首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adult hen is the standard animal model for testing organophosphorus (OP) compounds for organophosphorus compound‐induced delayed neurotoxicity (OPIDN). Recently, we developed a mouse model for biochemical assessment of the neuropathic potential of OP compounds based on brain neuropathy target esterase (NTE) and acetylcholinesterase (AChE) inhibition. We carried out the present work to further develop the mouse model by testing the hypothesis that whole blood NTE inhibition could be used as a biochemical marker for exposure to neuropathic OP compounds. Because brain NTE and AChE inhibition are biomarkers of OPIDN and acute cholinergic toxicity, respectively, we compared NTE and AChE 20‐min IC50 values as well as ED50 values 1 h after single intraperitoneal (i.p.) injections of increasing doses of two neuropathic OP compounds that differed in acute toxicity potency. We found good agreement between the brain and blood for in vitro sensitivity of each enzyme as well for the ratios IC50(AChE)/IC50(NTE). Both OP compounds inhibited AChE and NTE in the mouse brain and blood dose‐dependently, and brain and blood inhibitions in vivo were well correlated for each enzyme. For both OP compounds, the ratio ED50(AChE)/ED50(NTE) in blood corresponded to that in the brain despite the somewhat higher sensitivity of blood enzymes. Thus, our results indicate that mouse blood NTE could serve as a biomarker of exposure to neuropathic OP compounds. Moreover, the data suggest that relative inhibition of blood NTE and AChE provide a way to assess the likelihood that OP compound exposure in a susceptible species would produce cholinergic and/or delayed neuropathic effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Organophosphates (OPs) that inhibit neuropathy target esterase (NTE) with subsequent ageing can produce OP-induced delayed neuropathy (OPIDN). NTE inhibition in lymphocytes can be used as a biomarker of exposure to neuropathic OPs. An electrochemical method was developed to assay NTE in whole blood. The high sensitivity of the tyrosinase carbon-paste biosensors for the phenol produced by hydrolysis of the substrate, phenyl valerate, allowed NTE activity to be measured in diluted samples of whole blood, which cannot be done using the standard colorimetric assay. The biosensor was used to establish correlations of NTE inhibitions in blood with that in lymphocytes and brain after dosing hens with a neuropathic OP. The results of further studies demonstrated that whole blood NTE is a reliable biomarker of neuropathic OPs for up to 96 hours after exposure. These validation results suggest that the biosensor NTE assay for whole blood could be developed to measure human exposure to neuropathic OPs as a predictor of OPIDN. The small blood volume required (100 microL), simplicity of sample preparation and rapid analysis times indicate that the biosensor should be useful in biomonitoring and epidemiological studies. The present paper is an overview of our previous and ongoing work in this area.  相似文献   

