首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exercise cardiac function in young through elderly endurance trained women.   总被引:3,自引:0,他引:3  
PURPOSE: To clarify the physiological reasons for the decline in aerobic power of endurance trained (ET) women with aging. METHODS: Blood volume, VO2max, and exercise cardiac function were examined in 23 ET women; six age 20-29 yr, six age 40-45 yr, six age 49-54 yr, and five age 58-63 yr. RESULTS: Blood volume was unchanged with aging. VO2max declined progressively at a rate of 0.51 mL x kg(-1) x min(-1) x yr(-1). During maximal exercise, there was an increase in total peripheral resistance (TPR) and a decrease in heart rate, stroke volume, and cardiac output with increasing age. At all ages, cardiac filling (diastole) was significantly faster than cardiac emptying (systole). Stroke volume did not plateau at a submaximal work rate but increased progressively to maximum. CONCLUSIONS: The decline in VO2max with age in ET women is due to decreases in maximal heart rate, stroke volume and cardiac output, and the primary advantage in the exercise cardiac performance of ET women of all ages is diastolic rather than systolic function.  相似文献   

2.
PURPOSE: Cardiovascular responses to exercise in highly trained child endurance athletes have not been well-defined. This study compared hemodynamic responses with progressive cycle exercise in seven competitive child cyclists (mean age 11.9 yr) compared with 39 age-matched untrained boys. METHODS: Doppler echocardiography and gas exchange variables were utilized to assess cardiovascular changes during submaximal and maximal exercise. RESULTS: Mean VO2max was 60.0 (+/-6.0) and 47.0 (+/-5.8) mL x kg(-1) x min(-1) in the cyclists and nonathletes, respectively. At rest and maximal exercise, the cyclists demonstrated greater stroke index than the untrained subjects (resting mean 59 (+/-6) vs 44 (+/-9) mL x m(-2); maximal mean 76 (+/-6) vs 60 (+/-11) mL x m(-2)), but the ratio of maximal:rest stroke index was similar in both groups (1.31 for cyclists, 1.41 for nonathletes). Both groups showed a plateau in stroke volume beyond low-intensity work levels. No significant difference was observed in maximal arteriovenous oxygen difference. CONCLUSIONS: These findings indicate that 1) maximal stroke volume is the critical determinant of the high VO2max in child cyclists and 2) factors that influence resting stroke volume are important in defining VO2max differences between child endurance athletes and untrained boys.  相似文献   

3.
Cardiac performance in endurance-trained and moderately active young women.   总被引:3,自引:0,他引:3  
PURPOSE: To compare the cardiac performance of endurance-trained (ET) and moderately active (MA) young women before exercise and throughout incremental work rates to maximum with particular interest in whether their stroke volume (SV) levels off at a submaximal work rate or increases to maximum. METHODS: Blood volume (BV), and exercise cardiac performance were examined in seven ET (VO2max = 64.3 +/- 2.0 mL.kg(-1).min(-1)) and seven MA (VO2max = 42.1 +/- 1.0 mL.kg(-1).min(-1)) women, aged 18-30 yr. Cardiac time intervals were measured at matched heart rates (HR). RESULTS: ET had a significantly larger BV than MA in both mL (ET = 5053 +/- 139, MA = 4327 +/- 202) and mL.kg(-1) (ET = 83.1 +/- 1.4, MA = 72.9 +/- 2.7). The SV of ET was significantly larger than the SV of MA throughout exercise, and the SV of ET increased progressively throughout incremental work rates to maximum. Although the SV of MA initially leveled off at a submaximal work rate, it underwent a secondary increase at very heavy work rates. Both diastolic filling rate (DFR) and left ventricular emptying rate (LVER) were significantly faster in ET compared with MA at HR of 150 bpm, 170 bpm and HRmax, and in both ET and MA, DFR was significantly faster than LVER at 170 bpm and HRmax. CONCLUSIONS: In young women, ET have a larger SV than MA due to an enhanced DFR and LVER, with the primary advantage being DFR (possibly due to their larger BV). In addition, the SV of ET increases progressively throughout incremental work rates to maximum with no plateau, whereas the SV of MA levels off through moderate to heavy work rates then undergoes a secondary increase at very heavy work rates.  相似文献   

