首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
It was evaluated whether postischemic neurodegeneration is apoptosis and occurs with alterations in phosphoinositide-linked metabotropic glutamate receptors (mGluRs) and their associated signaling pathways. A dog model of transient global incomplete cerebral ischemia was used. The CA1 pyramidal cells and cerebellar Purkinje cells underwent progressive delayed degeneration. By in situ end-labeling of DNA, death of CA1 and Purkinje cells was greater at 7 days than 1 day after ischemia, whereas death of granule neurons in dentate gyrus and cerebellar cortex was greater at 1 than at 7 days. Ultrastructurally, degenerating CA1 pyramidal neurons and cerebellar Purkinje cells were necrotic; in contrast, degenerating granule neurons were apoptotic. In agarose gels of regional DNA extracts, random DNA fragmentation coexisted with internucleosomal fragmentation. By immunoblotting of regional homogenates, mGluR1alpha, mGluR5, phospholipase Cbeta (PLCbeta), and Galphaq/11 protein levels in hippocampus at 1 and 7 days after ischemia were similar to control levels, but in cerebellar cortex, mGluR1alpha and mGluR5 were decreased but PLCbeta was increased. By immunocytochemistry, mGluR and PLCbeta immunoreactivity dissipated in CA1 and cerebellar Purkinje cell/ molecular layers, whereas immunoreactivities for these proteins were enhanced in granule neurons. It was concluded that neuronal death after global ischemia exists as two distinct, temporally overlapping forms in hippocampus and cerebellum: necrosis of pyramidal neurons and Purkinje cells and apoptosis of granule neurons. Neuronal necrosis is associated with a loss of phosphoinositide-linked mGluR transduction proteins, whereas neuronal apoptosis occurs with increased mGluR signaling.  相似文献   

2.
The effect of N-methyl-D-aspartate (NMDA) and 2-(aminomethyl)phenylacetic acid/kainate (AMPA/kainate) glutamate receptors on dentate cell proliferation and hippocampal synapsin-I induction was examined after global ischemia. Cell proliferation was assessed using BrdU labeling, and synaptic responses were assessed using synapsin-I expression. Systemic glutamate receptor antagonists (MK-801 and NBQX) increased BrdU-labeled cells in the dentate subgranular zone (SGZ) of control adult gerbils (30% to 90%, P < 0.05). After global ischemia (at 15 days after 10 minutes of ischemia), most CA1 pyramidal neurons died, whereas the numbers of BrdU-labeled cells in the SGZ increased dramatically (>1000%, P < 0.0001). Systemic injections of MK801 or NBQX, as well as intrahippocampal injections of either drug, when given at the time of ischemia completely blocked the birth of cells in the SGZ and the death of CA1 pyramidal neurons at 15 days after ischemia. Glutamate receptor antagonists had little effect on cell birth and death when administered 7 days after ischemia. The induction of synapsin-I protein in stratum moleculare of CA3 at 7 and 15 days after global ischemia was blocked by pretreatment with systemic or intrahippocampal MK-801 or NBQX. It is proposed that decreased dentate glutamate receptor activation--produced by glutamate receptor antagonists in normal animals and by chronic ischemic hippocampal injury--may trigger dentate neurogenesis and synaptogenesis. The synapsin-I induction in mossy fiber terminals most likely represents re-modeling of dentate granule cell neuron presynaptic elements in CA3 in response to the ischemia. The dentate neurogenesis and synaptogenesis that occur after ischemia may contribute to memory recovery after hippocampal injury caused by global ischemia.  相似文献   