3.
Inhibition and aging of neuropathy target esterase (NTE) by neuropathic organophosphorus (OP) compounds triggers OP compound‐induced delayed neuropathy (OPIDN), whereas inhibition of acetylcholinesterase (AChE) produces cholinergic toxicity. The neuropathic potential of an OP compound is defined by its relative inhibitory potency toward NTE vs. AChE assessed by enzyme assays following dosing in vivo or after incubations of direct‐acting compounds or active metabolites with enzymes in vitro. The standard animal model of OPIDN is the adult hen, but its large size and high husbandry costs make this species a burdensome model for assessing neuropathic potential. Although the mouse does not readily exhibit clinical signs of OPIDN, it displays axonal lesions and expresses brain AChE and NTE. Therefore, the present research was performed as a further test of the hypothesis that inhibition of mouse brain AChE and NTE could be used to assess neuropathic potential using mouse brain preparations in vitro or employing mouse brain assays following dosing of OP compounds in vivo. Excellent correlations were obtained for inhibition kinetics in vitro of mouse brain enzymes vs. hen brain and human recombinant enzymes. Furthermore, inhibition of mouse brain AChE and NTE after dosing with OP compounds afforded ED50 ratios that agreed with relative inhibitory potencies assessed in vitro. Taken together, results with mouse brain enzymes demonstrated consistent correspondence between in vitro and in vivo predictors of neuropathic potential, thus adding to previous studies supporting the validity of a mouse model for biochemical assessment of the ability of OP compounds to produce OPIDN. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The relative inhibitory potency (RIP) of an organophosphorus (OP) inhibitor against acetylcholinesterase (AChE) versus neuropathy target esterase (NTE) may be defined as the ratio [k(i)(AChE)/k(i)(NTE)], where k(i) is the bimolecular rate constant of inhibition for a given inhibitor against each enzyme. RIPs greater than 1 correlate with the inability of ageable OP inhibitors or their parent compounds to produce OP compound-induced delayed neurotoxicity (OPIDN) at doses below the LD50. The RIP for chlorpyrifos oxon (CPO) is >1 for enzymes from hen brain homogenate, and the parent compound, chlorpyrifos (CPS), cannot produce OPIDN in hens at sublethal doses. This study was carried out to test the hypothesis that the RIP for the methyl homologue of CPO, chlorpyrifos methyl oxon (CPMO), is >1 and greater than the RIP for CPO. Mipafox (MIP), an OP compound known to produce OPIDN, was included for comparison. Hen brain microsomes were used as the enzyme source, and k(i) values (mean +/- SE, microM(-1) min(-1)) were determined for AChE and NTE (n = 3 and 4 separate experiments, respectively). The k(i) values for CPO, CPMO, and MIP against AChE were 17.8 +/- 0.3, 10.9 +/- 0.1, and 0.00429 +/- 0.00001, respectively, and for NTE were 0.0993 +/- 0.0049, 0.0582 +/- 0.0013, and 0.00498 +/- 0.00006, respectively. Corresponding RIPs for CPO, CPMO, and MIP were 179 +/- 9, 187 +/- 4, and 0.861 +/- 0.011, respectively. The results demonstrate that RIPs for CPO and CPMO are comparable, markedly different from that for MIP, and >1, indicating that CPS methyl, like CPS, could not cause OPIDN at sublethal doses.  相似文献   

5.
Organophosphorus (OP) compounds have been reported to inhibit Ca/Mg-ATPase, but the relevance of this inhibition to organophosphate-induced delayed neuropathy (OPIDN) has not been explored. To determine if inhibition of this enzyme was related to the development of OPIDN, neuropathic and nonneuropathic OP compounds were sted for their ability to inhibit Ca-stimulated ATPase activity in the P2 synaptosomal fraction from hen brain. Following in vitro exposure to 10(-3) to 10(-5) M OP compounds, Ca-stimulated ATPase activity was inhibited by chlorpyrifos, chlorpyrifos-oxon, phenyl saligenin phosphate (PSP), and tri-o-tolyl phosphate (TOTP), but not by parathion, paraoxon, or diisopropyl fluorophosphate (DFP). Further investigation of inhibition induced by chlorpyrifos determined that inhibition was noncompetitive with respect to calcium and ATP. OP compound hydrophobicity was well correlated with in vitro inhibition of Ca-stimulated ATPase, suggesting that OP compounds interact with membrane lipids, and this interaction may contribute to the noncompetitive inhibition of Ca-stimulated ATPase that was observed. Subsequent to in vivo exposure, DFP, but not PSP, produced inhibition of Ca-stimulated ATPase activity in the hen brain P2 synaptosomal fraction. These data indicate that inhibition of Ca-stimulated ATPase activity is not correlated to neuropathic potential and demonstrate that inhibition of Ca/Mg-ATPase is not responsible for OPIDN.  相似文献   

