首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A comparison of the dose-dependent blood burden of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate (MEHP) in pregnant and nonpregnant rats and marmosets is presented. Sprague-Dawley rats and marmosets were treated orally with 30 or 500 mg DEHP/kg per day, nonpregnant animals on 7 (rats) and 29 (marmosets) consecutive days, pregnant animals on gestation days 14-19 (rats) and 96-124 (marmosets). In addition, rats received a single dose of 1000 mg DEHP/kg. Blood was collected up to 48 h after dosing. Concentrations of DEHP and MEHP in blood were determined by GC/MS. In rats, normalized areas under the concentration-time curves (AUCs) of DEHP were two orders of magnitude smaller than the normalized AUCs of the first metabolite MEHP. Metabolism of MEHP was saturable. Repeated DEHP treatment and pregnancy had only little influence on the normalized AUC of MEHP. In marmosets, most of MEHP concentration-time courses oscillated. Normalized AUCs of DEHP were at least one order of magnitude smaller than those of MEHP. In pregnant marmosets, normalized AUCs of MEHP were similar to those in nonpregnant animals with the exception that at 500 mg DEHP/kg per day, the normalized AUCs determined on gestation days 103, 117, and 124 were distinctly smaller. The maximum concentrations of MEHP in blood of marmosets were up to 7.5 times and the normalized AUCs up to 16 times lower than in rats receiving the same daily oral DEHP dose per kilogram of body weight. From this toxicokinetic comparison, DEHP can be expected to be several times less effective in the offspring of marmosets than in that of rats if the blood burden by MEHP in dams can be regarded as a dose surrogate for the MEHP burden in their fetuses.  相似文献   

2.
Two studies were designed to examine amniotic fluid and maternal urine concentrations of the di(2-ethylhexyl) phthalate (DEHP) metabolite mono(2-ethylhexyl) phthalate (MEHP) and the di-n-butyl phthalate (DBP) metabolite monobutyl phthalate (MBP) after administration of DEHP and DBP during pregnancy. In the first study, pregnant Sprague-Dawley rats were administered 0, 11, 33, 100, or 300 mg DEHP/kg/day by oral gavage starting on gestational day (GD) 7. In the second study, DBP was administered by oral gavage to pregnant Sprague-Dawley rats at doses of 0, 100, or 250 mg/kg/day starting on GD 13. Maternal urine and amniotic fluid were collected and analyzed to determine the free and glucuronidated levels of MEHP and MBP. In urine, MEHP and MBP were mostly glucuronidated. By contrast, free MEHP and free MBP predominated in amniotic fluid. Statistically significant correlations were found between maternal DEHP dose and total maternal urinary MEHP (p=0.0117), and between maternal DEHP dose and total amniotic fluid MEHP levels (p=0.0021). Total maternal urinary MEHP and total amniotic fluid MEHP levels were correlated (Pearson correlation coefficient=0.968). Statistically significant differences were found in amniotic MBP levels between animals within the same DBP dose treatment group (p<0.0001) and between animals in different dose treatment groups (p<0.0001). Amniotic fluid MBP levels increased with increasing DBP doses, and high variability in maternal urinary levels of MBP between rats was observed. Although no firm conclusions could be drawn from the urinary MBP data, the MEHP results suggest that maternal urinary MEHP levels may be useful surrogate markers for fetal exposure to DEHP.  相似文献   

3.
The dispositon of di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) was studied in the rat. Three hours after a single oral dose of DEHP (2.8 g/kg), plasma concentrations of 8.8±1.7 g/ml DEHP and 63.2±8.7 g/ml MEHP were reached. MEHP levels declined with a half-life of 5.2±0.5 h. The ratio of the area under the plasma concentration-time curve of MEHP to that of DEHP was 16.1±6.1. When 14CDEHP was administered, 19.3±3.3% of the radioactivity was excreted in the urine within 72 h, the rest being excreted in the faeces. The urinary excretion rate of total radioactivity declined with a half-life of 7.9±0.5 h. Single administration of MEHP (0.4 g/kg) resulted in plasma concentrations of 84.1±14.9 g/ml 3 h after dosing; the half-life of MEHP was 5.5±1.1 h. Multiple dosing with DEHP (2.8 g/kg/day) for 7 consecutive days produced no accumulation of DEHP or MEHP in plasma.  相似文献   

