首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aberrant sensitivity of incentive neurocircuitry to nondrug rewards has been suggested as either a risk factor for or consequence of drug addiction. Using functional magnetic resonance imaging, we tested whether alcohol‐dependent patients (ADP: n = 29) showed altered recruitment of ventral striatal (VS) incentive neurocircuitry compared to controls (n = 23) by: (1) cues to respond for monetary rewards, (2) post‐response anticipation of rewards, or (3) delivery of rewards. Using an instrumental task with two‐stage presentation of reward‐predictive information, subjects saw cues signaling opportunities to win Aberrant sensitivity of incentive neurocircuitry to nondrug rewards has been suggested as either a risk factor for or consequence of drug addiction. Using functional magnetic resonance imaging, we tested whether alcohol‐dependent patients (ADP: n = 29) showed altered recruitment of ventral striatal (VS) incentive neurocircuitry compared to controls (n = 23) by: (1) cues to respond for monetary rewards, (2) post‐response anticipation of rewards, or (3) delivery of rewards. Using an instrumental task with two‐stage presentation of reward‐predictive information, subjects saw cues signaling opportunities to win Aberrant sensitivity of incentive neurocircuitry to nondrug rewards has been suggested as either a risk factor for or consequence of drug addiction. Using functional magnetic resonance imaging, we tested whether alcohol-dependent patients (ADP: n = 29) showed altered recruitment of ventral striatal (VS) incentive neurocircuitry compared to controls (n = 23) by: (1) cues to respond for monetary rewards, (2) post-response anticipation of rewards, or (3) delivery of rewards. Using an instrumental task with two-stage presentation of reward-predictive information, subjects saw cues signaling opportunities to win $0, $1, or $10 for responding to a target. Following this response, subjects were notified whether their success would be indicated by a lexical notification (“Hit?”) or by delivery of a monetary reward (“Win?”). After a variable interval, subjects then viewed the trial outcome. We found no significant group differences in voxelwise activation by task contrasts, or in signal change extracted from VS. Both ADP and controls showed significant VS and other limbic recruitment by pre-response reward anticipation. In addition, controls also showed VS recruitment by post-response reward-anticipation, and ADP had appreciable subthreshold VS activation. Both groups also showed similar mesolimbic responses to reward deliveries. Across all subjects, a questionnaire measure of “hot” impulsivity correlated with VS recruitment by post-response anticipation of low rewards and with VS recruitment by delivery of low rewards. These findings indicate that incentive-motivational processing of nondrug rewards is substantially maintained in recovering alcoholics, and that reward-elicited VS recruitment correlates more with individual differences in trait impulsivity irrespective of addiction.  相似文献   

2.
Healthy aging is associated with a progressive decline across a range of cognitive functions. An important factor underlying this decline may be the age‐related impairment in stimulus–reward processing. Several studies have investigated age‐related effects, but compared young versus old subjects. This is the first study to investigate the effect of aging on brain activation during reward processing within a continuous segment of the adult life span. We scanned 49 healthy adults aged 40–70 years, using functional MRI. We adopted a simple reward task, which allowed separate evaluation of neural responses to reward anticipation and receipt. The effect of reward on performance accuracy and speed was not related to age, indicating that all subjects could perform the task correctly. We identified a whole‐brain significant age‐related decline of ventral striatum activation during reward anticipation as compared to neutral anticipation. Importantly, the specificity of this finding was underscored by the observation that there was no general decline in activation during anticipation. Activation in the ventral striatum increased with age during reward receipt as compared to receiving neutral outcome. Finally, activation in the ventromedial prefrontal cortex during outcome was not affected by age. Our data demonstrate that the typical shift in striatal activation from reward receipt to reward anticipation in young adults disappears with healthy aging. These changes are consistent the well‐ocumented age‐related decline of striatal dopamine availability, and may provide a stepping stone for further research of age‐related neurodegenerative diseases. Hum Brain Mapp 36:2305–2317, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Patients with schizophrenia show deficits in motivation, reward anticipation and salience attribution. Several functional magnetic resonance imaging (fMRI) investigations revealed neurobiological correlates of these deficits, raising the hypothesis of a common basis in midbrain dopaminergic signaling. However, investigations of drug-na?ve first-episode patients with comprehensive fMRI tasks are still missing. We recruited unmedicated schizophrenia spectrum patients (N=27) and healthy control subjects (N=27) matched for sex, age and educational levels. An established monetary reward anticipation task in combination with a novel task aiming at implicit salience attribution without the confound of monetary incentive was applied. Patients showed reduced right ventral striatal activation during reward anticipation. Furthermore, patients with a more pronounced hypoactivation attributed more salience to neutral stimuli, had more positive symptoms and better executive functioning. In the patient group, a more differentially active striatum during reward anticipation was correlated positively to differential ventral striatal activation in the implicit salience attribution task. In conclusion, a deficit in ventral striatal activation during reward anticipation can already be seen in drug-na?ve, first episode schizophrenia patients. The data suggest that rather a deficit in differential ventral striatal activation than a generally reduced activation underlies motivational deficits in schizophrenia and that this deficit is related to the aberrant salience attribution.  相似文献   

