首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of a novel calcium phosphate/sulphate bone cement   总被引:8,自引:0,他引:8  
Apatitic cements have shown excellent biocompatibility and adequate mechanical properties but have slow resorption in the human body. To assure that new bone tissue grows into the bone defect, a certain porosity is necessary although hard to achieve in injectable cements with suitable mechanical properties. An attempt was made by mixing alpha-tricalcium phosphate (alpha-TCP), calcium sulphate hemihydrate (CSH) and an aqueous solution containing 2.5 wt% of Na(2)HPO(4). The aim was to obtain a material containing two phases: a) one apatitic phase (calcium-deficient hydroxyapatite; CDHA) and b) one resorbable phase (calcium sulphate dihydrate; CSD). alpha-TCP and CSH mixtures were produced at relative intervals of 20 wt%. The liquid-to-powder (L/P) ratio to obtain a paste was 0.32 mLg(-1). The highest compressive strength (34 MPa) was obtained for the pure alpha-TCP sample. The strength was, in a first approximation, directly correlated to the weight proportions of the powders. X-ray diffraction analysis showed that the relative intensity for CDHA increased linearly, and the one for CSD decreased exponentially, when the amount of alpha-TCP increased. Thus, CSH ceased to transform to CSD when the amount of alpha-TCP increased. Observations in environmental scanning electron microscopy confirmed the X-ray diffraction results. CSH-crystals (100 microm) were embedded in the HA-matrix permitting gradual porosity in the material when resorbed.  相似文献   

2.
为研究羟基磷灰石(HA)晶须和羧甲基壳聚糖-明胶(CMC-Gel)对多孔磷酸钙骨水泥(CPC)力学性能的影响,将α-磷酸三钙(α-TCP)粉、HA晶须和致孔剂L-谷氨酸钠按一定的质量比进行混合,加入调和液制备成α-TCP/HA晶须复合多孔骨水泥,然后将其浸润到一系列不同CMC和Gel质量比的溶液中以制备α-TCP/HA晶须/CMC-Gel复合增强多孔骨水泥,对其进行抗压强度测试和扫描电镜观察。结果显示,当HA晶须含量为4%,未添加CMC和Gel时,α-TCP/HA晶须复合多孔骨水泥的抗压强度达到2.57MPa,与未复合HA晶须的骨水泥相比提高了81%;当CMC和Gel的质量比为50∶50时,α-TCP/HA晶须/CMC-Gel复合多孔骨水泥的抗压强度达到最大值3.34MPa,与单纯的多孔α-TCP骨水泥相比提高了135%,同时韧性也有较大改善。  相似文献   

3.
This study reports on a novel method to improve the strength of apatitic bone cements. The liquid phase of Biocement-H was modified with commercial superplasticizers. The results showed that small additions, i.e. 0.5 vol%, in the aqueous liquid phase improved the maximum compressive strength of Biocement-H (35 MPa) by 71%, i.e. 60 MPa. Moreover, the addition of high amounts of superplasticizers, i.e. 50 vol.%, allowed for a significant reduction of the liquid-to-powder ratio from 0.32 to 0.256 mL/g, without affecting the maximum strength and/or the workability of the cement. These results open up new ways to develop injectable and high-strength apatitic bone cements for load-bearing applications.  相似文献   

4.
硅酸钙-磷酸盐复合骨水泥的制备及其性能研究   总被引:4,自引:0,他引:4  
分别以α-磷酸三钙(α—TCP)、磷酸四钙(TTCP)为基本原料,添加羟基磷灰石(HAP)、磷酸氢钙(DCPD)、碳酸钙(CaCO2)、氧化钙(CaO)等其它辅料,并与一定量的无定形硅酸钙(CaSiO3)进行复合,确定了钙磷比均为1.50的六种骨水泥配方,对其基本性能进行了研究。对固化骨水泥样品进行了Ringer’S模拟液浸泡实验,研究了浸泡液pH值、样品的抗压强度随浸泡时间的变化。结果表明:调和液0.25MK2HPO4/KH2PO4和无定形CaSiO3对骨水泥有促凝作用,缩短骨水泥的终凝时间,其中初凝时间为4~5.5min,终凝时间为18~19.5min;同时添加适量无定形CaSiO3可以显著提高骨水泥的抗压强度,其中添加适量无定形CaSiO3的以α—TCP为主要原料的骨水泥Ringer’s模拟液浸泡两周后抗压强度可达45.3MPa。  相似文献   

