首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The suprachiasmatic nuclei (SCN) contain the major circadian clock responsible for generation of circadian rhythms in mammals. The time measured by the molecular circadian clock must eventually be translated into a neuronal firing rate pattern to transmit a meaningful signal to other tissues and organs in the animal. Previous observations suggest that circadian modulation of ryanodine receptors (RyR) is a key element of the output pathway from the molecular circadian clock. To directly test this hypothesis, we studied the effects of RyR activation and inhibition on real time expression of PERIOD2::LUCIFERASE, intracellular calcium levels and spontaneous firing frequency in mouse SCN neurons. Furthermore, we determined whether the RyR‐2 mRNA is expressed with a daily variation in SCN neurons. We provide evidence that pharmacological manipulation of RyR in mice SCN neurons alters the free [Ca2+]i in the cytoplasm and the spontaneous firing without affecting the molecular clock mechanism. Our data also show a daily variation in RyR‐2 mRNA from single mouse SCN neurons with highest levels during the day. Together, these results confirm the hypothesis that RyR‐2 is a key element of the circadian clock output from SCN neurons.  相似文献   

2.
Background R‐type Ca2+ channels are expressed by myenteric neurons in the guinea pig ileum but the specific function of these channels is unknown. Methods In the present study, we used intracellular electrophysiological techniques to determine the function of R‐type Ca2+ channels in myenteric neurons in the acutely isolated longitudinal muscle‐myenteric plexus. We used immunohistochemical methods to localize the CaV2.3 subunit of the R‐type Ca2+ channel in myenteric neurons. We also studied the effects of the non‐selective Ca2+ channel antagonist, CdCl2 (100 μmol L?1), the R‐type Ca2+ channel blockers NiCl2 (50 μmol L?1) and SNX‐482 (0.1 μmol L?1), and the N‐type Ca2+ channel blocker ω‐conotoxin GVIA (CTX 0.1 μmol L?1) on action potentials and fast and slow excitatory postsynaptic potentials (fEPSPs and sEPSPs) in S and AH neurons in vitro. Key Results CaV2.3 co‐localized with calretinin and calbindin in myenteric neurons. NiCl2 and SNX‐482 reduced the duration and amplitude of action potentials in AH but not S neurons. NiCl2 inhibited the afterhyperpolarization in AH neurons. ω‐conotoxin GVIA, but not NiCl2, blocked sEPSPs in AH neurons. NiCl2 and SNX‐482 inhibited cholinergic, but not cholinergic/purinergic, fEPSPs in S neurons. Conclusions and Inferences These data show that R‐type Ca2+ channels contribute to action potentials, but not slow synaptic transmission, in AH neurons. R‐type Ca2+ channels contribute to release of acetylcholine as the mediator of fEPSPs in some S neurons. These data indicate that R‐type Ca2+ channels may be a target for drugs that selectively modulate activity of AH neurons or could alter fast synaptic excitation in specific pathways in the myenteric plexus.  相似文献   

3.
Depolarisation‐secretion coupling is assumed to be dependent only on extracellular calcium ([Ca2+]o). Ryanodine receptor (RyR)‐sensitive stores in hypothalamic neurohypophysial system (HNS) terminals produce sparks of intracellular calcium ([Ca2+]i) that are voltage‐dependent. We hypothesised that voltage‐elicited increases in intraterminal calcium are crucial for neuropeptide secretion from presynaptic terminals, whether from influx through voltage‐gated calcium channels and/or from such voltage‐sensitive ryanodine‐mediated calcium stores. Increases in [Ca2+]i upon depolarisation in the presence of voltage‐gated calcium channel blockers, or in the absence of [Ca2+]o, still give rise to neuropeptide secretion from HNS terminals. Even in 0 [Ca2+]o, there was nonetheless an increase in capacitance suggesting exocytosis upon depolarisation. This was blocked by antagonist concentrations of ryanodine, as was peptide secretion elicited by high K+ in 0 [Ca2+]o. Furthermore, such depolarisations lead to increases in [Ca2+]i. Pre‐incubation with BAPTA‐AM resulted in > 50% inhibition of peptide secretion elicited by high K+ in 0 [Ca2+]o. Nifedipine but not nicardipine inhibited both the high K+ response for neuropeptide secretion and intraterminal calcium, suggesting the involvement of CaV1.1 type channels as sensors in voltage‐induced calcium release. Importantly, RyR antagonists also modulate neuropeptide release under normal physiological conditions. In conclusion, our results indicate that depolarisation‐induced neuropeptide secretion is present in the absence of external calcium, and calcium release from ryanodine‐sensitive internal stores is a significant physiological contributor to neuropeptide secretion from HNS terminals.  相似文献   