4.
Oscillations may organize communication between components of large-scale brain networks. Although gamma-band oscillations have been repeatedly observed in cortical-basal ganglia circuits, their functional roles are not yet clear. Here I show that, in behaving rats, distinct frequencies of ventral striatal local field potential oscillations show coherence with different cortical inputs. The ∼50 Hz gamma oscillations that normally predominate in awake ventral striatum are coherent with piriform cortex, whereas ∼80–100 Hz high-gamma oscillations are coherent with frontal cortex. Within striatum, entrainment to gamma rhythms is selective to fast-spiking interneurons, with distinct fast-spiking interneuron populations entrained to different gamma frequencies. Administration of the psychomotor stimulant amphetamine or the dopamine agonist apomorphine causes a prolonged decrease in ∼50 Hz power and increase in ∼80–100 Hz power. The same frequency switch is observed for shorter epochs spontaneously in awake, undrugged animals and is consistently provoked for < 1 s following reward receipt. Individual striatal neurons can participate in these brief high-gamma bursts with, or without, substantial changes in firing rate. Switching between discrete oscillatory states may allow different modes of information processing during decision-making and reinforcement-based learning, and may also be an important systems-level process by which stimulant drugs affect cognition and behavior.  相似文献   

5.
Jung WH, Kang D‐H, Han JY, Jang JH, Gu B‐M, Choi J‐S, Jung MH, Choi C‐H, Kwon JS. Aberrant ventral striatal responses during incentive processing in unmedicated patients with obsessive–compulsive disorder. Objective: Obsessive–compulsive disorder (OCD) is characterized by the dysfunction of control and reward mechanisms. However, only few neuroimaging studies of OCD have examined the reward processing. We examined the neural responses during incentive processing in OCD. Method: Twenty unmedicated patients with OCD and 20 age‐, sex‐, and IQ‐matched healthy controls underwent functional magnetic resonance imaging while performing a modified monetary incentive delay task. Results: Compared with controls, patients with OCD showed increased ventral striatal activation in the no‐loss minus loss outcome contrast and a significant positive correlation between the ventral striatal activation and compulsion symptom severity. In addition, patients with OCD showed increased activations in the frontostriatal regions in the gain minus no‐gain outcomes contrast. During loss anticipation, patients with OCD showed less activations in the lateral prefrontal and inferior parietal cortices. However, during gain anticipation, patients with OCD and healthy controls did not differ in the ventral striatal activation. Conclusion: These findings provide neural evidence for altered incentive processing in unmedicated patients with OCD, suggesting an elevated sensitivity to negatively affect stimuli as well as dysfunction of the ventral striatum.  相似文献   