5.
A novel alpha-tricalcium phosphate (TCP) and gelatin gel composite cement was prepared, and the effects of gelatin content, liquid/powder ratio, setting time, and additives (rod-like hydroxyapatite and CaTiO3 particles) on the microstructure and compressive strength of the setting product were investigated. Addition of gelatin gel to alpha-TCP cement resulted in the formation of a porous solid possessing pores of 20-100 microm in diameter whose pore diameter increased with increasing gelatin gel content. The compressive strength of alpha-TCP cement after 1 week increased from 9.0 to 14.1 MPa with increasing gelatin gel content up to 5 wt % and thereafter decreased. The compressive strength of the cement containing 5 wt % gelatin gel increased with time up to 35 MPa after 1 month whereas without gelatin gel it was approximately 20 MPa. Dispersion of 5 wt % of rod-like hydroxyapatite and CaTiO3 powders with alpha-TCP cement containing 5 wt % gelatin gel increased the compressive strength after 1 week from 14.1 to 31.3 and 34.8 MPa, respectively.  相似文献   

6.
The main disadvantage of apatitic calcium phosphate cements (CPCs) is their slow degradation rate, which limits complete bone regeneration. Carbonate (CO?2?) is the common constituent of bone and it can be used to improve the degradability of the apatitic calcium phosphate ceramics. This study aimed to examine the effect of calcite (CaCO?) incorporation into CPCs. To this end, the CaCO? amount (0-4-8-12 wt %) and its particle size (12.0-μm-coarse or 2.5-μm-fine) were systematically investigated. In comparison to calcite-free CPC, the setting time of the bone substitute was delayed with increasing CaCO? incorporation. Reduction of the CaCO? particle size in the initial powder increased the injectability time of the paste. During hardening of the cements, the increase in calcium release was inversely proportional to the extent of CO?2? incorporation into apatites. The morphology of the carbonate-free product consisted of large needle-like crystals, whereas small plate-like crystals were observed for carbonated apatites. Compressive strength decreased with increasing CaCO? content. In vitro accelerated degradation tests demonstrated that calcium release and dissolution rate from the set cements increased with increasing the incorporation of CO?2?, whereas differences in CaCO? particle size did not affect the in vitro degradation rate under accelerated conditions.  相似文献   

7.
The properties of bone cements prepared with both hydroxyapatite (HA) and alpha-tricalcium phosphate (alpha-TCP) and methacrylates containing acidic or basic groups are the main interest of this article. The presence of methacrylic acid or diethyl amino ethyl methacrylate as comonomers in the bone cement and both ceramic types as filler were found not to affect the amount of residual monomer, which was generally less than 4.5 wt%. In contrast, setting times, maximum temperature, and glass transition temperature were found to be composition dependent. For samples with acidic comonomer, a faster setting time, a higher maximum temperature, and higher glass transition temperatures were observed compared to those with the basic comonomer. The presence of the fillers slightly increased the setting time but did not affect the other parameters. The mechanical properties of the filled bone cements depended mainly on composition and type of testing. Both HA or alpha-TCP filled systems fulfilled the minimum compressive strength required for bone cement application, although a significantly lower value was observed for the alkaline comonomer systems. The minimum bending strength was not satisfied by any of these formulations. The tensile and shear strength of these composites ranged from 20 to 37.9 and from 18 to 27 MPa, respectively. In all cases it was higher for bone cements containing methacrylic acid. The results of this study suggest that the properties of dry unfilled bone cements prepared with MAA are comparable to CMW 3 in mechanical terms but inferior in their setting properties.  相似文献   