6.
Neuropathy target esterase in human lymphocytes and platelets   总被引:1,自引:0,他引:1  
The target enzyme in organophosphorous-induced delayed neuropathy (OPIDN) has been designated neuropathy target esterase or neurotoxic esterase (NTE). NTE activity can be measured in blood lymphocytes and platelets, which could be of use as biomonitors in man at risk for the development of OPIDN. Separation of lymphocytes and platelets from whole blood, recovery, purity, storage and expression of data were examined. A substantial amount of the NTE activity of a human lymphocyte preparation made using Ficoll/Pacque was due to contamination by platelets; further purification was achieved by sucrose-gradient centrifugation. In an easily prepared sample of human platelets less than 10% of NTE was associated with contaminating white cells. We were unable to preserve NTE activity of platelets or lymphocytes at -80 degrees C either 'dry' or with added buffer and glycerol. In 68 male subjects, NTE activity in platelets averaged 8.36 +/- 1.54 nmol min-1 mg protein-1 and NTE activity in lymphocytes, obtained from blood after removal of platelets, 13.34 +/- 2.42 nmol min-1 mg protein-1. A good correlation was found between platelet and lymphocyte NTE activity. NTE activity in platelets may be a preferable method for measuring exposure to axonopathic organophosphorous compounds because of the ease and purity of separation. No correlation with other neuropathic risk factors such as age, smoking and alcohol intake was noted.  相似文献   

7.
Chlorpyrifos (CPS; O,O-diethyl 3,5,6-trichloro-2-pyridyl phosphorothionate;Dursban) is a widely used broad-spectrum organophosphorus (OP)insecticide. Because some OP compounds can cause a sensory-motordistal axonopathy called OP compound-induced delayed neurotoxicity(OPIDN), CPS has been evaluated for this paralytic effect. Earlystudies of the neurotoxicity of CPS in young and adult hensreported reversible leg weakness but failed to detect OPIDN.More recently, a human case of mild OPIDN was reported to resultfrom ingestion of a massive dose (about 300 mg/kg) in a suicideattempt. Subsequent experiments in adult hens (the currentlyaccepted animal model of choice for studies of OPIDN) showedthat doses of CPS in excess of the LD50 in atropine-treatedanimals inhibited brain neurotoxic esterase (NTE) and producedmild to moderate ataxia. Considering the extensive use of CPSand its demonstrated potential for causing OPIDN at supralethaldoses, additional data are needed to enable quantitative estimatesto be made of the neuropathic risk of this compound. Previouswork has shown that the ability of OP insecticides to causeacute cholinergic toxicity versus OPIDN can be predicted fromtheir relative tendency to inhibit the intended target, acetylcholinesterase(AChE), versus the putative neuropathic target, NTE, in braintissue. The present study was designed to clarify the magnitudeof neuropathic risk associated with CPS exposures by measuringhen brain AChE and NTE inhibition following dosing in vivo anddetermining the bimolecular rate constant of inhibition (k1)for each enzyme by the active metabolite, CPS oxon (CPO), invitro. CPS administered to atropine-treated adult hens at 0,75, 150, and 300 mg/kg po in corn oil produced mean values forbrain AChE inhibition 4 days after dosing of 0, 58, 75, and86%, respectively, and mean values for brain NTE inhibitionof 0, 21, 40, and 77%, respectively. Only the high dose (sixtimes the unprotected LD50 in hens) produced NTE inhibitionabove the presumed threshold of 70%, and these animals werein extremis from cholinergic toxicity at the time of euthanizationdespite continual treatment with atropine. When 150 mg/kg CPSpo in corn oil was given to atropine-treated hens on Day 0,inhibition on Days 1, 2,4, 8, and 16 for brain AChE was 86,82, 72, 44, and 29%, respectively, and for brain NTE was 30,28, 38, 29, and 6%, respectively. No signs of OPIDN were observedin any of the animals during the 16-day study period. Kineticstudies of the inhibition of hen brain AChE and NTE by CPO invitro demonstrated that CPO exhibits high potency and extraordinaryselectivity for its intended target, AChE. The k1, values were15.5 µM–1 min–1 for AChE and 0.145 µM–1min–1 for NTE. The calculated fixed-time (20-min) I50values were 2.24 nM for AChE and 239 nM for NTE, yielding anI50 ratio for NTE/AChE of 107. These results may be comparedwith data compiled for other OP compounds with respect to NTE/AChEI50 ratios and the corresponding doses required to produce OPIDNrelative to the LD50. In general, NTE/AChE I50 ratios greaterthan 1 indicate that the dose required to produce OPIDN is greaterthan the LD50. Taken together, the results of this study indicatethat acute exposures to CPS would not be expected to cause OPIDNexcept under extreme conditions such as attempted suicides involvingmedically assisted survival of doses considerably in excessof the LD50.  相似文献   