6.
Nusslock R, Almeida JRC, Forbes EE, Versace A, Frank E, LaBarbara EJ, Klein CR, Phillips ML. Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disord 2012: 14: 249–260. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective: Bipolar disorder may be characterized by a hypersensitivity to reward‐relevant stimuli, potentially underlying the emotional lability and dysregulation that characterizes the illness. In parallel, research highlights the predominant role of striatal and orbitofrontal cortical (OFC) regions in reward‐processing and approach‐related affect. We aimed to examine whether bipolar disorder, relative to healthy, participants displayed elevated activity in these regions during reward processing. Methods: Twenty‐one euthymic bipolar I disorder and 20 healthy control participants with no lifetime history of psychiatric disorder underwent functional magnetic resonance imaging (fMRI) scanning during a card‐guessing paradigm designed to examine reward‐related brain function to anticipation and receipt of monetary reward and loss. Data were collected using a 3T Siemens Trio scanner. Results: Region‐of‐interest analyses revealed that bipolar disorder participants displayed greater ventral striatal and right‐sided orbitofrontal [Brodmann area (BA) 11] activity during anticipation, but not outcome, of monetary reward relative to healthy controls (p < 0.05, corrected). Whole‐brain analyses indicated that bipolar disorder, relative to healthy, participants also displayed elevated left‐lateral OFC (BA 47) activity during reward anticipation (p < 0.05, corrected). Conclusions: Elevated ventral striatal and OFC activity during reward anticipation may represent a neural mechanism for predisposition to expansive mood and hypo/mania in response to reward‐relevant cues that characterizes bipolar disorder. Our findings contrast with research reporting blunted activity in the ventral striatum during reward processing in unipolar depressed individuals, relative to healthy controls. Examination of reward‐related neural activity in bipolar disorder is a promising research focus to facilitate identification of biological markers of the illness.  相似文献   

7.
Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine‐driven reinforcement learning towards drug‐related reward at the expense of non‐drug‐related reward. Indeed, in alcohol‐dependent patients, reactivity in dopaminergic target areas is shifted from non‐drug‐related stimuli towards drug‐related stimuli. Such ‘hijacked’ dopamine signals may impair flexible learning from non‐drug‐related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs) during a probabilistic reversal learning task in recently detoxified alcohol‐dependent patients and healthy controls (N = 27). All participants also underwent 6‐[18F]fluoro‐DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation by RPEs nor striatal dopamine synthesis capacity differed between groups. However, ventral striatal coding of RPEs correlated inversely with craving in patients. Furthermore, we found a negative correlation between ventral striatal coding of RPEs and dopamine synthesis capacity in healthy controls, but not in alcohol‐dependent patients. Moderator analyses showed that the magnitude of the association between dopamine synthesis capacity and RPE coding depended on the amount of chronic, habitual alcohol intake. Despite the relatively small sample size, a power analysis supports the reported results. Using a multimodal imaging approach, this study suggests that dopaminergic modulation of neural learning signals is disrupted in alcohol dependence in proportion to long‐term alcohol intake of patients. Alcohol intake may perpetuate itself by interfering with dopaminergic modulation of neural learning signals in the ventral striatum, thus increasing craving for habitual drug intake.  相似文献   

8.
Schizophrenia is a psychiatric disorder that is associated with impaired functioning of the fronto-striatal network, in particular during reward processing. However, it is unclear whether this dysfunction is related to the illness itself or whether it reflects a genetic vulnerability to develop schizophrenia. Here, we examined reward processing in unaffected siblings of schizophrenia patients using functional magnetic resonance imaging. Brain activity was measured during reward anticipation and reward outcome in 27 unaffected siblings of schizophrenia patients and 29 healthy volunteers using a modified monetary incentive delay task. Task performance was manipulated online so that all subjects won the same amount of money. Despite equal performance, siblings showed reduced activation in the ventral striatum, insula, and supplementary motor area (SMA) during reward anticipation compared to controls. Decreased ventral striatal activation in siblings was correlated with sub-clinical negative symptoms. During the outcome of reward, siblings showed increased activation in the ventral striatum and orbitofrontal cortex compared to controls. Our finding of decreased activity in the ventral striatum during reward anticipation and increased activity in this region during receiving reward may indicate impaired cue processing in siblings. This is consistent with the notion of dopamine dysfunction typically associated with schizophrenia. Since unaffected siblings share on average 50% of their genes with their ill relatives, these deficits may be related to the genetic vulnerability for schizophrenia.Key words: ventral striatum, orbitofrontal cortex, ventromedial prefrontal cortex, monetary incentive delay task, genetic vulnerability, cue processing  相似文献   