4.
PURPOSE: To investigate the high VO2max observed occasionally in young men who have no history of training. METHODS: VO2max, blood volume (BV), maximal stroke volume (SVmax), maximal cardiac output (Qmax), and related measurements (reported as mean +/- SEM) were studied in six men (mean age 20.0 +/- 0.5 yr) with no history of training, who all had a VO2max below 49 mL.kg-1.min-1 (LO group) and six age- and weight-matched men (mean age 19.5 +/- 0.5 yr) with no history of training, who all had a VO2max above 62.5 mL.kg-1.min-1 (HI group). RESULTS: Compared with the LO group, the HI group had a higher SVmax (149 +/- 5 vs 102 +/- 5 mL), higher Qmax (28.9 +/- 0.9 vs 20.0 +/- 1.0 L.min-1) and higher BV (88.1 +/- 3.8 vs 76.7 +/- 0.9 mL.kg-1). The BV of four participants in the HI group (mean = 92.3 +/- 4.3 mL.kg-1) was substantially higher than the BV of all participants in the LO group, but two participants in the HI group had a BV (mean = 79.7 +/- 0.8 mL.kg-1) that was similar to the mean BV of the LO group. CONCLUSION: The primary explanation for the high VO2max observed occasionally in young men who have no history of training is a naturally occurring (perhaps genetically determined) high BV that brings about a high SVmax and Qmax. However, some young men with no history of training have a high VO2max, SVmax, and Qmax possibly because a greater portion of their BV is hemodynamically active.  相似文献   

5.
PURPOSE: To evaluate the relations between %HRmax, %HRR, %VO2max, and %VO2R in elite cyclists and to check whether the intensity scale recommended by ACSM in its 1998 position stand is also applicable to this specific population. METHODS: Twenty-six male elite road cyclists (25.1 +/- 0.7 yr, 71.0 +/- 1.2 kg, 70.9 +/- 1.2 mL x kg(-1) x min(-1), 433.9 +/- 9.8 W) performed an incremental maximal exercise test (50 W x 3 min(-1)). Individual linear regressions based on HR and VO2 values measured at rest, end of each stage, and maximum, were used to calculate slopes and intercepts, and to predict %HRmax, %HRR, %VO2max, or %VO2R for a given exercise intensity. RESULTS: Below 85% VO2max or VO2R, predicted %HRmax values were significantly higher (P < 0.001) than the ACSM intensity scale (58, 65, 73, and 87% vs 55, 62, 70, and 85% HRmax at 40, 50, 60, and 80% VO2max, and 48, 61, 74% vs 35, 55, and 70% HRmax at 20, 40, and 60% VO2R). The %HRR versus %VO2max regression mean slope (1.069 +/- 0.01) and intercept (-5.747 +/- 0.80) were significantly different (P < 0.0001) from 1 and 0, respectively. Conversely, the %HRR versus %VO2R regression was indistinguishable from the line of identity (mean slope = 1.003 +/- 0.01; mean intercept = 0.756 +/- 0.7). Predicted %VO2R values were equivalent to %HRR in the 35-95%HRR range. %VO2max was equivalent to %HRR at and above 75%HRR, and it was significantly higher at (P < 0.05) and below 65%HRR (P < 0.001). CONCLUSION: The intensity scale recommended by ACSM underestimates exercise intensity in elite cyclists. Prediction of %HRR by %VO2R is better than by %VO2max. Thus, elite cyclists should use %HRR in relation to %VO2R rather than in relation to %VO2max.  相似文献   

6.
PURPOSE: To determine whether total hemoglobin (tHb) mass and total blood volume (BV) are influenced by training, by chronic altitude exposure, and possibly by the combination of both conditions. METHODS: Four groups (N = 12, each) either from locations at sea level or at moderate altitude (2600 m) were investigated: 1) sea-level control group (UT-0 m), 2) altitude control group (UT-2600 m), 3) professional cyclists from sea level (C-0 m), and 4) professional cyclists from altitude (C-2600 m). All subjects from altitude were born at about 2600 m and lived all their lives (except during competitions at lower levels) at this altitude. tHb and BV were determined by the CO-rebreathing method. RESULTS: VO2max (mL x kg(-1) x min(-1)) was significantly higher in UT-0 m (45.3 +/- 3.2) than in UT-2600 m (39.6 +/- 4.0) but did not differ between C-0 m (68.2 +/- 2.7) and C-2600 m (69.9 +/- 4.4). tHb (g x kg(-1)) was affected by training (UT-0 m: 11.0 +/- 1.1, C-0 m: 15.4 +/- 1.3) and by altitude (UT-2600 m: 13.4 +/- 0.9) and showed both effects in C-2600 m (17.1 +/- 1.4). Because red cell volume showed a behavior similar to tHb and because plasma volume was not affected by altitude but by training, BV (mL x kg(-1)) was increased in C-0 m (UT-0 m: 78.3 +/- 7.9; C-0 m: 107.0 +/- 6.2) and in UT-2600 m (88.2 +/- 4.8), showing highest values in the C-2600 m group (116.5 +/- 11.4).CONCLUSION: In endurance athletes who are native to moderate altitude, tHb and BV were synergistically influenced by training and by altitude exposure, which is probably one important reason for their high performance.  相似文献   