8.
Inhibition of acetylcholinesterase (AChE) versus inhibition and aging of neuropathy target esterase (NTE) by organophosphorus (OP) compounds in vivo can give rise to distinct neurological consequences: acute cholinergic toxicity versus OP compound-induced delayed neurotoxicity (OPIDN). Previous work has shown that the relative potency of an OP compound to react with NTE versus AChE in vitro may predict its capability to produce OPIDN. The present study was conducted to evaluate further the validity of such predictions and to enhance them with quantitative structure-activity relationships (QSAR) using a homologous series of alkyl phenylphosphonates (RO)C6H5P(O)ON = CCICH3 (PhP; R = alkyl). Neuropathic potential of PhP was assessed by measuring ki(NTE)ki(AChE) ratios in vitro and comparing these with ED50 ratios in vivo. Selectivity for NTE increased with rising R-group hydrophobicity. The ki(NTE)/ki(AChE) ratios were 0.42 (methyl), 3.6 (ethyl), 15 (isopropyl), 36 (propyl), 69 (isobutyl), 105 (butyl), and 124 (pentyl). Ratios > 1 suggest the potential to produce OPIDN at doses lower than the LD50. Inhibition of NTE and AChE in hen brain in vivo was studied 24 h after i.m. injection of hens with increasing doses of methyl and butyl derivatives. Analysis of dose-response curves yielded ED50(AChE)/ED50(NTE) ratio of 0.86 for methyl PhP and 22.1 for butyl PhP. These results predict that the butyl derivative should be more neuropathic than the methyl analogue. Excellent correspondence between in vivo and in vitro predictions of neuropathic potential indicate that valid predictive QSAR models may be based on the in vitro approach. Adoption of this system would result in reducing experimental animal use, lowering costs, accelerating data production, and enabling standardization of a biochemically based risk assessment of the neuropathic potential of OP compounds.  相似文献   

9.
Organophosphorus compounds (OPs) that cause organophosphorus ester-induced delayed neuropathy (OPIDN) generally inhibit neurotoxic esterase (NTE). However, the assay itself, when conducted in vitro, misses OPs that are activated into OPIDN-causing agents in the body. A preparation of liver mixed-function oxidases and brain NTE was used to rapidly detect activations of OPs. The compounds (0.1 mM or less) to be tested were incubated with microsomes isolated from livers of phenobarbital-treated chick embryos (P-450 content averaged 1.81 +/- 0.27 nmol/mg protein, means +/- SD, N = 5) and NTE (average of 13.8 nmol/min/mg protein) from untreated chick embryo brains. The NTE was separated by calcium precipitation and its activity assayed as usual. The low inhibitions of NTE of compounds that were not neurotoxic (parathion, Diazinon) did not increase in the presence of NADPH; inhibitions of NTE of compounds that required activation (leptophos, S,S,S-tri-n-butyl phosphorotrithioate, and tri-o-cresyl phosphate) greatly increased with NADPH. Both the recently identified neuropathic OP isofenphos (IFP) and its oxon required activation to inhibit NTE (inhibitions of 20 and 80%, respectively). Evidence is presented that the possible neuropathic metabolite is des-N-isopropyl IFP oxon.  相似文献   