4.
The risk assessment of di(2-ethylhexyl) phthalate (DEHP) that migrated from polyvinyl chloride (PVC) medical devices is an important issue for hospitalized patients. Many studies have been conducted to determine the level of DEHP migration. A recent report has indicated that DEHP in blood bags was hydrolyzed by esterase to mono(2-ethylhexyl) phthalate (MEHP). Therefore, a method for the simultaneous determination of DEHP and MEHP was developed. The migration of DEHP and MEHP from PVC tubing to drugs was examined. Although we detected MEHP in the drugs, we found no enzymatic activity involved in the migration process. Some reports have indicated that hydrolysis may have occurred during sterilization by autoclaving. However, we did not perform any heat treatment. It is speculated that the MEHP migrated directly from the PVC tubing. The simultaneous determination of DEHP and MEHP is required for risk assessment, as MEHP may be even more toxic than the parent compound.  相似文献   

5.
Di(2-ethylhexyl) phthalate (DEHP) is used as a plastic softener in the polymer industry and is widespread in medical devices. DEHP has been incriminated as an endocrine-disrupting chemical, and the effects of DEHP in various species have included disturbances in the reproductive system. The effects of the chemical have varied, depending upon exposure routes and species. This study was performed in order to characterise the kinetics of DEHP and its metabolite mono(2-ethylhexyl) phthalate (MEHP) in the young male pig, an omnivore model-species for research in reproductive toxicology. Eight pigs were given 1000 mg DEHP/kg bodyweight by oral gavage. The concentrations of DEHP and MEHP were then measured in the plasma and tissues of the pigs at different time points after administration. There was no consistent rise above contamination levels of concentrations of DEHP in the plasma of the pigs. However, the metabolite MEHP reached the systemic blood circulation. The half-life of MEHP in the systemic blood circulation was calculated to be 6.3 h. Absorption from the intestine was biphasic in six of the eight pigs and the mono-exponential elimination-phase started 16 h after the after the administration of DEHP. To conclude, MEHP consistently reaches the systemic circulation in the pig when DEHP is administered orally. The kinetic pattern of the parent substance on the other hand is more difficult to characterise.  相似文献   

6.
The distribution and elimination of di-2-ethylhexyl phthalate (DEHP) and mono-2-ethylhexyl phthalate (MEHP) after a single oral administration of DEHP (25 mmol/kg) were studied. A gas-liquid Chromatographic method was used for the simultaneous determination of MEHP and DEHP. The compounds were extracted with methylene chloride and the monoester was alkylated to the hexyl derivative by solid-liquid phase transfer catalysis in methylethyl ketone. The coefficients of variation of this method for determination of DEHP and MEHP were 8.3% and 11.4% respectively. The concentration of DEHP and MEHP in blood and tissues increased to maximum within 6–24 h after dosing, while the highest levels observed in the heart and lungs occurred within 1 h. At 6 h after administration, the highest ratio of MEHP/DEHP (mol%) were recorded in testes (210%) while the other tissues exhibited less than 100%. MEHP disappeared exponentially with t 1/2 values ranging from 23 to 68 h; DEHP t 1/2 ranged from 8 to 156 h and the t 1/2 values of MEHP in several tissues were slightly longer than DEHP. The t 1/2 values in blood were 23.8 h and 18.6 h for MEHP and DEHP, respectively.  相似文献   

7.
The administration of 1 g/kg di(2-ethylhexyl) phthalate (DEHP) or 5 mg/kg testosterone for 1 week did not affect the testicular and prostatic gland weights in rats. However, co-administration of DEHP and testosterone induced severe testicular atrophy accompanied by a decrease of zinc concentration in the testis and reduction of the activity of testicular specific lactate dehydrogenase isozyme. These changes were similar to the results of high dose administration of DEHP alone. Values of biological half-life and area under the concentration-time curve (AUC) of mono(2-ethylhexyl)phthalate, the main metabolite of DEHP, in testes after a single co-administration of DEHP (p.o.) and testosterone (i.p.) were higher than those after DEHP administration alone. Results suggest that the co-administration of DEHP and testosterone enhanced the adverse effects of DEHP on testes as the result of changes in pharmacokinetic values of MEHP.  相似文献   