7.
ACTN3 genotype in professional endurance cyclists   总被引:1,自引:0,他引:1  
The Z-disk protein alpha-actinin-3 is only expressed in type II muscle fibres, which are responsible for generating forceful contractions at high velocity. Despite the evolutionary conservation of alpha-actinin-3, approximately one in every five Caucasians of European ancestry is totally deficient in this protein, due to homozygosity for a R577X polymorphism in the ACTN3 gene. This, together with the results of recent research on elite athletes, suggests that the "null" XX polymorphism might confer some advantage to endurance performance events. To test this hypothesis, we studied the frequency distribution of R577X genotypes in a group of 50 top-level male professional cyclists (26.9 +/- 0.4 yrs [mean +/- SEM]; VO2max: 73.5 +/- 0.8 ml x kg (-1) x min (-1)). Their results were compared with those of a group of 52 Olympic-class male endurance runners (26.8 +/- 0.6 yrs; VO2max: 73.3 +/- 0.8 ml x kg (-1) x min (-1)) and 123 healthy, sedentary male controls. All subjects were Caucasian, and of European ancestry. No significant differences (p > 0.05) were found between groups: RR: 28.5 %; RX: 53.6 % and XX: 17.9 % in controls; RR: 28.0 %; RX: 46.0 % and XX: 26.0 % in cyclists; and RR: 25.0 %; RX: 57.7 %; XX: 17.3 % in runners). No differences were found in indices of endurance performance (VO2peak or ventilatory thresholds) between athlete carriers of each R577X genotype. In summary, although the alpha-actinin-3 deficient XX genotype may be detrimental for sprint performance in humans, the R577X polymorphism of the ACTN3 gene does not appear to confer an advantage on the ability of male athletes to sustain extreme endurance performance.  相似文献   

8.
Interval training program optimization in highly trained endurance cyclists   总被引:2,自引:0,他引:2  
PURPOSE: The purpose of this study was to examine the influence of three different high-intensity interval training (HIT) regimens on endurance performance in highly trained endurance athletes. METHODS: Before, and after 2 and 4 wk of training, 38 cyclists and triathletes (mean +/- SD; age = 25 +/- 6 yr; mass = 75 +/- 7 kg; VO(2peak) = 64.5 +/- 5.2 mL x kg(-1) min(-1)) performed: 1) a progressive cycle test to measure peak oxygen consumption (VO(2peak)) and peak aerobic power output (PPO), 2) a time to exhaustion test (T(max)) at their VO(2peak) power output (P(max)), as well as 3) a 40-km time-trial (TT(40)). Subjects were matched and assigned to one of four training groups (G(2), N = 8, 8 x 60% T(max) at P(max), 1:2 work:recovery ratio; G(2), N = 9, 8 x 60% T(max) at P(max), recovery at 65% HR(max); G(3), N = 10, 12 x 30 s at 175% PPO, 4.5-min recovery; G(CON), N = 11). In addition to G(1), G(2), and G(3) performing HIT twice per week, all athletes maintained their regular low-intensity training throughout the experimental period. RESULTS: All HIT groups improved TT(40) performance (+4.4 to +5.8%) and PPO (+3.0 to +6.2%) significantly more than G(CON) (-0.9 to +1.1%; P < 0.05). Furthermore, G(1) (+5.4%) and G(2) (+8.1%) improved their VO(2peak) significantly more than G(CON) (+1.0%; P < 0.05). CONCLUSION: The present study has shown that when HIT incorporates P(max) as the interval intensity and 60% of T(max) as the interval duration, already highly trained cyclists can significantly improve their 40-km time trial performance. Moreover, the present data confirm prior research, in that repeated supramaximal HIT can significantly improve 40-km time trial performance.  相似文献   