9.
Brain reward circuits are implicated in stress‐related psychiatric disorders. Exercise reduces the incidence of stress‐related disorders, but the contribution of exercise reward to stress resistance is unknown. Exercise‐induced stress resistance is independent of exercise controllability; both voluntary running (VR) and forced running (FR) protect rats against the anxiety‐like and depression‐like behavioural consequences of stress. Voluntary exercise is a natural reward, but whether rats find FR rewarding is unknown. Moreover, the contribution of dopamine (DA) and striatal reward circuits to exercise reward is not well characterized. Adult, male rats were assigned to locked wheels, VR, or FR groups. FR rats were forced to run in a pattern resembling the natural wheel running behavior of rats. Both VR and FR increased the reward‐related plasticity marker ΔFosB in the dorsal striatum and nucleus accumbens, and increased the activity of DA neurons in the lateral ventral tegmental area, as revealed by immunohistochemistry for tyrosine hydroxylase and pCREB. Both VR and FR rats developed conditioned place preference (CPP) to the side of a CPP chamber paired with exercise. Re‐exposure to the exercise‐paired side of the CPP chamber elicited conditioned increases in cfos mRNA in direct‐pathway (dynorphin‐positive) neurons in the dorsal striatum and nucleus accumbens in both VR and FR rats, and in tyrosine hydroxylase‐positive neurons in the lateral ventral tegmental area of VR rats only. The results suggest that the rewarding effects of exercise are independent of exercise controllability and provide insight into the DA and striatal circuitries involved in exercise reward and exercise‐induced stress resistance.  相似文献   

10.
The functional neuroanatomy and connectivity of reward processing in adults are well documented, with relatively less research on adolescents, a notable gap given this developmental period's association with altered reward sensitivity. Here, a large sample (n = 1,510) of adolescents performed the monetary incentive delay (MID) task during functional magnetic resonance imaging. Probabilistic maps identified brain regions that were reliably responsive to reward anticipation and receipt, and to prediction errors derived from a computational model. Psychophysiological interactions analyses were used to examine functional connections throughout reward processing. Bilateral ventral striatum, pallidum, insula, thalamus, hippocampus, cingulate cortex, midbrain, motor area, and occipital areas were reliably activated during reward anticipation. Bilateral ventromedial prefrontal cortex and bilateral thalamus exhibited positive and negative activation, respectively, during reward receipt. Bilateral ventral striatum was reliably active following prediction errors. Previously, individual differences in the personality trait of sensation seeking were shown to be related to individual differences in sensitivity to reward outcome. Here, we found that sensation seeking scores were negatively correlated with right inferior frontal gyrus activity following reward prediction errors estimated using a computational model. Psychophysiological interactions demonstrated widespread cortical and subcortical connectivity during reward processing, including connectivity between reward‐related regions with motor areas and the salience network. Males had more activation in left putamen, right precuneus, and middle temporal gyrus during reward anticipation. In summary, we found that, in adolescents, different reward processing stages during the MID task were robustly associated with distinctive patterns of activation and of connectivity.  相似文献   