8.
The development of the new technologies of bone tissue engineering requires the production of bioresorbable macroporous scaffolds. Calcium phosphate cements are good candidate materials for the development of these scaffolds, as an alternative to the traditional porous sintered ceramics. In this work a novel two-step method, based in the foaming of an alpha-tricalcium phosphate (alpha-TCP) cement paste and its subsequent hydrolysis to a calcium deficient hydroxyapatite (CDHA) is presented. The foaming agent was a hydrogen peroxide (H2O2) solution, which decomposes in water and oxygen gas. CDHA foams, which combined an interconnected macroporosity with a high microporosity were obtained. The apatitic phase obtained by the hydrolysis reaction was more similar to the biologic one, in terms of chemical composition, crystallinity and specific surface than the hydroxyapatites obtained by sintering. The percentage of porosity in the foams reached a 66%. It was shown that it was possible to control the porosity, and pore size and shape by different processing parameters such as the liquid-to-powder ratio, the concentration of the H2O2 solution and the particle size of the powder.  相似文献   

9.
Influence of apatite seeds on the synthesis of calcium phosphate cement   总被引:10,自引:0,他引:10  
Yang Q  Troczynski T  Liu DM 《Biomaterials》2002,23(13):2751-2760
This preliminary study explores the seeding effect (using crystalline hydroxyapatite particles) on the setting time, compressive strength, phase evolution, and microstructure of calcium phosphate cements (CPC) based on monocalcium phosphate monohydrate and calcium hydroxide. Experimental results showed that the setting time varies from 5 to about 30 min, as the seed concentration increased from 0 to 20 wt%. The compressive strength of CPC increased from 4 to 17 MPa, followed by decrease to 12 MPa, for the same range of seeds content. The CPC transformed to predominantly apatitic structure within 24 h for all the samples, with or without the seeds. However, increase of the seed concentration improved the final crystallinity of the apatite phase, suggesting nucleation and growth effects during precipitation of CPC from the precursor solution. The microstructure of the resulting apatitic cement showed a change from essentially featureless (or glass-like) to thin, elongated plate-like morphology, as seeds concentration increased. Correlation between microstructural evolution and corresponding compressive strength of seeded CPC is investigated.  相似文献   

10.
Bohner M 《Biomaterials》2004,25(4):741-749
Calcium sulfate dihydrate (CSD) powder was added to a cement consisting of alpha-tricalcium phosphate (alpha-TCP) and water. The changes of the physico-chemical properties of the cement were investigated as a function of the CSD amount, the phosphate concentration in the mixing solution, and the solution volume. An increase of the phosphate concentration in the mixing liquid and small additions of CSD powder strongly reduced the cement setting time. Simultaneously, the fraction of unreacted alpha-TCP powder present after 1 day of incubation increased, indicating that alpha-TCP hydrolysis was inhibited. The effects of the CSD amount and the phosphate concentration were synergetic, i.e. the effect of CSD powder was increased with an increase of the phosphate concentration and vice versa. Interestingly, none of the factors affected the cement diametral tensile strength. The present results were explained based on solubility calculations. The present study shows that the use of CSD crystals in combination with phosphate ions is an easy and interesting way to control the setting time of alpha-TCP-water mixtures, in particular, because the mechanical properties of the cement are not modified.  相似文献   

11.
Many calcium phosphate bone substitutes are based on the use of alpha-tricalcium phosphate (alpha-TCP) powder. This compound has been intensively studied, but some aspects of alpha-TCP reactivity are still controversial. The goal of this study was to determine the setting kinetics of alpha-TCP based on a new approach that compared particle size distribution data to isothermal calorimetry data. Results indicated that alpha-TCP conversion is mostly controlled by surface reactions, with at later stages a diffusion-controlled mechanism. The presence of an X-ray amorphous alpha-TCP fraction in the crystalline alpha-TCP powder increased the dissolution rate threefold, without modifying the reaction mechanism.  相似文献   