9.
PURPOSE: To determine the relationship that exists between VO2max and cycling economy/efficiency during intense, submaximal exercise in world-class road professional cyclists. METHODS Each of 11 male cyclists (26+/-1 yr (mean +/- SEM); VO2max: 72.0 +/- 1.8 mL x kg(-1) x min(-1)) performed: 1) a ramp test for O2max determination and 2) a constant-load test of 20-min duration at the power output eliciting 80% of subjects' VO2max during the previous ramp test (mean power output of 385 +/- 7 W). Cycling economy (CE) and gross mechanical efficiency (GE) were calculated during the constant-load tests. RESULTS: CE and GE averaged 85.2 +/- 2.3 W x L(-1) x min(-1) and 24.5 +/- 0.7%, respectively. An inverse, significant correlation was found between 1) VO2max (mL x kg(-0.32) x min(-1)) and both CE (r = -0.71; P = 0.01) and GE (-0.72; P = 0.01), and 2) VO2max (mL x kg(-1) x min(-1)) and both CE (r = -0.65; P = 0.03) and GE (-0.64; P = 0.03). CONCLUSIONS: A high CE/GE seems to compensate for a relatively low VO2max in professional cyclists.  相似文献   

10.
PURPOSE: This study examined changes in cardiorespiratory responses and muscle deoxygenation trends to test the hypothesis that both central and peripheral adaptations would contribute to the improvements in VO(2max) and simulated cycling performance after short-term high-intensity training. METHODS: Eight male cyclists performed an incremental cycle ergometer test to voluntary exhaustion, and a simulated 20-km time trial (20TT) on wind-loaded rollers before and after training (60 min x 5 d x wk(-1) x 3 wk at 85-90% VO(2max). Near-infrared spectroscopy (NIRS) was used to evaluate the trend in vastus medialis hemoglobin/myoglobin deoxygenation (Hb/Mb-O(2) during both tests pre- and post-training. RESULTS: Training induced significant increases (P 0.05) in the VO(2) (4.02 +/- 0.52 to 4.04 +/- 0.51), heart rate (176 +/- 9 to 173 +/- 8 beats x min ) or O pulse (22.4 +/- 3.2 to 23.5 +/- 2.8 mL O(2) x beat(-1)). However, mean muscle deoxygenation during the 20TT was significantly lower after training (-550 +/- 292 to -707 +/- 227 mV, P 相似文献   

11.
PURPOSE: We sought to determine whether older women athletes who had habitually performed vigorous endurance exercise training had higher stroke volumes and cardiac outputs than sedentary postmenopausal women during maximal exercise. METHODS: Seventeen endurance-trained, postmenopausal women athletes (age 65 +/- 4 yr; VO2max 2.11 +/- 0.31 L x min(-1), 38.3 mL x kg(-1) x min(-1)) and 14 sedentary, postmenopausal women (age 63 +/- 5 yr; VO2max 1.41 +/- 0.22 L x min(-1), 23.7 +/- 3.5 mL x kg(-1) x min(-1)) performed maximal treadmill exercise while cardiac output (via acetylene rebreathing) and other cardiovascular hemodynamics were measured. Approximately half of the subjects in each group were on hormone replacement therapy (HRT). RESULTS: The greater VO2max of the athletes was the result of a greater cardiac output (12.8 +/- 1.6 vs. 9.3 +/- 1.4 L x min(-1)) resulting from their significantly larger stroke volume (80 +/- 10 vs 57 +/- 10 mL) at maximal exercise. There were no significant differences in maximal cardiac output or maximal stroke volume related to HRT status in the sedentary women or athletes. CONCLUSIONS: These data indicate that endurance-trained, competitive, postmenopausal women have higher stroke volumes and cardiac outputs during maximal exercise, than their sedentary peers. However, these data suggest that HRT may not affect maximal CV function in sedentary or endurance-trained postmenopausal women.  相似文献   