10.
Hou WY  Long DX  Wang HP  Wang Q  Wu YJ 《Toxicology》2008,252(1-3):56-63
Little is known regarding early biochemical events in organophosphate-induced delayed neurotoxicity (OPIDN) except for the essential inhibition of neuropathy target esterase (NTE). We hypothesized that the homeostasis of lysophosphatidylcholine (LPC) and/or phosphatidylcholine (PC) in nervous tissues might be disrupted after exposure to the organophosphates (OP) which participates in the progression of OPIDN because new clues to possible mechanisms of OPIDN have recently been discovered that NTE acts as lysophospholipase (LysoPLA) in mice and phospholipase B (PLB) in cultured mammalian cells. To bioassay for such phospholipids, we induced OPIDN in hens using tri-o-cresyl phosphate (TOCP) as an inducer with phenylmethylsulfonyl fluoride (PMSF) as a negative control; and the effects on the activities of NTE, LysoPLA and PLB, the levels of PC, LPC, and glycerophosphocholine (GPC), and the aging of NTE enzyme in the brain, spinal cord, and sciatic nerves were examined. The results demonstrated that the activities of NTE, NTE-LysoPLA, LysoPLA, NTE-PLB and PLB were significantly inhibited in both TOCP- and PMSF-treated hens. The inhibition of NTE and NTE-LysoPLA or NTE-PLB showed a high correlation coefficient in the nervous tissues. Moreover, the NTE inhibited by TOCP was of the aged type, while nearly all of the NTE inhibited by PMSF was of the unaged type. No significant change in PC or LPC levels was observed, while the GPC level was significantly decreased. However, there is no relationship found between the GPC level and the delayed symptoms or aging of NTE. All results suggested that LPC and/or PC homeostasis disruption may not be a mechanism for OPIDN because the PC and LPC homeostasis was not disrupted after exposure to the neuropathic OP, although NTE, LysoPLA, and PLB were significantly inhibited and the GPC level was remarkably decreased.  相似文献   

11.
It is well known that pretreatment with the serine esterase inhibitor phenylmethylsulfonyl fluoride (PMSF) can protect experimental animals from organophosphorus-induced delayed neurotoxicity (OPIDN), presumably by blocking the active site of neurotoxic esterase (NTE) such that binding and "aging" of the neuropathic OP is thwarted. We report here that while PMSF (60 mg/kg, sc) given 4 h before the neuropathic organophosphate (OP) mipafox (50 mg/kg, im) completely prevented the clinical expression of OPIDN in hens, the identical PMSF treatment markedly amplified the delayed neurotoxicity (relative to hens treated with OP only) if administered 4 h after mipafox (5 or 50 mg/kg, im). Moreover, in a separate experiment using diisopropylphosphorofluoridate (DFP) as the neurotoxicant in place of mipafox, posttreatment with PMSF 4 h after DFP (0.5 mg/kg) also accentuated the severity of ataxia. These data indicate that PMSF only protects against OPIDN if given prior to exposure to the neurotoxicant; treatment with PMSF after OP exposure critically exacerbates the delayed neurotoxicity from exposure to organophosphorus compounds.  相似文献   

12.
Sales KM  Kingston ST  Doyle KM  Purcell WM 《Toxicology》2004,195(2-3):187-202
Organophosphate induced delayed neuropathy (OPIDN) has been studied extensively but the mechanisms of toxicity remain unclear. It is generally accepted that the inhibition and ageing (dealkylation) of the B-esterase neuropathy target esterase (NTE) is integral to axonal loss. At present, the only way of detecting compounds that induce OPIDN is the hen test, an animal model. In this study, we preliminary validated hen embryo brain spheroids (HEBS) for the study of organophosphate (OP) toxicity. Hen brain spheroids have been characterised previously, although they have never been fully optimised for OP testing. We optimised the levels of acetylcholine esterase (AChE) and neuropathy target esterase by adapting the culture technique and using chemically defined media. Spheroid cultures were maintained for 35 days and viability and enzyme levels were monitored over this time. Levels of AChE and NTE in this system remained stable over the 35 day period. Using transmission electron microscopy, we have shown synaptogenesis within HEBS earlier than previously suggested in spheroid culture. These studies indicate that HEBS may be useful for the study of OP-induced toxicity and that the long-term stability of the cultures makes it an ideal candidate for studying OPIDN.  相似文献   