12.
Novel premixed calcium phosphate cements (CPCs) were prepared by combining cement liquids comprised of glycerol or polyethylene glycol with CPC powders that consisted of β-tricalcium phosphate (β-TCP) and monocalcium phosphate monohydrate (MCPM). Changing the powder to liquid mass ratio enabled the setting time to be regulated, and improved the compressive strength of the CPCs. Although some ratios of the new premixed CPCs had long setting times, these ranged from 12.4 to 27.8 min which is much shorter than the hour or more reported previously for a premixed CPC. The premixed CPCs had tolerable washout resistance before final setting, and the cements had strengths matching that of cancellous bone (5–10 MPa); their maximum compressive strength was up to 12 MPa. The inflammatory response around the premixed CPCs implanted in the subcutaneous tissue in rabbits was more prominent than that of apatite cement. These differences might be due to the much faster resorption rate of the premixed CPCs.  相似文献   

13.
New bone cements made of Sr-substituted brushite-forming α-tricalcium phosphate (α-TCP) were prepared and characterized in the present work. The quantitative phase analysis and structural refinement of the starting powders and of hardened cements were performed by X-ray powder diffraction and the Rietveld refinement technique. Isothermal calorimetry along with setting time analysis allowed a precise tracing of the setting process of the pastes. The pastes showed exothermic reactions within the first 10–15 min after mixing and further release of heat after about 1 h. An apatitic phase formed upon immersion of the hardened cements in simulated body fluid for 15 and 30 days due to the conversion of brushite into apatite confirming their in vitro mineralization capability. The compressive strength of the wet cement specimens decreased with increasing curing time, being higher in the case of Sr-substituted CPC.The results suggest that the newly developed Sr-substituted brushite-forming α-TCP cements show promise for uses in orthopaedic and trauma surgery such as in filling bone defects.  相似文献   

14.
Most of the research performed on calcium phosphate bone cements (CPBCs) has dealt with the improvement of bone cement formulations for new, demanding bone-filling applications. In particular, the development of injectable bone cements is of real interest for the biomedical community. The aim of this work was to study the effect of citric acid on the injectability and the setting properties of alpha-tricalcium phosphate-based cements. A comparative kinetic study was performed on cements with and without citric acid relating the hardening curves and the hydration rates using a mathematical approach. Citric acid behaved as a fluidificant during the first stages of the cement mixing. The dissolution-precipitation reactions of the alpha-tricalcium phosphate were retarded with the addition of citric acid and the compressive strength at saturation increased. In conclusion, citric acid can behave as a water-reducing admixture.  相似文献   

15.
Strontium is known to reduce bone resorption and stimulate bone formation. We have investigated the effect of strontium on the setting properties and in vitro bioactivity of a biomimetic gelatin-calcium phosphate bone cement. Gelatin-alpha-TCP powders, with a gelatin content of 15 wt %, were prepared by grinding and sieving the solid compounds obtained by casting gelatin aqueous solutions containing alpha-TCP. 5 wt % of CaHPO(4).2H(2)O were added to the cement powders before mixing with the liquid phase, with a L/P ratio of 0.3 mL/g. Strontium was added as SrCl(2).6H(2)O in different amounts up to 5 atom %. X-ray diffraction analysis, mechanical tests, and SEM investigations were carried out on the cements after different times of soaking in physiological solution. The presence of strontium affects both the initial and the final setting times of the cements, which increase with the ion content. The microstructural modifications observed in the SEM micrographs of the fractured surfaces are in agreement with the increase of the total porosity, and with the slight reduction of the compressive strength of the aged cements, on increasing strontium content. The rate of transformation of alpha-TCP into calcium deficient hydroxyapatite increases on increasing strontium content. SEM reveals that MG63 osteoblasts grown on the cements show a normal morphology and biological tests demonstrate very good rate of proliferation and viability in every experimental time. In particular, strontium stimulates Alkaline Phosphatase activity, Collagen type I, osteocalcin, and osteoprotegerin expression.  相似文献   