12.
The purpose of this study was to investigate the validity of the ventilatory response during incremental exercise as indication of endurance performance during prolonged high-intensity exercise under field test conditions in elite cyclists. The ventilatory threshold (VT) was assessed in 14 male elite cyclists (age 22.4+/-3.4 years, height 181+/-6 cm, weight 69.2+/-6.8 kg, VO2max 69+/-7 ml x min(-1) x kg(-1)) during an incremental exercise test (20 W x min(-1)). Heart rate and oxygen uptake were assessed at the following ventilatory parameters: 1. Steeper increase of VCO2 as compared to VO2 (V-slope-method); 2. Respiratory exchange ratio (RQ)=0.95 and 1.00; 3. VE/VO2 increase without a concomitant VE/VCO2 (VE/VO2 method). Three weeks following the laboratory tests, the ability to maintain high-intensity exercise was determined during a 40 km time trial on a bicycle. During this time trial the mean heart rate (HR(TT)) and the road racing time (TT) were assessed. The V-slope-method and the VE/VO2 method showed significant correlations with TT (V-slope: r = -0.82; p<0.001; 90% interval of confidence = +/-82 sec; VE/VO2: r=-0.81; p<0.01; 90% interval of confidence = +/-81 sec). Heart rate at the ventilatory parameters and at the maximum heart rate (HRmax) showed significant correlations with HR(TT). The V-slope-method is the preferred method to predict heart rate during prolonged high-intensity exercise (r=0.93; p<0.0001; 90% interval of confidence: +/-4.8 beats x min(-1)). For predicting heart rate during prolonged high-intensity exercise using an incremental exercise test (20 W x min(-1)), without the knowledge of ventilatory parameters, we recommend using the regression formula: H(TT)=0.84 x Hmax + 14.3 beats x min(-1) (r=0.85; p<0.001).  相似文献   

13.
This study examined the effects of respiratory muscle endurance training (RMET) on ventilatory and endurance performance among moderately trained, male cyclists. Nine subjects initially completed two cycling VO2 max tests, two endurance cycling tests for time at 95% VO2 max, a 15-s MVV test, and an endurance breathing test for time at 100% MVV. Four subjects then underwent 3 weeks of strenuous RMET while five served as controls. Mean posttest 15-s MVV and endurance breathing time were significantly higher in the RMET group (243 +/- 14 l X min-1 and 804 +/- 94 s) than in the control group (205 +/- 6 l X min-1 and 48 +/- 8 s). No significant group differences in VO2 max or endurance cycling time at 95% VO2 max were observed following RMET. Results of this exploratory study indicated that RMET improved ventilatory power and endurance, but did not alter VO2 max or endurance cycling performance among moderately trained, male cyclists.  相似文献   

14.
PURPOSE: This study was designed to evaluate the stability of target heart rate (HR) values corresponding to performance markers such as lactate threshold (LT) and the first and second ventilatory thresholds (VT1, VT2) in a group of 13 professional road cyclists (VO2max, approximately 75.0 mL x kg(-1) x min(-1)) during the course of a complete sports season. METHODS: Each subject performed a progressive exercise test on a bicycle ergometer (ramp protocol with workload increases of 25 W x min(-1)) three times during the season corresponding to the "active" rest (fall: November), precompetition (winter: January), and competition periods (spring: May) to determine HR values at LT, VT1 and VT2. RESULTS: Despite a significant improvement in performance throughout the training season (i.e., increases in the power output eliciting LT, VT1, or VT2), target HR values were overall stable (HR at LT: 154 +/- 3, 152 +/- 3, and 154 +/- 2 beats x min(-1); HR at VT1: 155 +/- 3, 156 +/- 3, and 159 +/- 3 beats x min(-1); and at VT2: 178 +/- 2, 173 +/- 3, and 176 +/- 2 beats x min(-1) during rest, precompetition, and competition periods, respectively). CONCLUSION: A single laboratory testing session at the beginning of the season might be sufficient to adequately prescribe training loads based on HR data in elite endurance athletes such as professional cyclists. This would simplify the testing schedule generally used for this type of athlete.  相似文献   