13.
Although clinical, pathological, and biochemical effects of organophosphorus-induced delayed neuropathy (OPIDN) have been intensively investigated in the adult hen, detailed electrophysiological studies are lacking. Adult white leghorn hens were treated with a single oral dose of either 30 mg/kg tri-2-cresyl phosphate (TOCP), 750 mg/kg TOCP, 4 mg/kg di-n-butyl-2,2-dichlorovinyl phosphate (DBCV), or 30 mg/kg di-n-butyl-2,2-dichlorovinyl phosphinate (DBCV-P). The 750 mg/kg TOCP and DBCV, but not the 30 mg/kg TOCP and DBCV-P, treatments resulted in clinical signs of OPIDN and mild to marked damage of the tibial nerve 21 days after dose. Twenty-four hr lymphocyte neurotoxic esterase (NTE) inhibition was used as an index of brain NTE inhibition for the various organophosphorus compound (OP) treatment. Twenty-four hr lymphocyte NTE inhibition for 30 mg/kg TOCP, 750 mg/kg TOCP, DBCV, and DBCV-P was 54.1, 87.1, 84.8, and 68.3%, respectively. Twenty-one days after dose, the TOCP-treated hens exhibited some abnormalities in conduction velocity and action potential duration in the tibial or sciatic nerves. No abnormalities were observed in action potential parameters of either the DBCV or DBCV-P treatments. Neurotoxic OP (TOCP and DBCV) treatment resulted in decreased refractoriness in the tibial nerve, increased refractoriness in the sciatic nerve, and elevated strength duration threshold for both nerves. These changes were not present in nerves from DBCV-P (a non-neurotoxic NTE inhibitor)-treated hens. These results suggest that refractory period and strength duration abnormalities in peripheral nerve correlate well with the production of OPIDN and are evident without coincident clinical signs or histopathology.  相似文献   

14.
Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.  相似文献   

15.
The current Organisation for Economic Co-operation and Development (OECD) guidelines for evaluating organophosphorus-induced delayed neuropathy (OPIDN) require the observation of dosed animals over several days and the sacrifice of 48 hens. Adhering to these protocols in tests with enantiomers is difficult because large quantities of the compound are needed and many animals must be utilized. Thus, developing an in vitro screening protocol to evaluate chiral organophosphorus pesticides (OPs) that can induce delayed neuropathy is important. This work aimed to evaluate, in blood and brain samples from hens, human blood, and human cell culture samples, the potential of the enantiomeric forms of methamidophos to induce acetylcholinesterase (AChE) inhibition and/or delayed neurotoxicity. Calpain activation was also evaluated in the hen brain and SH-SY5Y human neuroblastoma cells. The ratio between the inhibition of neuropathy target esterase (NTE) and AChE activities by the methamidophos enantiomers was evaluated as a possible indicator of the enantiomers' abilities to induce OPIDN. The (-)-methamidophos exhibited an IC(50) value approximately 6 times greater than that of the (+)-methamidophos for the lymphocyte NTE (LNTE) of hens, and (+)-methamidophos exhibited an IC(50) value approximately 7 times larger than that of the (-)-methamidophos for the hen brain AChE. The IC(50) values were 7 times higher for the human erythrocyte AChE and 5 times higher for AChE in the SH-SY5Y human neuroblastoma cells. Considering the esterases inhibition and calpain results, (+)-methamidophos would be expected to have a greater ability to induce OPIDN than the (-)-methamidophos in humans and in hens.  相似文献   