16.
The possibility and biological effects of substituting silicon in alpha-tricalcium phosphate (alpha-TCP) by way of solid-state reaction have been evaluated. alpha-TCP powders with varying substitution amounts (1 and 5 mol % Ca2SiO4) were synthesized by reacting mixtures of CaCO3, Ca2P2O7, and SiO2, at a rate of 4 degrees C(min)(-1) to 1100 degrees C, left to dwell for 2 h and then heated to 1325 degrees C at 4 degrees C(min)(-1) and left to dwell for a period of 4 h. The powders were then rapidly quenched in air. Si incorporation could be verified by X-ray diffraction analysis, indicating an increase of the lattice volume with increasing Si content from 4284.1(8) to 4334(1) A3 for pure alpha-TCP and alpha-Si5%TCP, respectively. The hydrolysis of milled alpha-SiTCP powders was monitored by isothermal calorimetry, and the compressive strength of set cements was tested. The results showed changes in speed and amount of heat released during reactivity tests and a decrease in mechanical strength (60, 50, and 5 MPa) with increasing Si content. In vitro bioactivity of the set cements after soaking in simulated body fluid for 4 weeks was also tested. The formation of a bonelike apatite layer on the surface of the set cements could be observed and was thickest for 1%Si (20 microm). These results were in good agreement with the in vivo studies performed, which showed strong evidence that the cement containing 1% silicon doped alpha-TCP enhanced mesenchymal cell differentiation and increased osteoblast activity compared with alpha-TCP.  相似文献   

17.
Most biocements are two- or three-component acid-based systems with large differences in the component particle sizes, which occurs by virtue of the differing processing routes. This work aimed to improve injectability and strength of a single reactive component cement, that is, mechanically activated alpha-tricalcium phosphate (TCP)-based cement by adding 13-33 wt % of several fine-particle-sized (d(50) of 0.5-1.1 microm) fillers [dicalcium phosphate anhydrous (DCPA), titanium dioxide (TiO(2)), and calcium carbonate] to the monomodal alpha-TCP matrix (d(50) = 9.8 microm). A high zeta-potential was measured for all particles in trisodium citrate solution. The fraction of alpha-TCP cement "injected" through an 800-microm hypodermic needle was found to be only 35% at a powder-to-liquid ratio of 3.5 g/mL. In contrast, the use of fillers decreased cement viscosity to a point, where complete injectability could be obtained. Mechanistically, these additives disrupted alpha-TCP particle packing yet decreased the interparticle spacing by a factor of approximately 5.5 such that the electrostatic repulsion effect was enhanced. A strength improvement was found when DCPA and TiO(2) were used as fillers despite the lower degree of conversion of these cements. Compressive strengths of precompacted cement samples increased from 70 MPa for unfilled alpha-TCP cement to 140 (110) MPa for 23 wt % DCPA (or TiO(2)) fillers as a result of porosity reduction. Strength improvement for more clinically relevant uncompacted cements was achieved by higher powder-to-liquid ratio mixes for filled cements such that maximum strengths of 90 MPa were obtained for 23 wt % DCPA filler compared with 50 MPa for single-component alpha-TCP cement.  相似文献   

18.
One of the main challenges in the investigation on calcium phosphate cements (CPC) lies in the introduction of macroporosity, without loosing the self-setting ability and injectability, characteristic of the cement-type materials. The benefits of macroporosity are related to the enhancement of bone regeneration mechanisms, such as angiogenesis and tissue ingrowth. In this work, the feasibility to obtain self-setting injectable macroporous hydroxyapatite foams by the incorporation of a protein-based foaming agent to a CPC is demonstrated. Albumen is combined with an alpha-tricalcium phosphate [Ca3(PO4)2, alpha-TCP] paste, which hydrolyzes to a calcium deficient hydroxyapatite during the setting reaction. A systematic study is presented, where the effect of different processing parameters is analyzed in terms of porosity, setting properties, injectability, and compressive strength. Self-setting foams with porosities up to 70%, which maintain their porous structure after injection, are obtained. These injectable foams can be used both for direct in vivo applications and for the fabrication of low temperature tissue engineering scaffolds.  相似文献   