15.
AIM: The aim of the study was to determine the relationships between maximal oxygen uptake (VO(2max)) in a maximal treadmill run and the aerobic endurance performance in the 20-m multistage shuttle run (MST) test, with the performance indices obtained in the running repeated sprint ability (rRSA) test, in elite youth soccer players. METHODS: Thirty-seven adolescent male outfield players performed on separate days and in random order the treadmill run test and the MST, to obtain their measured VO(2max) and aerobic endurance performance (via the number of completed shuttles in the MST), respectively. Players also completed the rRSA test of 6x20-m all-out sprints, interspersed with 20 s of active recovery. RESULTS: There was a significant moderate correlation between measured VO(2max) (in L . min(-1) and mL . kg(-1) . min(-1)) and MST results (r=0.43 and 0.54, P<0.05, respectively). There was no significant correlation between measured VO(2max) and aerobic endurance performance with any of the performance indices in the rRSA test (all P>0.05). CONCLUSION: The moderate association between the measured VO(2max) and MST suggests that both tests were plausibly measuring different aspects of a player's aerobic fitness. The lack of association between measured VO(2max) and aerobic endurance performance in the MST with performance in the rRSA suggests that aerobic fitness per se is poorly associated with performance in the rRSA in elite youth soccer players.  相似文献   

16.
The purpose of this investigation was to study muscle adaptation to high endurance performance. Muscle biopsies were taken from the m. vastus lateralis of 23 road cyclists, and their VO2 max was measured repeatedly during the season. At the beginning of their training season, VO2 max was 56 (37-66) ml X min-1 X kg-1 in competitive amateurs and 71 (64-76) ml X min-1 X kg-1 in elite professionals. Muscle capillary density determined at the same time was correspondingly roughly 30% higher in elite than in competitive cyclists while muscle enzyme activities (CS, HAD, and HK) were 30%-60% higher and LDH 50% lower in elite compared to competitive cyclists. Some elite cyclists were retested 5 months later when each of them had completed more than 15,000 km of bicycling during training and competition. During this period VO2 max remained unchanged, and the same was true for capillary density, while muscle enzyme activity (CS, HAD, and HK) increased 40%-70%, and LDH slightly decreased. The present results suggest that there may not be a close coupling between whole body VO2 max and the oxidative capacity of a local muscle group. Rather, the changes in muscle enzyme activities may be of importance for the regulation of muscle metabolism enhancing the endurance capacity. It is suggested that capillary density of the working muscles is of significance for VO2 max.  相似文献   

17.
BACKGROUND: The importance of lactate threshold (LT) as a determinant of performance in endurance sports has been established. In addition, it has been shown that during running and selected other endurance competitions, athletes perform at a velocity and VO2 slightly above LT for the duration of the event. Prior work indicates however, that this may not be true during a cycling time-trial (TT). This investigation sought to compare physiological variables during a 20-k TT with those corresponding to the athlete's LT. METHODS: Thirteen male cyclists (22.7+/-0.8 yrs; 180.6+/-8.0 cm; 77.1+/-10.0 kg; 8.3+/-2.5% fat; 4.9+/-2.2 l x min(-1), VO2max) participated in the study. Subjects performed a graded protocol starting at 150 Watts (W) to determine LT (2 mmol x L(-1) above baseline) which consisted of 20 W increases every 4-min. Following an 8 min-recovery, subjects cycled at the wattage corresponding to LT-20 W for 1 min and then workload increased 20 W every minute until volitional exhaustion to determine VO2max x On a separate occasion a self-paced, 20-k TT was completed. RESULTS: Mean values of blood lactate, HR and % HRmax, VO2 and % VO2max, and power output throughout the 20-k TT were greater (p<0.01) than those at LT. During the TT these cyclists performed at an intensity well above LT (blood lactate=252.0+/-0.1%, HR=9.4+/-0.03%, %HRmax=9.2+/-0.15%, VO2=26.5+/-0.7%, %VO2max=17.2+/-0.08% and power out-put=14.8+/-0.14% above LT) for over 30 min. CONCLUSIONS: Therefore, while LT may be highly correlated to performance, it may not be representative of race pace for a cycling TT, and may be questionable as a benchmark used to prescribe training intensity for competitive TT-cycling.  相似文献   