8.
Human metabolism of di(2-ethylhexyl)phthalate (DEHP) was studied after a single oral dose of 48.1 mg to a male volunteer. To avoid interference by background exposure the D4-ring-labelled DEHP analogue was dosed. Excretion of three metabolites, mono(2-ethyl-5-hydroxyhexyl)phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl)phthalate (5oxo-MEHP) and mono(2-ethylhexyl)phthalate (MEHP), was monitored for 44 h in urine and for 8 h in serum. Peak concentrations of all metabolites were found in serum after 2 h and in urine after 2 h (MEHP) and after 4 h (5OH-MEHP and 5oxo-MEHP). While the major metabolite in serum was MEHP, the major metabolite in urine was 5OH-MEHP, followed by 5oxo-MEHP and MEHP. Excretion in urine followed a multi-phase elimination model. After an absorption and distribution phase of 4 to 8 h, half-life times of excretion in the first elimination phase were approximately 2 h with slightly higher half-life times for 5OH- and 5oxo-MEHP. Half-life times in the second phase—beginning 14 to 18 h post dose—were 5 h for MEHP and 10 h for 5OH-MEHP and 5oxo-MEHP. In the time window 36 to 44 h, no decrease in excreted concentrations of 5OH- and 5oxo-MEHP was observed. In the first elimination phase (8 to 14 h post dose), mean excretion ratios of MEHP to 5oxo-MEHP and MEHP to 5OH-MEHP were 1 to 1.8 and 1 to 3.1. In the second elimination phase up to 24 h post dose mean excretion ratios of MEHP to 5oxo-MEHP to 5OH-MEHP were 1 to 5.0 to 9.3. The excretion ratio of 5OH-MEHP to 5oxo-MEHP remained constant through time at 1.7 in the mean. After 44 h, 47% of the DEHP dose was excreted in urine, comprising MEHP (7.3%), 5OH-MEHP (24.7%) and 5oxo-MEHP (14.9%).  相似文献   

9.
The interactions of di-(2-ethylhexyl) phthalate (DEHP) with the pharmacological response and metabolic aspects of ethanol in mice were investigated at oral doses of DEHP of 1.5, 3.0 and 7.5 g/kg or intraperitoneal doses of 3.7, 7.5 and 18.9 g/kg, administered once or daily for 7 days. A single oral or intraperitoneal administration of DEHP resulted in a significant increase in the ethanol-induced sleeping time, associated with an inhibition of alcohol dehydrogenase activity in liver; the effect of intraperitoneal administration was significant only at the highest dose. The activities of high and low Km aldehyde dehydrogenases in mouse liver were not affected by a single dose of DEHP by either route. Repeated oral doses of DEHP produced significant reductions in the ethanol-induced sleeping time and increases in the activities of alcohol and aldehyde dehydrogenases, whereas repeated intraperitoneal doses of DEHP significantly increased the sleeping time and decreased the activity of alcohol dehydrogenase, without any perceptible effect on the activities of aldehyde dehydrogenases. In vitro studies with mouse liver preparations revealed significant inhibition of alcohol dehydrogenase activity by mono-(2-ethylhexyl) phthalate and 2-ethylhexanol and of high and low Km aldehyde dehydrogenase activities by DEHP and mono-(2-ethylhexyl) phthalate at concentrations ranging from 0.03 to 1.00 mM. In all cases, in vitro enzyme inhibition by mono-(2-ethylhexyl) phthalate was most pronounced.  相似文献   

10.
To clarify species differences in the metabolism of di(2-ethylhexyl) phthalate (DEHP) we measured the activity of four DEHP-metabolizing enzymes (lipase, UDP-glucuronyltransferase (UGT), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH)) in several organs (the liver, lungs, kidneys, and small intestine) of mice (CD-1), rats (Sprague–Dawley), and marmosets (Callithrix jacchus). Lipase activity, measured by the rate of formation of mono(2-ethylhexyl) phthalate (MEHP) from DEHP, differed by 27- to 357-fold among species; the activity was highest in the small intestines of mice and lowest in the lungs of marmosets. This might be because of the significant differences between Vmax/Km values of lipase for DEHP among the species. UGT activity for MEHP in the liver microsomes was highest in mice, followed by rats and marmosets. These differences, however, were only marginal compared with those for lipase activity. ADH and ALDH activity also differed among species; the activity of the former in the livers of marmosets was 1.6–3.9 times greater than in those of rats or mice; the activity of the latter was higher in rats and marmosets (2–14 times) than in mice. These results were quite different from those for lipase or UGT activity. Because MEHP is considered to be the more potent ligand to peroxisome proliferator-activated receptor involved in different toxic processes, a possibly major difference in MEHP-formation capacity could be also considered on extrapolation from rodents to humans.  相似文献   