3.
After transient forebrain ischemia in the Mongolian gerbil, CA1b hippocampal pyramidal cells degenerate during a period of 2-4 d. We tested the hypothesis that this delayed neuronal death is preceded by excessive synaptic excitation. Hippocampal slices were prepared from gerbils that had been subjected to a 5 min occlusion of both common carotid arteries. Input/output curves demonstrated enhancement of the initial slope of the Schaffer collateral-commissural focally recorded EPSP at all stimulus currents between 5 and 10 hr after the ischemic insult. The duration of the focally recorded EPSP also increased. At the same time, the excitability of the CA1b pyramidal cells decreased. Thus, the EPSP brought fewer pyramidal cells to threshold than the same size EPSP in control slices. During the first 14 hr after ischemia, the antidromic population spike remained unaffected. By 24 hr after ischemia, however, the focally recorded EPSP and both orthodromic and antidromic population spikes were markedly depressed, and they declined further over the next 2 d. No recovery was detected. In the same slices, transient ischemia only mildly and reversibly affected the response of dentate granule cells to perforant path stimulation and did not affect their response to antidromic stimulation. Hippocampal slices adjacent to those used for electrophysiological recording were analyzed histologically. Examination of somatic argyrophilia confirmed that CA1b pyramidal cells suffered delayed neuronal death, whereas dentate granule cells remained intact. Pyramidal cell argyrophilia was, however, not detected until 2 d after these neurons had become virtually inexcitable. We conclude that CA1b pyramidal cells begin to lose electrophysiological function well before definite morphological signs of degeneration become visible. The observation of enhanced excitatory transmission 5-10 hr after reperfusion is consistent with the idea that delayed ischemic neuronal death results, at least in part, from excessive excitation.  相似文献   

4.
Global ischemia was produced in adult rats by combining bilateral carotid artery occlusions with systemic hypotension for 5 or 10 minutes. Induction of the 72 kD heat shock protein (HSP72) in the hippocampus was examined immunocytochemically 18-24 hours later. Several patterns of HSP72-like immunoreactivity (HSP72LI) were observed. Five minutes of ischemia induced HSP72 in isolated columns of CA1a pyramidal neurons, or throughout CA1 pyramidal neurons and dentate hilar neurons. Ten minutes of ischemia induced marked HSP72LI in CA3 pyramidal neurons, moderate HSP72LI in dentate granule cells, and minimal HSP72LI in CA1 pyramidal, dentate hilar neurons, and hippocampal glia. Two hippocampi subjected to 10 minutes of ischemia exhibited marked HSP72LI in capillary endothelial cells but no neuronal or glial HSP72LI. It is proposed that (a) the induction of HSP72 in hippocampal sectors correlates with their vulnerability to global ischemia (CA1 greater than hilus greater than CA3 greater than dentate gyrus); (b) the induction of HSP72 in hippocampal cells correlates with their vulnerability to global ischemia in that mild ischemia induced HSP72 only in neurons, moderate ischemia in neurons and glia, and severe ischemia only in capillary endothelial cells; (c) the failure to induce HSP72 in hippocampal neurons in 2 cases of 10 min ischemia may be related to severe injury causing disruption of protein synthesis in these cells.  相似文献   

5.
To investigate the possible involvement of phospholipase D2 (PLD2) in the induction of ischemic tolerance, we analyzed the distribution and time course of PLD2 expression in the rat hippocampus after a sublethal period of ischemia. Forebrain ischemia was induced by four-vessel occlusion for 3 min. Increased PLD2 immunoreactivity after this sublethal ischemia was observed in CA1 pyramidal neurons of the rat hippocampus. In tolerance-acquired CA1 neurons, PLD2 immunoreactivity was upregulated as early as 12 h post-ischemia and was most prominent at 1–3 days, with expression sustained for at least 7 days, as shown by a time course of immunoblotting and measurement of the enzymatic activity of PLD. PLD2 expression was also increased in ischemia-resistant CA3 neurons and dentate granule cells, although weaker staining intensity was noted. Further, we showed that, in cultured SK-N-BE(2)C human neuroblastoma cells, overexpression of PLD2 inhibited cell death by chemical hypoxia induced with potassium cyanide and deoxyglucose. These data suggest that upregulation of PLD2 might be involved in the neuroprotective mechanism of ischemic tolerance in the rat hippocampus. This research was supported by a grant (M103KV010010-06K2201-01010) from Brain Research Center of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology, the Republic of Korea.  相似文献   

6.
An antibody against rat calbindin-D28K, a calcium-binding protein present at high concentration in certain neurons of the central and peripheral nervous systems, was used to determine the progression of the pathological events in the rat hippocampus following experimental cerebral ischemia. Calbindin-D28K immunoreactivity is present in dentate granule cells and in the CA1-CA2 pyramidal cells. CA1 subfield contains a higher proportion of calbindin-D28K-positive pyramidal cells than does the CA2 subfield and CA1 cells are more immunoreactive than the CA2 cells. The pyramidal cells of the CA1 and CA2 subfields are vulnerable to ischemia. The cells in the CA1 became necrotic within 3-4 days after ischemia while those of the CA2 became necrotic within 2 days. There was a concomitant decrease in calbindin-D28K immunoreactivity in the whole hippocampal regio superior after ischemia which peaked 3 days postischemia. The difference in CA2 and CA1 vulnerability seemed to be inversely correlated with the calbindin-D28K contents of the CA2 and CA1 pyramidal cells. The decrease in the calbindin-D28K contents of these neurons was accompanied by cell damage. We therefore suggest that calbindin-D28K is an important factor for the survival of pyramidal cells in the hippocampal formation after ischemia.  相似文献   