16.
The ability of bromine and rat liver microsomes (RLM) to convert organophosphorus (OP) protoxicants to esterase inhibitors was determined by measuring acetylcholinesterase (AChE) and neuropathy target esterase (NTE) inhibition. Species specific differences in susceptibility to esterase inhibition were determined by comparing the extent of esterase inhibition observed in human neuroblastoma cells and hen, bovine, and rodent brain homogenates. OP protoxicants examined included tri-o-tolyl phosphate (TOTP), O-ethyl O-p-nitrophenyl phenylphosphonothioate (EPN), leptophos, fenitrothion, fenthion, and malathion. Bromine activation resulted in greater AChE inhibition than that produced by RLM activation for equivalent concentrations of fenitrothion, malathion, and EPN. For EPN and leptophos, bromine activation resulted in greater inhibition of NTE than RLM. Only preincubation with RLM activated TOTP; resultant inhibition of AChE was less in hen brain (13 +/- 3%) than in neuroblastoma cells (73 +/- 1%) at 10(-6) M. In contrast, 10(-6) M RLM-activated TOTP produced more inhibition of hen brain NTE (89 +/- 6%) than NTE of human neuroblastoma cells (72 +/- 7%). Human neuroblastoma cells and brain homogenates from hens, the accepted animal model for study of OP-induced neurotoxicity, were relatively similar in sensitivity to esterase inhibition. Homogenates from hens were more sensitive to NTE inhibition induced by phenyl saligenin phosphate (PSP), an active congener of TOTP, than were homogenates from less susceptible species (mouse, rat, bovine). AChE of hen brain homogenates was also more sensitive than homogenates from other species to malaoxon, the active form of malathion.  相似文献   

17.
Some organophosphorus compounds (OP) induce a delayed polyneuropathy (OPIDP) which is initiated by the phosphorylation of the so-called neuropathy target esterase (NTE). In this work some aspects of hen sciatic nerve NTE are studied. The assay method is reported and modifications are discussed and a combined method proposed. Proximo-distal distribution showed a significant difference from proximal (100 +/- 10%) to distal (69 +/- 9%) fragments, in accordance with reported data. The time course of in vivo regeneration after a single TOCP dose (200 mg/kg, post oral) showed some differences when compared with hen brain NTE. Sciatic nerve NTE showed a delay of 2-3 days before regeneration but then regenerated faster (74% activity at day 7) than brain NTE (50% activity at day 7). A slower rate of regeneration of distal than proximal segments has been suggested to explain higher sensitivity of distal segments [3], however in this work no significant differences were observed in the rate of regeneration when comparing proximal and distal fragments.  相似文献   

18.
Initiation of organophosphorus-induced delayed neuropathy (OPIDN) is thought to consist of two molecular events involving the phosphorylation of the target enzyme, neurotoxic esterase, or neuropathy target enzyme (NTE), and a subsequent “aging” reaction which transforms the inhibited NTE into a charged moiety critical to the neuropathic process. Compounds that inhibit NTE but cannot age because of their chemical structure abort this two-stage initiation process, and when administered before a neurotoxic organophosphorus compound (OP), protect against the neuropathy by blocking NTE's active site (Johnson, 1970). In support of this, we report that prior exposure to a nonaging NTE inhibitor, phenylmethylsulfonyl fluoride (PMSF), protects rats from neurological damage after subsequent exposure to a neurotoxic OP, Mipafox. Adult, male, Long Evans rats were exposed to either PMSF (250 mg/kg, sc) or to Mipafox (15 mg/kg, ip) and a time course of brain NTE inhibition and recovery was defined. A separate group of PMSF-treated rats was exposed to Mipafox when brain NTE inhibition was 87.7 ± 2.3%. Conversely, another group of rats, pretreated with Mipafox, was dosed with PMSF when NTE inhibition was 90.2 ± 0.8%. A third group of animals, treated with PMSF, was exposed to Mipafox 14 days later, when NTE activity had recovered to within 10 ± 4.2% of control amounts. Histopathological survey (14 to 21 days post-exposure) indicated severe cervical cord damage (damage score ≥3) in the follwing frequencies: PMSF, 0%; Mipafox, 85%; PMSF-4 hr-Mipafox, 0%; Mipafox-4 hr-PMSF, 100%; PMSF-14 days-Mipafox, 75%; controls, 0%. These data indicate that PMSF pretreatment protects rats against Mipafox-induced neurological damage and that the timing of administration and order of presentation are critical to this protection. These results support the hypothesis that the initiation of OPIDN is a multistage event involving inhibition and aging, and that these stages are experimentally separable.  相似文献   