11.
The metabolism of di(2-ethylhexyl)phthalate (DEHP) in humans was studied after three doses of 0.35 mg (4.7 g/kg), 2.15 mg (28.7 g/kg) and 48.5 mg (650 g/kg) of D4-ring-labelled DEHP were administered orally to a male volunteer. Two new metabolites, mono(2-ethyl-5-carboxypentyl)phthalate (5cx-MEPP) and mono[2-(carboxymethyl)hexyl]phthalate (2cx-MMHP) were monitored for 44 h in urine and for 8 h in serum for the high-dose case, in addition to the three metabolites previously analysed: mono(2-ethyl-5-hydroxyhexyl)phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl)phthalate (5oxo-MEHP) and mono(2-ethylhexyl)phthalate (MEHP). For the medium- and low-dose cases, 24 h urine samples were analysed. Up to 12 h after the dose, 5OH-MEHP was the major urinary metabolite, after 12 h it was 5cx-MEPP, and after 24 h it was 2cx-MMHP. The elimination half-lives of 5cx-MEHP and 2cx-MMHP were between 15 and 24 h. After 24 h 67.0% (range: 65.8–70.5%) of the DEHP dose was excreted in urine, comprising 5OH-MEHP (23.3%), 5cx-MEPP (18.5%), 5oxo-MEHP (15.0%), MEHP (5.9%) and 2cx-MMHP (4.2%). An additional 3.8% of the DEHP dose was excreted on the second day, comprising 2cx-MMHP (1.6%), 5cx-MEPP (1.2%), 5OH-MEHP (0.6%) and 5oxo-MEHP (0.4%). In total about 75% of the administered DEHP dose was excreted in urine after two days. Therefore, in contrast to previous studies, most of the orally administered DEHP is systemically absorbed and excreted in urine. No dose dependency in metabolism and excretion was observed. The secondary metabolites of DEHP are superior biomonitoring markers compared to any other parameters, such as MEHP in urine or blood. 5OH-MEHP and 5oxo-MEHP in urine reflect short-term and 5cx-MEHP and 2cx-MMHP long-term exposure. All secondary metabolites are unsusceptible to contamination. Furthermore, there are strong hints that the secondary oxidised DEHP metabolites—not DEHP or MEHP—are the ultimate developmental toxicants.  相似文献   

12.
The disposition of the plasticizer di-(2-ethylhexyl) phthalate (DEHP) and four of its major metabolites was studied in male rats given single infusions of a DEHP emulsion in doses of 5, 50 or 500 mg DEHP/kg body weight. Plasma concentrations of DEHP and metabolites were followed for 24 h after the start of the infusion. The kinetics of the primary metabolite mono-(2-ethylhexyl) phthalate (MEHP) was studied separately.The concentrations of DEHP in plasma were at all times considerably higher than those of MEHP, and the concentrations of MEHP were much higher than those of the other investigated metabolites. In animals given 500 mg DEHP/kg, the areas under the plasma concentration-time curves (AUCs) of the other investigated metabolites were at most 15% of that of MEHP. Parallel decreases in the plasma concentrations of DEHP, MEHP and the and (-1) oxidized metabolites indicated that the elimination of DEHP was the rate-limiting step in the disposition of the metabolites. This was partly supported by the observation that the clearance of MEHP was higher than that of DEHP. Nonlinear increases in the AUCs of DEHP and MEHP indicated saturation in the formation as well as the elimination of the potentially toxic metabolite MEHP.  相似文献   

13.
A target-organ study of the effects of the phthalate ester di-(2-ethylhexyl) phthalate (DEHP) has been conducted in mature male albino ferrets. DEHP treatment caused a loss of body weight when administered as a 1% (w/w) diet for 14 months. Additionally, marked liver enlargement with associated morphological and biochemical changes was observed. These changes consisted of liver cell enlargement, lysosomal changes, dilatation of the endoplasmic reticulum and the depression of a number of marker enzyme activities. The only other tissue observed to be affected by DEHP treatment was the testes where histological evidence of tissue damage was observed in some animals.Studies on the metabolism of [14C]DEHP in the ferret indicated that the diester was metabolised to derivatives of mono-(2-ethylhexyl) phthalate which were excreted in the urine both unconjugated and as glucuronides.The results obtained have been compared with previous studies in the rat and it is concluded that DEHP is hepatotoxic in both species.  相似文献   