4.
The central circadian pacemaker of the suprachiasmatic nuclei (SCN) is a bilaterally symmetrical structure. Little is known about the physiological mechanisms underlying communication between the left and right SCN and yet the degree of synchronization between SCN neurons can have a critical impact on the properties of the circadian system. In this study, we used electrophysiological tools and calcium (Ca2+) imaging to examine the mechanisms underlying bilateral signaling in mouse SCN. Electrical stimulation of one SCN produced responses in the contralateral SCN with a short delay (approximately 5 ms) and Ca2+‐dependence that are consistent with action potential‐mediated chemical synaptic transmission. Patch‐clamp recordings of stimulated cells revealed excitatory postsynaptic inward‐currents (EPSCs), which were sufficient in magnitude to elicit action potentials. Electrical stimulation evoked tetrodotoxin‐dependent Ca2+ transients in about 30% of all contralateral SCN neurons recorded. The responding neurons were widely distributed within the SCN with a highest density in the posterior SCN. EPSCs and Ca2+ responses were significantly reduced after application of a glutamate receptor antagonist. Application of antagonists for receptors of other candidate transmitters inhibited the Ca2+ responses in some of the cells but overall the impact of these antagonists was variable. In a functional assay, electrical stimulation of the SCN produced phase shifts in the circadian rhythm in the frequency of multiunit activity rhythm in the contralateral SCN. These phase shifts were blocked by a glutamate receptor antagonist. Taken together, these results implicate glutamate as a transmitter required for communication between the left and right SCN.  相似文献   

5.
Introduction  Cerebral vasoconstriction is associated with increased cytosolic Ca2+ concentration in vascular smooth muscle, presumably due to Ca2+ influx and Ca2+ release from intracellular stores. We tested the hypothesis that dantrolene (a blocker of Ca2+-induced Ca2+ release from the ryanodine receptor channel on the sarco-endoplasmic reticulum) would potentiate the action of nimodipine (a voltage-dependent L-type Ca2+ channel blocker, considered standard therapy for SAH) in inhibiting the vasoconstriction of isolated cerebral arteries. Method  Sprague–Dawley rat basilar and femoral arteries were analyzed for ryanodine receptor expression by immunofluorescence and PCR. Vasoconstriction of basilar artery ex vivo was measured in a wire myograph while exposed to serotonin (5-HT) or endothelin-1 (ET-1) in the presence or absence of dantrolene (10–100 μM) and/or nimodipine (30 nM). Femoral artery was examined for comparison. Results  Basilar and femoral arteries express only the ryanodine receptor 3 (RyR3) isoform. In both basilar and femoral arteries, dantrolene significantly inhibited the constriction to 5-HT, whereas it poorly affected the constriction to ET-1. The inhibitory effect of dantrolene on 5-HT was substantially increased by nimodipine, inducing a 10-fold increase in the 50% effective concentration of 5-HT and a 46% reduction in maximum basilar constriction. In femoral artery, dantrolene modestly affected constriction to phenylephrine and there was no interaction with nimodipine. Conclusion  Dantrolene has synergistic effects with nimodipine against 5-HT-induced vasoconstriction in isolated cerebral arteries. Dantrolene–nimodipine interaction will require testing in a pathophysiological model but might provide treatment for reducing SAH-related vasospasm or other 5-HT-related vasospastic syndromes, such as Call-Fleming syndrome.  相似文献   