19.
背景:目前有日本学者提出采用磁性骨水泥治疗肿瘤的骨转移,然而现行磁性骨水泥添加的均为纳米级磁流体,将微米级羰基铁粉添入骨水泥的研究尚未见报道。 目的:制备含不同比例微米级羰基铁粉的磁性骨水泥,并按ISO 5833标准测量相关指标及其磁性与体外升温情况。 方法:将微米级羰基铁粉与聚甲基丙烯酸甲酯骨水泥混合制备成含羰基铁粉质量分数分别为0%,20%,30%,40%,50%的磁性骨水泥。将以上5组材料按ISO 5833标准测定凝固时间、聚合温度、抗压强度。并采用振动样品磁强计测定各组磁性及在交变磁场下的升温情况。 结果与结论:随着羰基铁粉含量的增加,磁性聚甲基丙烯酸甲酯骨水泥的凝固时间有所延长。各组骨水泥的最高聚合温度均在65-70 ℃之间,并未随羰基铁粉含量的增加而改变,仅聚合温度最高点出现的时间随羰基铁粉含量提高而后延。各组骨水泥的抗压能力均大于60 MPa,但只有聚甲基丙烯酸甲酯骨水泥的抗压能力>70 MPa,符合IOS 5833标准要求。各组磁性骨水泥的磁饱和强度随羰基铁粉含量的提高而提高。在交变磁场下,磁性骨水泥的升温速率与磁场强度和羰基铁粉含量呈正相关。  相似文献   

20.
Calcium phosphate cement (CPC) sets in situ to form resorbable hydroxyapatite with chemical and crystallographic similarity to the apatite in human bones, hence it is highly promising for clinical applications. The objective of the present study was to develop a CPC that is fast setting and has high strength in the early stages of implantation. Two approaches were combined to impart high early strength to the cement: the use of dicalcium phosphate dihydrate with a high solubility (which formed the cement CPC(D)) instead of anhydrous dicalcium phosphate (which formed the conventional cement CPC(A)), and the incorporation of absorbable fibers. A 2 x 8 design was tested with two materials (CPC(A) and CPC(D)) and eight levels of cement reaction time: 15 min, 30 min, 1 h, 1.5 h, 2 h, 4 h, 8 h, and 24 h. An absorbable suture fiber was incorporated into cements at 25% volume fraction. The Gilmore needle method measured a hardening time of 15.8 min for CPC(D), five-fold faster than 81.5 min for CPC(A), at a powder:liquid ratio of 3:1. Scanning electron microscopy revealed the formation of nanosized rod-like hydroxyapatite crystals and platelet crystals in the cements. At 30 min, the flexural strength (mean +/- standard deviation; n = 5) was 0 MPa for CPC(A) (the paste did not set), (4.2 +/- 0.3) MPa for CPC(D), and (10.7 +/- 2.4) MPa for CPC(D)-fiber specimens, significantly different from each other (Tukey's at 0.95). The work of fracture (toughness) was increased by two orders of magnitude for the CPC(D)-fiber cement. The high early strength matched the reported strength for cancellous bone and sintered porous hydroxyapatite implants. The composite strength S(c) was correlated to the matrix strength S(m): S(c) = 2.16S(m). In summary, substantial early strength was imparted to a moldable, self-hardening and resorbable hydroxyapatite via two synergistic approaches: dicalcium phosphate dihydrate, and absorbable fibers. The new fast-setting and strong cement may help prevent catastrophic fracture or disintegration in moderate stress-bearing bone repairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号