7.
Transient cerebral ischemia kills CA1 pyramidal cells of the hippocampus, whereas most CA1 interneurons survive. It has been proposed that calcium-binding proteins, neurotrophins, and/or inhibitory neuropeptides protect interneurons from ischemia. However, different synaptic responses early after reperfusion could also underlie the relative vulnerabilities to ischemia of pyramidal cells and interneurons. In this study, we used gramicidin perforated patch recording in ex vivo slices to investigate gamma-aminobutyric acid (GABA) synaptic function in CA1 pyramidal cells and interneurons 4 h after a bilateral carotid occlusion accompanied by hypovolemic hypotension. At this survival time, the amplitudes of both miniature inhibitory postsynaptic currents (mIPSCs) and GABA-evoked currents were reduced in CA1 pyramidal cells, but not in CA1 interneurons. In addition, the mean rise time of mIPSCs was reduced in pyramidal cells. The reversal potential for the GABA current (E(GABA)) did not shift toward depolarizing values in either cell type, indicating that the driving force for chloride was unchanged at this survival time. We conclude that early during reperfusion GABAergic neurotransmission is attenuated exclusively in pyramidal neurons. This is likely explained by reduced GABAA receptor sensitivity or clustering and possibly also reduced GABA release, rather than by an elevation of intracellular chloride. Impaired GABA function may contribute to ischemic neuronal death by enhancing the excitability of CA1 pyramidal cells and facilitating N-methyl-D-aspartic acid channel opening. Therefore, normalizing GABAergic function might be a useful pharmacological approach to counter excessive, and potentially excitotoxic, glutamatergic activity during the postischemic period.  相似文献   

8.
Expression of mRNAs for glial cell line-derived neurotrophic factor (GDNF), neurturin (NTN) and their receptors was studied in adult rat brain using in situ hybridization after 40 kindling-evoked, rapidly recurring seizures or 10 min of global forebrain ischaemia. Following seizures, GDNF and NTN mRNAs were elevated in dentate granule cells, and c-Ret mRNA in hilar neurons and non-pyramidal cells in CA1 and CA3 regions. GFRalpha-1 mRNA levels showed more widespread increases in the dentate granule cell layer and hilus, CA1 and CA3 pyramidal layers, basolateral amygdala and parietal cortex. The expression of GFRalpha-2 mRNA increased in the piriform cortex and decreased in the CA1 region and basolateral amygdala. Forebrain ischaemia induced elevated expression of GDNF mRNA in dentate granule cells, GFRalpha-1 mRNA in the dentate granule cell layer, hilus and CA3 pyramidal layer, and GFRalpha-2 mRNA in the parietal cortex. The gene expression patterns observed here suggest that GDNF and NTN may act as target-derived factors, but also in an autocrine or paracrine manner. GFRalpha-1 can be coexpressed with GFRalpha-2 and c-Ret mRNAs in the same hippocampal or thalamic neurons, but other neurons contain GFRalpha-1 alone or together with c-Ret mRNA. The gene expression changes for the ligands, and the receptor components are region-, cell- and insult-specific, and occur independently of each other, mainly within 24 h after seizures or ischaemia. This dynamic regulation of GDNF and NTN circuits primarily at the receptor level may be important for the effectiveness of neuroprotective responses but could also trigger plastic changes, e.g. those underlying the development of epileptic syndromes.  相似文献   