6.
A‐type K+ channels (IA channels) contribute to learning and memory mechanisms by regulating neuronal excitabilities in the CNS, and their expression level is targeted by Ca2+ influx via synaptic NMDA receptors (NMDARs) during long‐term potentiation (LTP). However, it is not clear how local synaptic Ca2+ changes induce IA downregulation throughout the neuron, extending from the active synapse to the soma. In this study, we tested if two major receptors of endoplasmic reticulum (ER), ryanodine (RyRs), and IP3 (IP3R) receptors, are involved in Ca2+‐mediated IA downregulation in cultured hippocampal neurons of rats. The downregulation of IA channels was induced by doubling the Ca2+ concentration in culture media (3.6 mM for 24 hrs) or treating with glycine (200 μM for 3 min) to induce chemical LTP (cLTP), and the changes in IA peaks were measured electrophysiologically by a whole‐cell patch. We confirmed that Ca2+ or glycine treatment significantly reduced IA peaks and that their effects were abolished by blocking NMDARs or voltage‐dependent Ca2+ channels (VDCCs). In this cellular processing, blocking RyRs (by ryanodine, 10 μM) but not IP3Rs (by 2APB, 100 μM) completely abolished IA downregulation, and the LTP observed in hippocampal slices was more diminished by ryanodine rather than 2APB. Furthermore, blocking RyRs also reduced Ca2+‐mediated PKA activation, indicating that sequential signaling cascades, including the ER and PKA, are involved in regulating IA downregulation. These results strongly suggest a possibility that RyR contribution and mediated IA downregulation are required to regulate membrane excitability as well as synaptic plasticity in CA3‐CA1 connections of the hippocampus. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
Electrical activity in the gamma frequency range is instrumental for temporal encoding on the millisecond scale in attentive vertebrate brains. Surprisingly, also circadian pacemaker neurons in the cockroach Rhyparobia maderae (Leucophaea maderae) employ fast spontaneous rhythmic activity in the gamma band frequency range (20–70 Hz) together with slow rhythmic activity. The ionic conductances controlling this fast spontaneous activity are still unknown. Here, Ca2+ imaging combined with pharmacology was employed to analyse ion channels underlying spontaneous activity in dispersed circadian pacemakers of the adult accessory medulla, which controls circadian locomotor activity rhythms. Fast spontaneous Ca2+ transients in circadian pacemakers accompany tetrodotoxin (TTX)‐blockable spontaneous action potentials. In contrast to vertebrate pacemakers, the spontaneous depolarisations from rest appear to be rarely initiated via TTX‐sensitive sustained Na+ channels. Instead, they are predominantly driven by mibefradil‐sensitive, low‐voltage‐activated Ca2+ channels and DK‐AH269‐sensitive hyperpolarisation‐activated, cyclic nucleotide‐gated cation channels. Rhythmic depolarisations activate voltage‐gated Na+ channels and nifedipine‐sensitive high‐voltage‐activated Ca2+ channels. Together with Ca2+ rises, the depolarisations open repolarising small‐conductance but not large‐conductance Ca2+‐dependent K+ channels. In contrast, we hypothesise that P/Q‐type Ca2+ channels coupled to large‐conductance Ca2+‐dependent K+ channels are involved in input‐dependent activity.  相似文献   