19.
Certain organic phosphorus esters produce sensorimotor axonopathy in man and other species. There is an excellent correlation between the capacity of an organophosphorus compound to produce axonopathy and its ability to inhibit brain neurotoxic esterase (NTE) in hens. Because NTE is present in peripheral lymphocytes of both hen and man, it has been suggested that the lymphocyte enzyme might be useful both in experimental and clinical situations as an indicator of exposure to organophosphorus compounds producing axonopathy. Diethyl 4-nitrophenyl phosphate (paraoxon), tri-2-cresyl phosphate (TOCP), methyl 2,5-dichloro-4-bromophenyl phenylphosphonothionate (leptophos), and di-n-butyl-2,2-dichlorovinyl phosphate (di-n-butyl dichlorvos, DBDCV) were used to examine the relationship between lymphocyte and brain NTE inhibition in hens. As expected, paraoxon (0.75 mg/kg) did not inhibit NTE in brain or lymphocytes. TOCP (10 to 100 mg/kg), leptophos (25 to 150 mg/kg), and DBDCV (1.0 to 4.0 mg/kg) inhibited both brain and lymphocyte NTE activity in a dose-related manner with good correlation of inhibition between tissues taken 24 hr after exposure (r2 = 0.53 to 0.67; p less than 0.020 to 0.001). However, correlation of inhibition between tissues taken from animals killed 48 hr after exposures was poor (r2 = 0.15 to 0.30; p less than 0.10 to 0.05), with consistently less inhibition of lymphocyte NTE relative to brain NTE. This study indicates that assay of lymphocyte NTE can provide a good monitor of exposure to axonotoxic organophosphorus compounds within 24 hr between exposure and measurement.  相似文献   

20.
It had been observed that the chromaffin cells of bovine adrenal medulla contain high levels of neuropathy target esterase (NTE), the esterase whose inhibition and aging is associated with induction of the organophosphorous induced delayed neuropathy. In this study, total esterase and NTE activities, and their inhibition kinetics by OPs are characterized in adrenal medulla of several species in order to find the best source for chromaffin cells. Total esterase activity in membrane fraction of bovine, equine, porcine, ovine and caprine were 6100+/-840, 4200+/-270, 5000+/-120, 28800+/-3000, and 10800+/-2400mU/gtissue, respectively (mean+/-S.D., n=3-4). NTE represented around 70%, 24%, 58%, 10% and 24% of the total esterases in the same tissues, respectively. It was deduced that NTE represents between 69% and 89% of the "B-activity" (activity resistant to 40microM paraoxon) in the membrane fraction of all species. The mipafox I(50) calculated for 30-min inhibition of NTE at 37 degrees Celsius ranged between 7.4 and 12microM. These values are in the range of that for brain NTE in hen (the usual model for testing OP delayed neurotoxicity). Considering that bovine adrenal medulla contains high NTE activity, that it represents a high proportion of total activity, it is easier to dissect than adrenal medulla from equine, caprine or ovine, and is more readily available than species cited previously, and that its inhibitory properties are similar to the classical hen brain model, it is deduced that bovine adrenal medulla is the most appropriate source of chromaffin cells to study OP toxicity, with porcine as the second alternative. The kinetic properties of chromaffin cell cultures from bovine and porcine were in accordance with their properties in homogenate and subcellular fractions, and they displayed an appropriate stability and viability of the primary culture to be used in in vitro toxicological studies for both mechanistic and testing purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号