11.
Although neural signals of reward anticipation have been studied extensively, the functional relationship between reward and attention has remained unclear: Neural signals implicated in reward processing could either reflect attentional biases towards motivationally salient stimuli, or proceed independently of attentional processes. Here, we sought to disentangle reward and attention‐related neural processes by independently modulating reward value and attentional task demands in a functional magnetic resonance imaging study in healthy human participants. During presentation of a visual reward cue that indicated whether monetary reward could be obtained in a subsequent reaction time task, participants either attended to the reward cue or performed an unrelated attention‐demanding task at two different levels of difficulty. In ventral striatum and ventral tegmental area, neural responses were modulated by reward anticipation irrespective of attentional demands, thus indicating attention‐independent processing of reward cues. By contrast, additive effects of reward and attention were observed in visual cortex. Critically, reward‐related activations in right anterior insula strongly depended on attention to the reward cue. Dynamic causal modelling revealed that the attentional modulation of reward processing in insular cortex was mediated by enhanced effective connectivity from ventral striatum to anterior insula. Our results provide evidence for distinct functional roles of the brain regions involved in the processing of reward‐indicating information: While subcortical structures signal the motivational salience of reward cues even when attention is fully engaged elsewhere, reward‐related responses in anterior insula depend on available attentional resources, likely reflecting the conscious evaluation of sensory information with respect to motivational value. Hum Brain Mapp 35:3036–3051, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
《Neuromodulation》2023,26(2):414-423
BackgroundThe subthalamic nucleus (STN) is an effective deep brain stimulation target for Parkinson disease (PD) and obsessive-compulsive disorder and has been implicated in reward and motivational processing. In this study, we assessed the STN and prefrontal oscillatory dynamics in the anticipation and receipt of reward and loss using a task commonly used in imaging.Materials and MethodsWe recorded intracranial left subthalamic local field potentials from deep brain stimulation electrodes and prefrontal scalp electroencephalography in 17 patients with PD while they performed a monetary incentive delay task.ResultsDuring the expectation phase, enhanced left STN delta-theta activity was observed in both reward and loss vs neutral anticipation, with greater STN delta-theta activity associated with greater motivation specifically to reward. In the consummatory outcome phase, greater left STN delta activity was associated with a rewarding vs neutral outcome, particularly with more ventral contacts along with greater delta-theta coherence with the prefrontal cortex. We highlight a differential activity in the left STN to loss vs reward anticipation, demonstrating a distinct STN high gamma activity. Patients with addiction-like behaviors show lower left STN delta-theta activity to loss vs neutral outcomes, emphasizing impaired sensitivity to negative outcomes.ConclusionsTogether, our findings highlight a role for the left STN in reward and loss processing and a potential role in addictive behaviors. These findings emphasize the cognitive-limbic function of the STN and its role as a physiologic target for neuropsychiatric disorders.  相似文献   

13.
Effective decision‐making depends on an animal's ability to predict and select the outcome of greatest value, and the nucleus accumbens (NAc) and its dopaminergic input play a key role in this process. We previously reported that rapid dopamine release in the NAc shell preferentially tracks the “preferred” (i.e., large reward) option during cues that predict the ability to respond for rewards of different sizes, as well as during reward delivery itself. The present study assessed whether shell dopamine release at these discrete times selectively mediated choice behavior for rewards of different magnitudes using optogenetics. Here, using Long Evans TH:Cre± rats we employed selective optogenetic stimulation of dopamine terminals in the NAc shell during either reward‐predictive cues (experiment 1) or reward delivery (experiment 2) in a magnitude‐based decision‐making task. We found that in TH:Cre± rats, but not littermate controls, optical stimulation during low‐magnitude reward delivery during forced choice trials was sufficient to bias preference for this option when given a choice. In contrast, optical stimulation of shell dopamine terminals during low‐magnitude reward‐predictive cues in forced choice trials did not shift free choice behavior in TH:Cre± rats or controls. The findings indicate that preferential dopamine signaling in the NAc shell during reward outcome (delivery), but not reward‐predictive cues are sufficient to influence choice behavior in our task supporting a causal role of dopamine in the NAc shell in reward outcome value, but not value‐based predictive strategies.  相似文献   