8.
9.
Most serotonergic neurons display a prominent medium‐duration afterhyperpolarization (mAHP), which is mediated by small‐conductance Ca2+‐activated K+ (SK) channels. Recent ex vivo and in vivo experiments have suggested that SK channel blockade increases the firing rate and/or bursting in these neurons. The purpose of this study was therefore to characterize the source of Ca2+ which activates the mAHP channels in serotonergic neurons. In voltage‐clamp experiments, an outward current was recorded at ?60 mV after a depolarizing pulse to +100 mV. A supramaximal concentration of the SK channel blockers apamin or (‐)‐bicuculline methiodide blocked this outward current. This current was also sensitive to the broad Ca2+ channel blocker Co2+ and was partially blocked by both ω‐conotoxin and mibefradil, which are blockers of N‐type and T‐type Ca2+ channels, respectively. Neither blockers of other voltage‐gated Ca2+ channels nor DBHQ, an inhibitor of Ca2+‐induced Ca2+ release, had any effect on the SK current. In current‐clamp experiments, mAHPs following action potentials were only blocked by ω‐conotoxin and were unaffected by mibefradil. This was observed in slices from both juvenile and adult rats. Finally, when these neurons were induced to fire in an in vivo‐like pacemaker rate, only ω‐conotoxin was able to increase their firing rate (by ~30%), an effect identical to the one previously reported for apamin. Our results demonstrate that N‐type Ca2+ channels are the only source of Ca2+ which activates the SK channels underlying the mAHP. T‐type Ca2+ channels may also activate SK channels under different circumstances.  相似文献   

10.
The primary components of the neurohypophysis are the neuroendocrine terminals that release vasopressin and oxytocin, and pituicytes, which are astrocytes that normally surround and envelop these terminals. Pituicytes regulate neurohormone release by secreting the inhibitory modulator taurine in an osmotically‐regulated fashion and undergo a marked structural reorganisation in response to dehydration as well as during lactation and parturition. Because of these unique functions, and the possibility that Ca2+ influx could regulate their activity, we tested for the expression of voltage‐gated Ca2+ channel α1 subunits in pituicytes both in situ and in primary culture. Colocalisation studies in neurohypophysial slices show that pituicytes (identified by their expression of the glial marker S100β), are immunoreactive for antibodies directed against Ca2+ channel α1 subunits CaV2.2 and CaV2.3, which mediate N‐ and R‐type Ca2+ currents, respectively. Pituicytes in primary culture express immunoreactivity for CaV1.2, CaV2.1, CaV2.2, CaV2.3 and CaV3.1 (which mediate L‐, P/Q‐, N‐, R‐ and T‐type currents, respectively) and immunoblotting studies confirmed the expression of these Ca2+ channel α1 subunits. This increase in Ca2+ channel expression may occur only in pituicytes in culture, or may reflect an inherent capability of pituicytes to initiate the expression of multiple types of Ca2+ channels when stimulated to do so. We therefore performed immunohistochemistry studies on pituitaries obtained from rats that had been deprived of water for 24 h. Pituicytes in these preparations showed a significantly increased immunoreactivity to CaV1.2, suggesting that expression of these channels is up‐regulated during the adaptation to long‐lasting dehydration. Our results suggest that Ca2+ channels may play important roles in pituicyte function, including a contribution to the adaptation that occurs in pituicytes when the need for hormone release is elevated.  相似文献   

11.
Han‐Chi Pan  Synthia H. Sun 《Glia》2015,63(5):877-893
d ‐serine is a coagonist of N‐methyl‐d ‐aspartate (NMDA) subtype of glutamate receptor and plays a role in regulating activity‐dependent synaptic plasticity. In this study, we examined the mechanism by which extracellular ATP triggers the release of d ‐serine from astrocytes and discovered a novel Ca2+‐independent release mechanism mediated by P2X7 receptors (P2X7R). Using [3H] d ‐serine, which was loaded into astrocytes via the neutral amino acid transporter 2 (ASCT2), we observed that ATP and a potent P2X7R agonist, 2′(3′)‐O‐(4‐benzoylbenzoyl)adenosine‐5′‐triphosphate (BzATP), stimulated [3H]D‐serine release and that were abolished by P2X7R selective antagonists and by shRNAs, whereas enhanced by removal of intracellular or extracellular Ca2+. The P2X7R‐mediated d ‐serine release was inhibited by pannexin‐1 antagonists, such as carbenoxolone (CBX), probenecid (PBN), and 10Panx‐1 peptide, and shRNAs, and stimulation of P2X7R induced P2X7R‐pannexin‐1 complex formation. Simply incubating astrocytes in Ca2+/Mg2+‐free buffer also induced the complex formation, and that enhanced basal d ‐serine release through pannexin‐1. The P2X7R‐mediated d ‐serine release assayed in Ca2+/Mg2+‐free buffer was enhanced as well, and that was inhibited by CBX. Treating astrocytes with general protein kinase C (PKC) inhibitors, such as chelerythrine, GF109203X, and staurosporine, but not Ca2+‐dependent PKC inhibitor, Gö6976, inhibited the P2X7R‐mediated d ‐serine release. Thus, we conclude that in astrocytes, P2X7R‐pannexin‐1 complex formation is crucial for P2X7R‐mediated d ‐serine release through pannexin‐1 hemichannel. The release is Ca2+‐independent and regulates by a Ca2+‐independent PKC. The activated P2X7R per se is also functioned as a permeation channel to release d ‐serine in part. This P2X7R‐mediated d ‐serine release represents an important mechanism for activity‐dependent neuron‐glia interaction. GLIA 2015;63:877–893  相似文献   