9.
The hippocampus is especially vulnerable to ischemic damage. Neurons in the CA3c region and dentate hilus demonstrate fast progressive damage while CA1 pyramidal cells demonstrate delayed neuronal damage. The delayed CA1 pyramidal cell loss could be caused by postischemic neuronal hyperactivity if hippocampal interneurons are lost after ischemia. Therefore we have counted the L-glutamic acid decarboxylase (GAD)-immunoreactive neurons in the hippocampus from control rats and rats surviving 4 or 11 days after 20 minutes of cerebral ischemia. All rats were injected intraventricularly with colchicine before they were killed. The hippocampal cell counts showed an increase in GAD-immunoreactive somata visualized on the fourth postischemic day. Eleven days after ischemia, the number of GAD-immunoreactive neurons visualized in the hippocampus CA1 and CA3c region decreased. GAD-immunoreactive baskets were visualized in the pyramidal cell layer and the granule cell layer in controls and 4 days after ischemia, but not in the CA1 and CA3c pyramidal cell layer 11 days after ischemia. We suggest the number of GAD-immunoreactive neurons visualized on the fourth postischemic day increases because somatal GAD accumulation increases and, therefore, ischemia may enhance GAD production. Our previous counts of CA1 interneurons 21 days after ischemia in toluidine-stained semithin sections demonstrated no interneuron loss. Therefore we suggest that the decreased number of CA1 and CA3c GAD-immunoreactive neurons visualized 11 days after ischemia is related to a decreased GAD production. It is possible at this stage after ischemia that the interneurons have decreased their GAD production because they have lost their input and/or target cells. We conclude that our counts of GAD-immunoreactive neurons visualized after ischemia express changes in the content of somatal GAD rather than the actual number of GAD-immunoreactive somata. Finally, we conclude that the delayed loss of CA1 pyramidal cells seen 4 days after ischemia is not preceded by loss of hippocampal GAD-immunoreactive neurons.  相似文献   

10.
The CA1 pyramidal cells and dentate hilar neurons are selectively vulnerable to forebrain ischemia. Although brief ischemia induces tolerance to subsequent ischemia in the CA1 pyramidal neurons, a protective effect of preceding brief ischemia on the dentate hilar neurons has not been established. We observed that vulnerable dentate hilar neurons were strongly laminin-immunopositive and used laminin immunohistochemistry to estimate the fate of dentate hilar neurons after ischemia. Pretreatment of brief sublethal ischemia, which effectively protects the CA1 neurons, failed to prevent the death of dentate hilar neurons. These results indicate that brief ischemia failed to induce tolerance to subsequent longer ischemia in the dentate hilar neurons.  相似文献   

11.
Intrinsic excitability is a key feature dictating neuronal response to synaptic input. Here we investigate the recent observation that dentate granule neurons exhibit a more depolarized voltage threshold for action potential initiation than CA3 pyramidal neurons. We find no evidence that tonic GABA currents, leak or voltage‐gated potassium conductances, or the expression of sodium channel isoform differences can explain this depolarized threshold. Axonal initial segment voltage‐gated sodium channels, which are dominated by the NaV1.6 isoform in both cell types, distribute more proximally and exhibit lower overall density in granule neurons than in CA3 neurons. To test possible contributions of sodium channel distributions to voltage threshold and to test whether morphological differences participate, we performed simulations of dentate granule neurons and of CA3 pyramidal neurons. These simulations revealed that cell morphology and sodium channel distribution combine to yield the characteristic granule neuron action potential upswing and voltage threshold. Proximal axon sodium channel distribution strongly contributes to the higher voltage threshold of dentate granule neurons for two reasons. First, action potential initiation closer to the somatodendritic current sink causes the threshold of the initiating axon compartment to rise. Second, the proximity of the action potential initiation site to the recording site causes somatic recordings to more faithfully reflect the depolarized threshold of the axon than in cells like CA3 neurons, with distally initiating action potentials. Our results suggest that the proximal location of axon sodium channels in dentate granule neurons contributes to the intrinsic excitability differences between DG and CA3 neurons and may participate in the low‐pass filtering function of dentate granule neurons. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The extracellular concentrations of glutamate and its co-agonist for the N-methyl-d-aspartate (NMDA) receptor, glycine, may be under the control of amino acid transporters in the ischemic brain. However, there is little information on changes in glycine and glutamate transporters in the hippocampal CA1 field of gerbils with transient forebrain ischemia. This study investigated the spatial and temporal expressions of glycine transporter 1 (GLYT1) and three glutamate transporter (excitatory amino acid carrier 1, EAAC1; glutamate/aspartate transporter, GLAST; glutamate transporter 1, GLT1) mRNA in the gerbil hippocampus after 3 minutes of ischemia. The GLYT1 mRNA was transiently upregulated by the second day after ischemia in astrocytelike cells in close vicinity to hippocampal CA1 pyramidal neurons, possibly to reduce glycine concentration in the local extracellular spaces. The EAAC1 mRNA was abundantly expressed in almost all pyramidal neurons and dentate granule cells in the control gerbil hippocampus, whereas the expression level in CA1 pyramidal neurons started to decrease by the fourth day after ischemia in synchrony with degeneration of the CA1 neurons. The GLAST and GLT1 mRNA were rather intensely expressed in the dentate gyrus and CA3 field of the control hippocampus, respectively, but they were weakly expressed in the CA1 field before and after ischemia. As GLAST and GLT1 play a major role in the control of extracellular glutamate concentration, the paucity of these transporters in the CA1 field may account for the vulnerability of CA1 neurons to ischemia, provided that the functional GLAST and GLT1 proteins are also less in the CA1 field than in the CA3 field. This study suggests that the amino acid transporters play pivotal roles in the process of delayed neuronal death in the hippocampal CA1 field.  相似文献   