14.
The impact of individual differences on human reward processing has been a focus of research in recent years, particularly, as they are associated with a variety of neuropsychiatric diseases including addiction and attention‐deficit/hyperactivity disorder. Studies exploring the neural basis of individual differences in reward sensitivity have consistently implicated the ventral striatum (VS) as a core component of the human reward system. However, the mechanisms of dopaminergic neurotransmission underlying ventral striatal activation as well as trait reward sensitivity remain speculative. We addressed this issue by investigating the triadic interplay between VS reactivity during reward anticipation using functional magnetic resonance imaging, trait reward sensitivity, and dopamine (DA) transporter genotype (40‐bp 3′VNTR of DAT, SLC6A3) affecting synaptic DA neurotransmission. Our results show that DAT variation moderates the association between VS‐reactivity and trait reward sensitivity. Specifically, homozygote carriers of the DAT 10‐repeat allele exhibit a strong positive correlation between reward sensitivity and reward‐related VS activity whereas this relationship is absent in the DAT 9‐repeat allele carriers. We discuss the possibility that this moderation of VS‐trait relation might arise from DAT‐dependent differences in DA availability affecting synaptic plasticity within the VS. Generally, studying the impact of dopaminergic gene variations on the relation between reward‐related brain activity and trait reward sensitivity might facilitate the investigation of complex mechanisms underlying disorders linked to dysregulation of DA neurotransmission. Hum Brain Mapp, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
BACKGROUND: Although abnormalities in reward processing have been proposed to underlie attention-deficit/hyperactivity disorder (ADHD), this link has not been tested explicitly with neural probes. METHODS: This hypothesis was tested by using fMRI to compare neural activity within the striatum in individuals with ADHD and healthy controls during a reward-anticipation task that has been shown previously to produce reliable increases in ventral striatum activity in healthy adults and healthy adolescents. Eleven adolescents with ADHD (5 off medication and 6 medication-na?ve) and 11 healthy controls (ages 12-17 y) were included. Groups were matched for age, gender, and intelligence quotient. RESULTS: We found reduced ventral striatal activation in adolescents with ADHD during reward anticipation, relative to healthy controls. Moreover, ventral striatal activation was negatively correlated with parent-rated hyperactive/impulsive symptoms across the entire sample. CONCLUSIONS: These findings provide neural evidence that symptoms of ADHD, and impulsivity or hyperactivity in particular, may involve diminished reward anticipation, in addition to commonly observed executive dysfunction.  相似文献   

16.
This article aims to provide a synthesis on the question how brain structures cooperate to accomplish hierarchically organized behaviors, characterized by low‐level, habitual routines nested in larger sequences of planned, goal‐directed behavior. The functioning of a connected set of brain structures—prefrontal cortex, hippocampus, striatum, and dopaminergic mesencephalon—is reviewed in relation to two important distinctions: (a) goal‐directed as opposed to habitual behavior and (b) model‐based and model‐free learning. Recent evidence indicates that the orbitomedial prefrontal cortices not only subserve goal‐directed behavior and model‐based learning, but also code the “landscape” (task space) of behaviorally relevant variables. While the hippocampus stands out for its role in coding and memorizing world state representations, it is argued to function in model‐based learning but is not required for coding of action–outcome contingencies, illustrating that goal‐directed behavior is not congruent with model‐based learning. While the dorsolateral and dorsomedial striatum largely conform to the dichotomy between habitual versus goal‐directed behavior, ventral striatal functions go beyond this distinction. Next, we contextualize findings on coding of reward‐prediction errors by ventral tegmental dopamine neurons to suggest a broader role of mesencephalic dopamine cells, viz. in behavioral reactivity and signaling unexpected sensory changes. We hypothesize that goal‐directed behavior is hierarchically organized in interconnected cortico‐basal ganglia loops, where a limbic‐affective prefrontal‐ventral striatal loop controls action selection in a dorsomedial prefrontal–striatal loop, which in turn regulates activity in sensorimotor‐dorsolateral striatal circuits. This structure for behavioral organization requires alignment with mechanisms for memory formation and consolidation. We propose that frontal corticothalamic circuits form a high‐level loop for memory processing that initiates and temporally organizes nested activities in lower‐level loops, including the hippocampus and the ripple‐associated replay it generates. The evidence on hierarchically organized behavior converges with that on consolidation mechanisms in suggesting a frontal‐to‐caudal directionality in processing control.  相似文献   

17.
Neuronal gamma‐band synchronization (25–80 Hz) in visual cortex appears sustained and stable during prolonged visual stimulation when investigated with conventional averages across trials. However, recent studies in macaque visual cortex have used single‐trial analyses to show that both power and frequency of gamma oscillations exhibit substantial moment‐by‐moment variation. This has raised the question of whether these apparently random variations might limit the functional role of gamma‐band synchronization for neural processing. Here, we studied the moment‐by‐moment variation in gamma oscillation power and frequency, as well as inter‐areal gamma synchronization, by simultaneously recording local field potentials in V1 and V2 of two macaque monkeys. We additionally analyzed electrocorticographic V1 data from a third monkey. Our analyses confirm that gamma‐band synchronization is not stationary and sustained but undergoes moment‐by‐moment variations in power and frequency. However, those variations are neither random and nor a possible obstacle to neural communication. Instead, the gamma power and frequency variations are highly structured, shared between areas and shaped by a microsaccade‐related 3–4‐Hz theta rhythm. Our findings provide experimental support for the suggestion that cross‐frequency coupling might structure and facilitate the information flow between brain regions.  相似文献   