12.
Microglia are highly plastic cells that can assume different phenotypes in response to microenvironmental signals. Lipopolysaccharide (LPS) and interferon‐γ (IFN‐γ) promote differentiation into classically activated M1‐like microglia, which produce high levels of pro‐inflammatory cytokines and nitric oxide and are thought to contribute to neurological damage in ischemic stroke and Alzheimer's disease. IL‐4 in contrast induces a phenotype associated with anti‐inflammatory effects and tissue repair. We here investigated whether these microglia subsets vary in their K+ channel expression by differentiating neonatal mouse microglia into M(LPS) and M(IL‐4) microglia and studying their K+ channel expression by whole‐cell patch‐clamp, quantitative PCR and immunohistochemistry. We identified three major types of K+ channels based on their biophysical and pharmacological fingerprints: a use‐dependent, outwardly rectifying current sensitive to the KV1.3 blockers PAP‐1 and ShK‐186, an inwardly rectifying Ba2+‐sensitive Kir2.1 current, and a Ca2+‐activated, TRAM‐34‐sensitive KCa3.1 current. Both KV1.3 and KCa3.1 blockers inhibited pro‐inflammatory cytokine production and iNOS and COX2 expression demonstrating that KV1.3 and KCa3.1 play important roles in microglia activation. Following differentiation with LPS or a combination of LPS and IFN‐γ microglia exhibited high KV1.3 current densities (~50 pA/pF at 40 mV) and virtually no KCa3.1 and Kir currents, while microglia differentiated with IL‐4 exhibited large Kir2.1 currents (~ 10 pA/pF at ?120 mV). KCa3.1 currents were generally low but moderately increased following stimulation with IFN‐γ or ATP (~10 pS/pF). This differential K+ channel expression pattern suggests that KV1.3 and KCa3.1 inhibitors could be used to inhibit detrimental neuroinflammatory microglia functions. GLIA 2016;65:106–121  相似文献   

13.
14.
《Brain stimulation》2021,14(1):36-47
BackgroundElectroconvulsive therapy (ECT) is effective for treating depression. However, the mechanisms underlying the antidepressant effects of ECT remain unknown. Depressed patients exhibit abnormal Ca2+ kinetics. Early stages of the intracellular Ca2+ signaling pathway involve the release of Ca2+ from the endoplasmic reticulum (ER) via Ca2+ release channels.ObjectiveWe considered that depression may be improved via ECT-induced normalization of intracellular Ca2+ regulation through the Ca2+ release channels. The current study aimed to investigate the effects of ECT on two Ca2+ release channels, ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs).MethodsA mouse depression-like model subjected to water immersion with restraint stress was administered electroconvulsive shock (ECS) therapy. Their depression-like status was behaviorally and histologically assessed using forced swimming tests, novelty-suppressed feeding tests, and by evaluating neurogenesis in the hippocampal dentate gyrus, respectively. A RyRs blocker, dantrolene, was administered prior to ECS, and the changes in depression-like conditions were examined.ResultsThe protein expressions of RyR1 and RyR3 significantly increased in the hippocampus of the mouse model with depression-like symptoms. This increase was attenuated as depression-like symptoms were reduced due to ECS application. However, pre-injection with dantrolene reduced the antidepressant effects of ECS.ConclusionsA significant increase in RyRs expression in a depression-like state and exacerbation of depression-like symptoms by RyRs inhibitors may be caused by RyRs dysfunction, suggesting overexpression of RyRs is a compensatory effect. Normalization of RyRs expression levels by ECS suggests that ECT normalizes the Ca2+ release via RyRs. Thus, normalizing the function of RyRs may play an important role in the therapeutic effect of ECT.  相似文献   