14.
Fetotoxicity of di-(2-ethylhexyl)phthalate (DEHP) was studied in a random strain (ddY-Slc♀ × CBA ♂) of mice. A single oral administration of DEHP 0.05 ml/kg on day 7 of gestation resulted in a decrease in body weight of live fetuses, but there were no dead, gross, or skeletal abnormal fetuses. At 0.1 ml/kg and above DEHP decreased fetal body weight and the fetuses were dead or deformed. The fetotoxicity was dose dependent and a straight line Y = 51.9 log X + 61.6 was obtained where Y = the rate of death(%) and X = the dose of DEHP administered (ml/kg). The LD50 and the non-effective aximum dose which induced fetal death was 0.60 ml/kg and 0.065 ml/kg, respectively. The non-effective maximum doses which resulted in gross and skeletal abnormalities were 0.80 and 0.68 ml/kg, respectively.  相似文献   

15.
The present study evaluated the effect of di-2-ethylhexyl phthalate (DEHP) on gap-junctional intercellular communication (GJIC), peroxisomal beta-oxidation (PBOX) activity, and replicative DNA synthesis in several rodent species with differing susceptibilities to peroxisome proliferator-induced hepatic tumorigenesis. A low (non-tumorigenic) and high (tumorigenic) dietary concentration of DEHP was administered to male F344 rats for 1, 2, 4, and 6 weeks. Additionally, a previously non-tumorigenic dose (1000 ppm) and tumorigenic dose of DEHP (12,000 ppm), as determined by chronic bioassay data, were examined following 2 weeks dietary administration. Male B6C3F1 mice were fed the non-tumorigenic concentration, 500 ppm, and the tumorigenic concentration, 6000 ppm, of DEHP for two and four weeks. The hepatic effects of low and high concentrations of DEHP, 1000 and 6000 ppm, were also examined in male Syrian Golden hamsters (refractory to peroxisome proliferator-induced tumorigenicity). In rat and mouse liver, a concentration-dependent increase in the relative liver weight, PBOX activity, and replicative DNA synthesis was observed at the earliest time point examined. Concurrent to these observations was an inhibition of GJIC. In hamster liver, a slight increase in the relative liver weight, PBOX activity, and replicative DNA synthesis was observed. However, these effects were not of the same magnitude or consistency as those observed in rats or mice. Furthermore, DEHP had no effect on GJIC in hamster liver at any of the time points examined (2 and 4 weeks). HPLC analysis of DEHP and its primary metabolites, mono-2-ethylhexyl phthalate (MEHP), and phthalate acid (PA), indicated a time- and concentration-dependent increase in the hepatic concentration of MEHP. At equivalent dietary concentrations and time points, the presence of MEHP, the primary metabolite responsible for the hepatic effects of DEHP, demonstrated a species-specific response. The largest increase in the hepatic concentration of MEHP was observed in mice, which was greater than the concentration observed in rats. The hepatic concentration of MEHP was lowest in hamsters. Hepatic concentrations of DEHP and phthalic acid were minimal and did not correlate with concentration and time. Collectively, these data demonstrate the inhibition of hepatic GJIC and increased replicative DNA synthesis correlated with the observed dose- and species-specific tumorigenicity of DEHP and may be predictive indicators of the nongenotoxic carcinogenic potential of phthalate esters.  相似文献   

16.
In an attempt to establish which compound or compounds are responsible for the testicular damage observed after administration of di-(2-ethylhexyl) phthalate (DEHP) in rats, the effects of the parent compound and five of its major metabolites (mono-(2-ethylhexyl) phthalate (MEHP), 2-ethylhexanol (2-EH), mono-(5-carboxy-2-ethylpentyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate and mono-(2-ethyl-5-hydroxyhexyl) phthalate) were investigated in vivo and in vitro. The concentrations of MEHP and the three MEHP-derived metabolites in plasma were determined after single and multiple oral doses of DEHP. The plasma concentrations and areas under the plasma concentration-time curves (AUC's) of each of the MEHP-derived metabolites were considerably lower than those of MEHP both after single and after repeated administration of 2.7 mmol of DEHP/kg body weight. The mean elimination half-life of MEHP was significantly shorter in animals given repetitive doses than in those given a single dose, but there was no statistically significant difference between the mean AUC values. No testicular damage was observed in young rats given oral doses of 2.7 mmol of DEHP or 2-EH/kg body weight daily for five days. In animals which received corresponding doses of MEHP the number of degenerated spermatocytes and spermatids was increased, whereas no such effects were found in animals given the MEHP-derived metabolites. MEHP was also the only compound that enhanced germ cell detachment from mixed primary cultures of Sertoli and germ cells.  相似文献   