18.
Stressful experiences do not only cause peripheral changes in stress hormone levels, but also affect central structures such as the hippocampus, implicated in spatial orientation, stress evaluation, and learning and memory. It has been suggested that formation of memory traces is dependent on hippocampal gamma oscillations observed during alert behaviour and rapid eye movement sleep. Furthermore, during quiescent behaviour, sharp wave‐ripple (SW‐R) activity emerges. These events provide a temporal window during which reactivation of memory ensembles occur. We hypothesized that stress‐responsive modulators, such as corticosterone (CORT), corticotropin‐releasing factor (CRF) and the neurosteroid 3α, 21‐dihydroxy‐5α‐pregnan‐20‐one (THDOC) are able to modulate gamma oscillations and SW‐Rs. Using in vitro hippocampal slices, we studied acute and subacute (2 h) impact of these agents on gamma oscillations in area cornu ammonis 3 of the ventral hippocampus induced by acetylcholine (10 μm ) combined with physostigmine (2 μm ). CORT increased the gamma oscillations in a dose‐dependent fashion. This effect was mediated by glucocorticoid receptors. Likewise, CRF augmented gamma oscillations via CRF type 1 receptor. Lastly, THDOC was found to diminish cholinergic gamma oscillations in a dose‐dependent manner. Neither CORT, CRF nor THDOC modulated gamma power when pre‐applied for 1 h, 2 h before the induction of gamma oscillations. Interestingly, stress‐related neuromodulators had rather mild effects on spontaneous SW‐R compared with their effects on gamma oscillations. These data suggest that the alteration of hippocampal gamma oscillation strength in vitro by stress‐related agents is an acute process, permitting fast adaptation to new attention‐requiring situations in vivo.  相似文献   

19.
Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever‐CS that predicts food reward becomes attractive and wanted, and elicits reward‐seeking behavior, to a greater extent in some rats (‘sign‐trackers’; STs) than others (‘goal‐trackers’; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast‐scan cyclic voltammetry recordings of electrically evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever‐directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal‐tracking behavior. On the other hand, there were no differences between STs and GTs in electrically‐evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub‐populations may help explain why some people abuse drugs while others do not.  相似文献   

20.
Choice selection and reward anticipation: an fMRI study   总被引:9,自引:0,他引:9  
We examined neural activations during decision-making using fMRI paired with the wheel of fortune task, a newly developed two-choice decision-making task with probabilistic monetary gains. In particular, we assessed the impact of high-reward/risk events relative to low-reward/risk events on neural activations during choice selection and during reward anticipation. Seventeen healthy adults completed the study. We found, in line with predictions, that (i) the selection phase predominantly recruited regions involved in visuo-spatial attention (occipito-parietal pathway), conflict (anterior cingulate), manipulation of quantities (parietal cortex), and preparation for action (premotor area), whereas the anticipation phase prominently recruited regions engaged in reward processes (ventral striatum); and (ii) high-reward/risk conditions relative to low-reward/risk conditions were associated with a greater neural response in ventral striatum during selection, though not during anticipation. Following an a priori ROI analysis focused on orbitofrontal cortex, we observed orbitofrontal cortex activation (BA 11 and 47) during selection (particularly to high-risk/reward options), and to a more limited degree, during anticipation. These findings support the notion that (1) distinct, although overlapping, pathways subserve the processes of selection and anticipation in a two-choice task of probabilistic monetary reward; (2) taking a risk and awaiting the consequence of a risky decision seem to affect neural activity differently in selection and anticipation; and thus (3) common structures, including the ventral striatum, are modulated differently by risk/reward during selection and anticipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号