18.
INTRODUCTION: A significant number of highly trained endurance runners have been observed to display an inadequate hyperventilatory response to intense exercise. Two potential mechanisms include low ventilatory responsiveness to hypoxia and ventilatory limitation as a result of maximum expiratory flow rates being achieved. PURPOSE: To test the hypothesis that expiratory flow limitation can complicate determination of ventilatory responsiveness during exercise the following study was performed. METHODS/MATERIALS: Sixteen elite male runners were categorized based on expiratory flow limitation observed in flow volume loops collected during the final minute of progressive exercise to exhaustion. Eight flow limited (FL) (VO2max, 75.9+/-2.4 mL x kg(-1) x min(-1); expiratory flow limitation, 47.3+/-20.4%) and eight non-flow limited subjects (NFL) (VO2max, 75.6+/-4.8 mL x kg(-1) x min(-1); expiratory flow limitation, 0.3+/-0.8%) were tested for hypoxic ventilatory responsiveness (HVR). RESULTS: Independent groups ANOVA revealed no significant differences between FL and NFL for VO2max, VE max (136.2+/-16.0 vs 137.5+/-21.6 L x min(-1)), VE/VO2, (28.4+/-3.2 vs 27.6+/-2.9 L x lO2(-1)), VE/VCO2 (24.8+/-3.1 vs 24.4+/-2.0 L x lCO2(-1)), HVR (0.2+/-0.2 vs 0.3+/-0.1 L x %SaO2(-1)), or SaO2 at max (89.1+/-2.4 vs 86.6+/-4.1%). A significant relationship was observed between HVR and SaO2 (r = 0.92, P < or = 0.001) in NFL that was not present in FL. Conversely, a significant relationship between VE/VO2 and SaO2 (r = 0.79, P < or = 0.019) was observed in FL but not NFL. Regression analysis indicated that the HVR-SaO2 and SaO2-VE/VO2 relationships differed between groups. DISCUSSION: When flow limitation is controlled for, HVR plays a more significant role in determining SaO2 in highly trained athletes than has been previously suggested.  相似文献   

19.
Blood volume and hemoglobin mass in elite athletes of different disciplines   总被引:6,自引:0,他引:6  
Although it is well known that athletes have considerably larger blood volumes than untrained individuals, there is no data available describing the blood volume variability among differently trained athletes. The first aim of the study was to determine whether athletes from different disciplines are characterized by different blood volumes and secondly to what extent the blood volume can possibly limit endurance performance within a particular discipline. We investigated 94 male elite athletes subdivided into the following 6 groups: downhill skiing (DHS), swimming (S), running (R), triathlon (TA), cycling junior (CJ) and cycling professional (CP). Two groups of untrained subjects (UT) and leisure sportsmen (LS) served as controls. Total hemoglobin (tHb) and blood volume (BV) were measured by the CO-rebreathing method. In comparison to UT (mean +/- SD: tHb 11.0 +/- 1.1 g/kg, BV 78.3 +/- 7.9 ml/kg) tHb and BV were about 35 - 40 % higher in the endurance groups R, TA, CJ, and CP (e. g. in CP: tHb 15.3 +/- 1.3 g/kg, BV 107.1 +/- 7.0 ml/kg). Within the endurance groups we found no significant differences. The anaerobic discipline DHS was characterized by very low BV (87.6 +/- 3.1 ml/kg). S had an intermediate position (BV 97.4 +/- 6.1 ml/kg), probably because of the immersion effects during training in the water. VO(2)max was significantly related to tHb and BV not only in the whole group but also in all endurance disciplines. The reasons for the different BVs are an increased adaptation to training stimuli and probably also individual predisposing genetic factors.  相似文献   

20.
The effect of salbutamol on performance in elite nonasthmatic athletes.   总被引:3,自引:0,他引:3  
The effect of salbutamol on performance was studied in seven male nonasthmatic highly trained (VO2max > or = 60 ml.kg-1 x min-1) cyclists. Salbutamol (S = 2 puffs = 200 micrograms) or placebo (P) was administered by metered-dose inhaler, through a spacer device, 20 min prior to testing in a double-blind, randomized cross-over design. Testing sessions on a cycle ergometer included the measurement of maximal oxygen uptake (VO2max), peak power, maximal heart rate, and pulmonary function. A timed sprint to exhaustion was performed after 45 min of exercise at 70% of VO2max, and a Wingate anaerobic test was used to measure total work and peak power. There was a nonsignificant decrease in VO2max (P = 63.5 +/- 3.2; S = 62.6 +/- 3.3 ml.kg-1 x min-1). No difference was found in peak power, maximum heart rate, endurance sprint time, Wingate peak power, or total work. After an anticipated baseline increase was taken into account, the pattern of change in FEV1 over time did not differ between salbutamol and placebo. It was concluded that a therapeutic dose of aerosol salbutamol does not have an ergogenic effect in elite nonasthmatic athletes, and it is therefore recommended that inhaled salbutamol continue to be permitted in international competition for individuals with exercise induced bronchospasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号