitivity: 97% vs. 87%; p = 0.008). Sensitivity of CMR was superior to SPECT in detecting small infarction as assessed by the peak troponin T level <3.0 ng/ml (92 vs. 69%; p = 0.03), and infarction in non-anterior location (98% vs. 84%; p = 0.03). Non-Q-wave infarctions were more likely to be detected by CMR (sensitivity 85% vs. 46%; p = 0.06). While CMR offered high sensitivity for detection of AMI irrespective of the infarct-related artery, SPECT was less sensitive, particularly within the left circumflex artery territory. CONCLUSIONS: Contrast-enhanced magnetic resonance imaging is superior to SPECT in detecting myocardial necrosis after reperfused AMI because CMR detects small infarcts that were missed by SPECT independent of the infarct location. Thus, CMR is attractive for accurate detection and assessment of the myocardial infarct region in patients early after AMI.  相似文献   

17.
BACKGROUND: The heart transforms structurally and functionally with age but the nature and magnitude of reported changes appear inconsistent. This study was designed to assess left ventricular (LV) morphology, global and longitudinal function in healthy older men and women using cardiac magnetic resonance (CMR). METHODS: Ninety-five healthy subjects (age 62+/-16 years, range 22-91 years) underwent breath-hold cine CMR. LV end-diastolic volume (EDV), end-systolic volume (ESV), myocardial mass, ejection fraction (EF), mass-to-volume ratio, mean midventricular wall motion, thickness and thickening were calculated from short-axis data sets. Average mitral annular displacement was measured to assess longitudinal LV function. RESULTS: Subjects were divided according to age (< 65 and > or = 65 years) and sex. EDV and ESV indices (corrected for body surface area) decreased whilst EF increased with age. There was no difference in LV myocardial mass index between the age groups, but midventricular wall thickness was significantly higher in older people. Mass-to-volume ratio also increased with age. In contrast to EF, mitral annular displacement declined with age. Midventricular LV wall thickness, myocardial mass index and mass-to-volume ratio were higher in men than in women but there were no differences in measures of global and longitudinal LV systolic function. CONCLUSIONS: Due to smaller LV volumes but higher wall thickness, myocardial mass remains unchanged with age. We have found an age-related increase in EF and reduction in longitudinal LV function in apparently normal subjects. This must be borne in mind when assessing older patients with possible heart failure and normal LV systolic function. Men have higher myocardial mass than women.  相似文献   

18.
Hypertrophic cardiomyopathy(HCM)is the most common genetic cardiomyopathy and the leading cause of sudden death in young people and a major cause of heart failure symptoms at any age.Due to its genetic etiology,there is substantial heterogeneity in the phenotypic expression and clinical course of patients with HCM.Traditionally,two-dimensional echocardiography has been the easiest and reliable technique for establishing a diagnosis of HCM.However,cardiovascular magnetic resonance(CMR)has emerged as a novel,3-dimensional tomographic imaging technique,which provides high spatial and temporal resolution images of the heart (not limited by thoracic or pulmonary parenchyma),in any plane and without ionizing radiation.As a result,CMR is particularly well suited to provide detailed characterization of the HCM phenotype,including a precise assessment of the location and distribution of LV wall thickening(as well as other myocardial structures such as the right ventricle and papillary muscles).In this regard,CMR has been demonstrated to provide a diagnosis of HCM in cases where the echocardiogam was non-diagnostic.Furthermore,CMR provides an accurate assessment of total LV mass which is a more robust marker of hypertrophy,with potential implications for risk stratification.In addition,with the intravenous administration of gadolinium,first-pass perfusion sequences can identify myocardial perfusion abnormalities,while late gadolinium enhancement sequences can identify areas of myocardial fibrosis/scarring.Although the clinical implications of late gadolinium enhancement in HCM are still uncertain this information may,in the near-future,have important implications with regard to identifying HCM patients at high risk of sudden death and progressive heart failure,including evolution into the end-stage phase of HCM.Therefore,at present,CMR provides important information impacting on diagnosis and clinical management strategies in patients with HCM and will likely have an expanding role in the evaluation of patients with this complex disease.  相似文献   

19.
Opinion statement Echocardiography remains the cornerstone of noninvasive valvular heart disease evaluation. There are instances where MRI can be of use. Aside from the obvious advantage where limited acoustic windows are present, cardiac magnetic resonance (CMR) allows for imaging in any desired plane, and advantage can be taken of the ability to align with any regurgitant or stenotic flow jet. The high spatial resolution and contrast allow for accurate detail of valvular anatomy, but it must be remembered that the images represent a composite of eight to 12 heart cycles. For visualizing multiple valvular abnormalities simultaneously, cardiac MRI has a distinct advantage. Finally, a CMR valvular examination can be combined with accurate assessments of left and right ventricular function, myocardial stress perfusion imaging, and detailed viability determinations in a single examination. This provides a comprehensive presurgical evaluation of cardiac physiology.  相似文献   

20.
OBJECTIVES: The goal of this study was to determine: 1) if the presence of significant coronary stenosis in patients presenting with non-ST-segment elevation acute coronary syndromes (NSTE-ACS) can be predicted by cardiac magnetic resonance (CMR) imaging; and 2) if the analysis of several CMR methods improves its diagnostic yield compared with analysis of individual methods. BACKGROUND: With modern acquisition techniques, several CMR methods for the assessment of coronary artery disease (CAD) can be combined in a single noninvasive scanning session. Such a multicomponent CMR examination has not previously been applied to a large patient population, in particular those with a high prevalence of CAD in an acute situation. METHODS: Sixty-eight patients presenting with NSTE-ACS underwent CMR imaging of myocardial function, perfusion (rest and adenosine-stress), viability (by late contrast enhancement), and coronary artery anatomy. Visual analysis of CMR was carried out. First, all CMR data were reviewed in combination ("comprehensive analysis"). In further separate analyses, each CMR method was analyzed individually. The ability of CMR to detect coronary stenosis >/=70% on X-ray angiography was determined. RESULTS: Comprehensive CMR analysis yielded a sensitivity of 96% and a specificity of 83% to predict the presence of significant coronary stenosis and was more accurate than analysis of any individual CMR method; CMR was significantly more sensitive and accurate than the Thrombolysis In Myocardial Infarction risk score (p < 0.001). CONCLUSIONS: Cardiac magnetic resonance imaging accurately predicts the presence of significant CAD in patients with NSTE-ACS. In this study, a comprehensive analysis of several CMR methods improved the accuracy of the test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号