13.
We used monoclonal antibodies to examine the immunohistochemical distribution of the three major Ca(2+)-dependent protein kinase C (PKC) isozymes (I, II, and III) in ischemic gerbil hippocampus. Groups of four animals were sacrificed at 15 min, 4 h, 1 day, 2 days, 3 days, and 7 days after a 10-min episode of global forebrain ischemia. In control animals, PKC-I immunoreactivity was greater in CA1 neurons than in CA3-4. Terminal-like staining was not evident. PKC-II immunoreactivity was observed in all CA fields and in the outer molecular layer of the dentate gyrus. PKC-III staining was present in the CA fields, the inner molecular layer of the dentate gyrus and the subiculum. Dentate granule cells and mossy fibers were not stained with any of the PKC antibodies. Fifteen minutes and 4 h after ischemia, PCK-I, -II and -III immunoreactivity were all increased in CA1 neurons and PKC-III immunoreactivity alone was visualized in granule cells and mossy fibers. Staining patterns returned to baseline one day after ischemia. PKC-II and -III terminal-like staining were preserved in the stratum lacunosum-moleculare for 3 days and 2 days after ischemia respectively and then disappeared. The altered patterns of PKC staining in the hippocampus may reflect activation and/or down-regulation of PKC isozymes. Ca(2+)-dependent PKC isozymes may, therefore, potentially play a role in the pathogenesis of delayed ischemic neuronal death.  相似文献   

14.
Hwang IK  Do SG  Yoo KY  Kim DS  Cho JH  Kwon YG  Lee JY  Oh YS  Kang TC  Won MH 《Brain research》2004,1016(1):119-128
In this study, we observed the chronological alterations of neurofilament 150 (NF-150) immunoreactivity in the gerbil hippocampus and dentate gyrus after 5 min transient forebrain ischemia. NF-150 immunoreactivity in the sham-operated group was mainly detected in mossy fibers and in the hilar region of the dentate gyrus. NF-150 immunoreactivity and protein contents of NF-150 and RT 97 (polyphosphorylation epitopes of neurofilament) were significantly decreased at 15 min after ischemic insult. Between 30 min and 12 h after ischemic insult, NF-150 immunoreactivity and protein content were significantly increased as compared with the sham-operated group. Thereafter, NF-150 immunoreactivity and protein content started to decrease. At 12 h after ischemic insult, unlike dentate gyrus, NF-150 immunoreactivity increased in pyramidal cells of the CA1 region. Thereafter, NF-150 immunoreactivity in the CA1 region started to decrease, and 4 days after ischemic insult, NF-150 immunoreactivity nearly was similar to that of the sham-operated group. These biphasic patterns of NF-150 immunoreactivity in the hippocampus and dentate gyrus are reverse correlated with that of the intracellular calcium influx. For calcium detection in the CA1 region, we also conducted alizarin red staining. Alizarin red positive neurons were detected in some neurons at 15-30 min after ischemic insult. At 12 h after ischemia, alizarin red positive neurons were decreased. Thereafter, alizarin red positive neurons started to decrease, but alizarin positive neurons were significantly increased in dying neurons 4 days after ischemia. These results suggest that ischemia-related changes of NF-150 expression may be caused by the calcium following transient forebrain ischemia.  相似文献   