15.
Molecular studies have revealed the presence of R‐type voltage‐gated Ca2+ channels at pre‐ and postsynaptic regions; however, no evidence for the participation of these channels in transmitter release has been presented for the spinal cord. Here we characterize the effects of SNX‐482, a selective R channel blocker, on the monosynaptic excitatory postsynaptic potentials (EPSPs) evoked in motoneurons by stimulation of dorsolateral funiculus (DLF) terminals in a slice preparation from the adult turtle spinal cord. SNX‐482 inhibited neurotransmission in a dose‐dependent manner, with an IC50 of ~9 ± 1 nM. The EPSP time course and membrane time constant of the motoneurons were not altered, suggesting a presynaptic mechanism. The toxin inhibited the residual component of the EPSPs recorded in the presence of N‐ and P/Q‐type Ca2+ channel blockers, strongly suggesting a role for the R channels in neurotransmission at the spinal cord DLF terminals. Consistently with this, RT‐PCR analysis of turtle spinal cord segments revealed the expression of the CaV2.3 pore‐forming (α1E) subunit of R channels, whereas the use of anti‐α1E‐specific antibodies resulted in its localization in the DLF fibers as demonstrated by immunohistochemistry coupled with laser confocal microscopy. J. Comp. Neurol. 513:188–196, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Voltage‐gated Ca2+ (CaV) channels are crucial for neuronal excitability and synaptic transmission upon depolarization. Their properties in vivo are modulated by their interaction with a variety of scaffolding proteins. Such interactions can influence the function and localization of CaV channels, as well as their coupling to intracellular second messengers and regulatory pathways, thus amplifying their signaling potential. Among these scaffolding proteins, a subset of PDZ (postsynaptic density‐95, Drosophila discs‐large, and zona occludens)‐domain containing proteins play diverse roles in modulating CaV channel properties. At the presynaptic terminal, PDZ proteins enrich CaV channels in the active zone, enabling neurotransmitter release by maintaining a tight and vital link between channels and vesicles. In the postsynaptic density, these interactions are essential in regulating dendritic spine morphology and postsynaptic signaling cascades. In this review, we highlight the studies that demonstrate dynamic regulations of neuronal CaV channels by PDZ proteins. We discuss the role of PDZ proteins in controlling channel activity, regulating channel cell surface density, and influencing channel‐mediated downstream signaling events. We highlight the importance of PDZ protein regulations of CaV channels and evaluate the link between this regulatory effect and human disease.  相似文献   

17.
Glutamate phase shifts the circadian clock in the mammalian suprachiasmatic nucleus (SCN) by activating NMDA receptors. Tissue‐type plasminogen activator (tPA) gates phase shifts by activating plasmin to generate m(ature) BDNF, which binds TrkB receptors allowing clock phase shifts. Here, we investigate phase shifting in tPA knockout (tPA?/?; B6.129S2‐Plattm1Mlg/J) mice, and identify urokinase‐type plasminogen activator (uPA) as an additional circadian clock regulator. Behavioral activity rhythms in tPA?/? mice entrain to a light‐dark (LD) cycle and phase shift in response to nocturnal light pulses with no apparent loss in sensitivity. When the LD cycle is inverted, tPA?/? mice take significantly longer to entrain than C57BL/6J wild‐type (WT) mice. SCN brain slices from tPA?/? mice exhibit entrained neuronal activity rhythms and phase shift in response to nocturnal glutamate with no change in dose‐dependency. Pre‐treating slices with the tPA/uPA inhibitor, plasminogen activator inhibitor‐1 (PAI‐1), inhibits glutamate‐induced phase delays in tPA?/? slices. Selective inhibition of uPA with UK122 prevents glutamate‐induced phase resetting in tPA?/? but not WT SCN slices. tPA expression is higher at night than the day in WT SCN, while uPA expression remains constant in WT and tPA?/? slices. Casein‐plasminogen zymography reveals that neither tPA nor uPA total proteolytic activity is under circadian control in WT or tPA?/? SCN. Finally, tPA?/? SCN tissue has lower mBDNF levels than WT tissue, while UK122 does not affect mBDNF levels in either strain. Together, these results suggest that either tPA or uPA can support photic/glutamatergic phase shifts of the SCN circadian clock, possibly acting through distinct mechanisms.  相似文献   