17.
J W Daniel  H Bratt 《Toxicology》1974,2(1):51-65
Rats given a single oral dose of [14C] di(2-ethylhexyl) phthalate [14C] (DEHP) excreted 42% and 57% of the dose in the urine and faeces respectively in 7 days. A significant proportion (14%) of the dose is excreted in bile. Rats fed 1000 ppm DEHP in the diet for 7 days prior to dosing with [14C] DEHP excreted 57% and 38% in the urine and faeces respectively in 4 days.When fed continuously to rats at dietary concentrations of 1000 and 5000 ppm, the amount of the ester in liver and abdominal fat rapidly attains a steady-state concentration and there is no evidence of accumulation. When returned to a normal diet, the radioactivity in the liver declined with a half life of 1–2 days while that in fat declined rather more slowly to give a half life of 3–5 days. The relative liver weight increased to a level 50% above normal in rats receiving 5000 ppm DEHP and returned to normal within 1 week after being returned to normal diet.When administered intravenously DEHP is preferentially localised in lung, liver and spleen from where it is eliminated with a half-life of 1–2 days.The hexobarbital sleeping time was reduced by 30–40% in rats following repeated oral administration of DEHP; when the ester was administered intravenously sleeping time was increased by approx. 40%.DEHP is extensively metabolised after oral administration, the principal metabolites being identified as the acid, alcohol and ketone resulting from ω- and (ω-1)-oxidation of mono(2-ethylhexyl) phthalate (MEHP). DEHP is rapidly hydrolysed to the half-ester by pancreatic lipase.  相似文献   

18.
Di(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer and is widely dispersed in the environment. In this study, we investigated the effects of maternal exposure to DEHP during pregnancy on neonatal asthma susceptibility using a murine model of asthma induced by ovalbumin (OVA). Pregnant BALB/c mice received DEHP from gestation day 13 to lactation day 21. Their offspring were sensitized on postnatal days (PNDs) 9 and 15 by intraperitoneal injection of 0.5 μg OVA with 200 μg aluminum hydroxide. On PNDs 22, 23 and 24, live pups received an airway challenge of OVA for 30 min. Offspring from pregnant mice that received DEHP showed reductions in inflammatory cell count, interleukin (IL)-4, IL-13, and eotaxin in their bronchoalveolar lavage fluid and in total immunoglobulin E and OVA-specific IgE in their plasma compared with offspring from pregnant mice that did not receive DEHP treatment. These results were consistent with histological analysis and immunoblotting. Maternal exposure to DEHP reduces airway inflammation and mucus production in offspring, with a decrease in inducible nitric oxide synthase (iNOS) in the lung tissue. This study suggests that maternal exposure to DEHP during pregnancy reduces asthmatic responses induced by OVA challenge in offspring. These effects were considered to be closely related to the suppression of Th2 immune responses and iNOS expression.  相似文献   

19.
We measured the background levels of di(2-ethylhexyl) phthalate (DEHP) and its hydrolytic metabolite mono(2-ethylhexyl) phthalate (MEHP) in blood from naive female Sprague-Dawley rats and in de-ionized charcoal-purified water using an analytical procedure that is based on sample treatment with acetonitrile, n-hexane extraction and analysis by gas chromatography. In blood, blank values of 91.3 +/- 34.7 micrograms DEHP/l (n = 31) and 30.1 +/- 13.1 micrograms MEHP/l (n = 20) were obtained, and in water, values of 91.6 +/- 44.2 micrograms DEHP/l (n = 26) and 26.7 +/- 10.4 micrograms MEHP/l (n = 15) were found. Since there is no difference between the background valves obtained from blood of naive rats and water, we conclude that DEHP and MEHP result from contamination during the analytical procedure.  相似文献   

20.
Di(2-ethylhexyl)phthalate (DEHP) is a reproductive toxicant in male rodents. The aim of the current study was to extrapolate the pharmacokinetics and toxicokinetics of mono(2-ethylhexyl)phthalate (MEHP, a primary metabolite of DEHP) in humans by using data from oral administration of DEHP to chimeric mice transplanted with human hepatocytes. MEHP and its glucuronide were detected in plasma from control mice and chimeric mice after single oral doses of 250 mg DEHP/kg body weight. Biphasic plasma concentration–time curves of MEHP and its glucuronide were seen only in control mice. MEHP and its glucuronide were extensively excreted in urine within 24 h in mice with humanized liver. In contrast, fecal excretion levels of MEHP glucuronide were high in control mice compared with those with humanized liver. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated urine MEHP concentrations in humans were consistent with reported concentrations. This research illustrates how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of pharmacokinetics or toxicokinetics of the primary or secondary metabolites of DEHP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号