15.
We investigated the relationship between apoptosis and selective protein expression in brain from rats subjected to 8 (n=10) or 12 min (n=10) of forebrain ischemia and 48 h of reperfusion, and control sham operated (n=2) and normal (n=2). Coronal sections were processed for double staining with DNA fragmentation detection and immunohistochemical staining. In five of ten 8-min ischemic and three of ten 12-min ischemic animals, nearly all dead granule cells within the dentate gyrus exhibited apoptotic morphology. In the remaining animals, no granule cell death was evident. In the pyramidal regions (CA1/2), nearly all dead cells were necrotic with only scattered apoptotic cells present. The immunoreactive expression of wt-p53, p53-response proteins (WAF1, Bax and Gadd45), and a cell cycle protein (cyclin D) were detected and preferentially localized to nuclei of apoptotic granule cells, and were weakly expressed in nuclei of necrotic pyramidal CA1/2 cells. Thus, 48 h after 8 or 12 min of forebrain ischemia in the rat, most pyramidal cells and dentate granule cells undergo distinct cell death pathways of necrosis or apoptosis, respectively. In addition, the selective expression of proteins associated with DNA damage and cell cycle in apoptotic dentate granule cells suggests a role for these proteins in the induction of apoptosis.  相似文献   

16.
Within the hippocampus, electrophysiological and immunohistochemical studies showed that metabotropic glutamate receptor subtype 5 (mGluR5) is the major postsynaptic mGluR expressed in CA1 pyramidal neurons. To better understand the role of mGluR5 in ischemia-induced neuronal death, whole-cell patch-clamp recordings using hippocampal slices were performed to investigate the functional change of mGluR5 in CA1 pyramidal neurons following transient global ischemia. Our results indicated that 6 to 24 h after global ischemia, mGluR5-induced cationic currents and mGluR5-mediated enhancement of NMDA-evoked currents in CA1 pyramidal neurons were significantly reduced. Further TaqMan real-time quantitative RT-PCR assay showed that mGluR5 mRNA expression in hippocampal CA1 region or single CA1 pyramidal neurons was significantly downregulated following ischemic insults. The present study suggests that transient global ischemia downregulates mGluR5 function of CA1 pyramidal neurons by decreasing mGluR5 mRNA and that the resulting reduced mGluR5-mediated excitotoxicity could contribute to the survival of CA1 pyramidal neurons after ischemic insult.  相似文献   

17.
Little is known about the morphological characteristics and intracellular electrophysiological properties of neurons in the primate hippocampus and dentate gyrus. We have therefore begun a program of studies using intracellular recording and biocytin labeling in hippocampal slices from macaque monkeys. In the current study, we investigated mossy cells and proximal CA3 pyramidal cells. As in rats, macaque mossy cells display fundamentally different traits than proximal CA3 pyramidal cells. Interestingly, macaque mossy cells and CA3 pyramidal neurons display some morphological differences from those in rats. Macaque monkey mossy cells extend more dendrites into the molecular layer of the dentate gyrus, have more elaborate thorny excrescences on their proximal dendrites, and project more axon collaterals into the CA3 region. In macaques, three types of proximal CA3 pyramidal cells are found: classical pyramidal cells, neurons with their dendrites confined to the CA3 pyramidal cell layer, and a previously undescribed cell type, the "dentate" CA3 pyramidal cell, whose apical dendrites extend into and ramify within the hilus, granule cell layer, and molecular layer of the dentate gyrus. The basic electrophysiological properties of mossy cells and proximal CA3 cells are similar to those reported for the rodent. Mossy cells have a higher frequency of large amplitude spontaneous depolarizing postsynaptic potentials, and proximal CA3 pyramidal cells are more likely to discharge bursts of action potentials. Although mossy cells and CA3 pyramidal cells in macaque monkeys display many morphological and electrophysiological features described in rodents, these findings highlight significant species differences, with more heterogeneity and the potential for richer interconnections in the primate hippocampus.  相似文献   