18.
19.
Acute effects of ghrelin on excitatory synaptic transmission were evaluated on hippocampal CA1 synapses. Ghrelin triggered an enduring enhancement of synaptic transmission independently of NMDA receptor activation and probably via postsynaptic modifications. This ghrelin‐mediated potentiation resulted from the activation of GHS‐R1a receptors as it was mimicked by the selective agonist JMV1843 and blocked by the selective antagonist JMV2959. This potentiation also required the activation of PKA and ERK pathways to occur as it was inhibited by KT5720 and U0126, respectively. Moreover it most probably involved Ca2+ influxes as both ghrelin and JMV1843 elicited intracellular Ca2+ increases, which were dependent on the presence of extracellular Ca2+ and mediated by L‐type Ca2+ channels opening. In addition, ghrelin potentiated AMPA receptor‐mediated [Ca2+]i increases while decreasing NMDA receptor‐mediated ones. Thus the potentiation of synaptic transmission by GHS‐R1a at hippocampal CA1 excitatory synapses probably results from postsynaptic mechanisms involving PKA and ERK activation, which are producing long‐lasting enhancement of AMPA receptor‐mediated responses.  相似文献   

20.
Purpose: Dravet syndrome (DS), a devastating epileptic encephalopathy, is mostly caused by mutations of the SCN1A gene, coding for the voltage‐gated Na+ channel NaV1.1 α subunit. About 50% of SCN1A DS mutations truncate NaV1.1, possibly causing complete loss of its function. However, it has not been investigated yet if NaV1.1 truncated mutants are dominant negative, if they impair expression or function of wild‐type channels, as it has been shown for truncated mutants of other proteins (e.g., CaV channels). We studied the effect of two DS truncated NaV1.1 mutants, R222* and R1234*, on coexpressed wild‐type Na+ channels. Methods: We engineered R222* or R1234* in the human cDNA of NaV1.1 (hNaV1.1) and studied their effect on coexpressed wild‐type hNaV1.1, hNaV1.2 or hNaV1.3 cotransfecting tsA‐201 cells, and on hNaV1.6 transfecting an human embryonic kidney (HEK) cell line stably expressing this channel. We also studied hippocampal neurons dissociated from NaV1.1 knockout (KO) mice, an animal model of DS expressing a truncated NaV1.1 channel. Key Findings: We found no modifications of current amplitude coexpressing the truncated mutants with hNaV1.1, hNaV1.2, or hNaV1.3, but a 30% reduction coexpressing them with hNaV1.6. However, we showed that also coexpression of functional full‐length hNaV1.1 caused a similar reduction. Therefore, this effect should not be involved in the pathomechanism of DS. Some gating properties of hNaV1.1, hNaV1.3, and hNaV1.6 were modified, but recordings of hippocampal neurons dissociated from NaV1.1 KO mice did not show any significant modifications of these properties. Therefore, NaV1.1 truncated mutants are not dominant negative, consistent with haploinsufficiency as the cause of DS. Significance: We have better clarified the pathomechanism of DS, pointed out an important difference between pathogenic truncated CaV2.1 mutants and hNaV1.1 ones, and shown that hNaV1.6 expression can be reduced in physiologic conditions by coexpression of hNaV1.1. Moreover, our data may provide useful information for the development of therapeutic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号