18.
Shetty AK  Hattiangady B 《Hippocampus》2007,17(10):943-956
Degeneration of the CA3 pyramidal and dentate hilar neurons in the adult rat hippocampus after an intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, leads to permanent loss of the calcium binding protein calbindin in major fractions of dentate granule cells and CA1 pyramidal neurons. We hypothesize that the enduring loss of calbindin in the dentate gyrus and the CA1 subfield after CA3-lesion is due to disruption of the hippocampal circuitry leading to hyperexcitability in these regions; therefore, specific cell grafts that are capable of both reconstructing the disrupted circuitry and suppressing hyperexcitability in the injured hippocampus can restore calbindin. We compared the effects of fetal CA3 or CA1 cell grafting into the injured CA3 region of adult rats at 45 days after KA-induced injury on the hippocampal calbindin. The calbindin immunoreactivity in the dentate granule cells and the CA1 pyramidal neurons of grafted animals was evaluated at 6 months after injury (i.e. at 4.5 months post-grafting). Compared with the intact hippocampus, the calbindin in "lesion-only" hippocampus was dramatically reduced at 6 months post-lesion. However, calbindin expression was restored in the lesioned hippocampus receiving CA3 cell grafts. In contrast, in the lesioned hippocampus receiving CA1 cell grafts, calbindin expression remained less than the intact hippocampus. Thus, specific cell grafting restores the injury-induced loss of calbindin in the adult hippocampus, likely via restitution of the disrupted circuitry. Since loss of calbindin after hippocampal injury is linked to hyperexcitability, re-expression of calbindin in both dentate gyrus and CA1 subfield following CA3 cell grafting may suggest that specific cell grafting is efficacious for ameliorating injury-induced hyperexcitability in the adult hippocampus. However, electrophysiological studies of KA-lesioned hippocampus receiving CA3 cell grafts are required in future to validate this possibility.  相似文献   

19.
Abstract

A replication-defective adenoviral vector containing the E. coli lacZ gene was directly injected into normal and post-ischemic gerbil right hippocampus and lateral ventricle, and temporal profiles of the exogenous gene expression were compared. In case of ischemia, common carotid arteries (CCA) were transiently occluded for 5 minI and the adenoviral vector was administered just after the reperfusion. The animals were recovered for 8 h, 7, 3, 7 or 27 days. A small to moderate number of neural cells in the normal hippocampus expressed the gene from 7-3 days except for the cells around dentate gyrus (DG) and the needle route that began to express from 8 h of injection. Some normal hippocampal cells persisted the expression until 7 days. A moderate to large number of ventricular cells expressed the lacZ gene from 8 h to 7 days in the normal brain. On the other hand, no expression of the lacZ gene was observed in the postischemic hippocampus at 8 h including cells at DG and the needle route. Hippocampal CA 7 neurons, that were selectively lost at 7 days of reperfusion, never expressed the gene throughout the post-ischemic course. The other hippocampal cells such as CA3 and dentate granule cells that survived ischemia expressed the gene only transiently at 7 day. A robust expression of the gene persisted in the ventricular cells from 8 h to 7 days. The majority of brain cells in the hippocampus that expressed the lacZ gene was not the pyramidal neurons, but small neurons at around the pyramidal layers of DG. Some astroglial, but no microglial, cells expressed the lacZ gene in the hippocampus. The present study shows that an expression of the lacZ gene was limited in the post-ischemic gerbil hippocampus especially at the vulnerable CA 7 layer in contrast to the strong and persistent expression in the ventricular cells, and that the majority β-gal positive cells were not.the pyramidal neurons but small neurons at around the cell layer both in the control and post-ischemic gerbil hippocampus. [Neural Res 1998; 20: 689-696]  相似文献   

20.
Mints (munc18-interacting proteins) are novel multimodular adapter proteins in membrane transport and organization. Mint1, a neuronal isoform, is involved in synaptic vesicle exocytosis. Its potential effects on development of ischemic damage to neurons have not yet been evaluated. The authors examined changes in mint1 and other synaptic proteins by immunohistochemistry after transient global ischemia in mouse hippocampus. In sham-ischemic mice, immunoreactivity for mint1 was rich in fibers projecting from the entorhinal cortex to the hippocampus and in the mossy fibers linking the granule cells of the dentate gyrus to CA3 pyramidal neurons. Munc18-1, a binding partner of mint1, was distributed uniformly throughout the hippocampus, and synaptophysin 2, a synaptic vesicle protein, was localized mainly in mossy fibers. After transient global ischemia, mint1 immunoreactivity in mossy fibers was dramatically decreased at 1 day of reperfusion but actually showed enhancement at 3 days. However, munc18-1 and synaptophysin 2 were substantially expressed in the same region throughout the reperfusion period. These findings suggest that mint1 participates in neuronal transmission along the excitatory pathway linking the entorhinal cortex to CA3 in the hippocampus. Because mint1 was transiently decreased in the mossy fiber projection after ischemia, functional impairment of neuronal transmission in the projection from the dentate gyrus to CA3 pyramidal neurons might be involved in delayed neuronal death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号