首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In mouse right ventricular strips, field-stimulated to contract isometrically in an oxygenated bicarbonate-buffered physiological salt solution at 22--24 degrees C, the EC50 for the inotropic action of isoproterenol decreased from 37 nM in muscles stimulated at 0.2 Hz to 5 nM in muscles stimulated at 3.3 Hz. At higher rates of contraction, there was also an increased sensitivity to the inotropic actions of norepinephrine and epinephrine but not to those of Ca++ and N6,O2'-dibutyryl cyclic AMP. Increasing the Ca++ concentration further decreased the EC50 for isoproterenol at 3.3 Hz but had no effect on the EC50 at 0.2 Hz. The leftward shift of the contractile response curve at 3.3 Hz was inhibited by verapamil (0.6 microM) and Mn++ (0.25 mM). The stimulation of cyclic AMP accumulation was approximately 6-fold more sensitive to isoproterenol at 3.3 than at 0.2 Hz, but isoproterenol increased contractile force at concentrations two orders of magnitude lower than those that significantly increased cyclic AMP accumulation. Inhibition of cyclic AMP phosphodiesterase activity further increased the sensitivity to the inotropic actions of isoproterenol but did not attenuate the frequency difference. The results indicate that isoproterenol-stimulated Ca++ influx through the slow channel plays an important role in the mechanism of the increased sensitivity to the inotropic action of isoproterenol found at higher frequencies of contraction. Although cyclic AMP accumulation was also frequency dependent, its role in the inotropic action of isoproterenol in mouse heart is not clear.  相似文献   

2.
CCl4 rapidly and severely inhibits hepatic endoplasmic reticulum calcium (Ca++) sequestration in rats exposed to this hepatotoxin in vivo. As a consequence, it is possible that cytosolic Ca++ concentrations become elevated in liver cells. In this study, the authors examined intracellular Ca++ concentrations in cultured rat hepatocytes exposed to CCl4 by monitoring the activity of phosphorylase a. Glycogen phosphorylase is converted to its a form in response to increases in cytoplasmic Ca++. Elevated phosphorylase a activity was observed within 2.5 min and was maintained for at least 30 min after exposure of hepatocytes to CCl4. Endoplasmic reticulum Ca++ pump activity decreased in a parallel manner. Phosphorylase activation was cyclic AMP independent and did not require extracellular Ca++. Cytoplasmic enzyme was released from hepatocytes within 30 min after CCl4 addition. Thus it was confirmed that exposure of hepatocytes to CCl4 causes release of Ca++ from an intracellular store (likely endoplasmic reticulum) and resultant activation of a Ca++-responsive cytosolic enzyme. From a calibration curve, it was estimated that cytosolic Ca++ is elevated up to 100-fold in rat hepatocytes exposed to the model hepatotoxin CCl4. It is postulated that prolonged elevation of intracellular Ca++ concentrations may trigger excessive stimulation of Ca++-sensitive enzymes capable of initiating irreversible liver cell injury.  相似文献   

3.
Diaphragm extracts from mice with the phosphorylase kinase deficiency mutation (I strain) have only 3.7% of the phosphorylase kinase activity of muscle extracts of the control strain (C57BL). Nevertheless, previous studies have shown that isoproterenol-stimulated glycogenolysis in I strain diaphragm muscle at a rate 57% (average relative response at 10 isoproterenol concentrations) of that of C57BL (GROSS, S.R., MAYER, S.E. and LONGSHORE, M.A.: J. Pharmacol. Exp. Ther. 198: 523-538, 1976). The present studies were initiated to compare the mechanism of isoproterenol-stimulated glycogenolysis in I and C57BL diaphragms. Isoproterenol was found to stimulate phosphorylase b to a conversion with an EC50 of 8 nM in muscles from mice of either strain, and the maximum increase in phosphorylase alpha activity in I diaphragms was 23% of that in C57BL diaphragms. Moreover, the initial rate of increase in phosphorylase alpha activity in I diaphragms incubated with 40 nM isoproterenol was 24% of that in C57BL muscles. The isoproterenol-stimulated increases in cyclic AMP content in diaphragms of the two strains were the same. Incubation of I diaphragms with isoproterenol did not significantly increase the concentrations of AMP, IMP or inorganic phosphate, activators of phosphorylase beta activity, nor was there a decrease in ATP and glucose 6-phosphate content, allosteric inhibitors of phosphorylase beta activity. Thus, phosphorylase alpha formation is the principal, if not only, catalyst of isoproterenol-stimulated glycogenolysis in skeletal muscle of phosphorylase kinase-deficient mice, and no evidence was obtained indicating that allosteric regulation of phosphorylase beta activity is part of the mechanism.  相似文献   

4.
The effects of leukotriene D4 and methacholine on cyclic nucleotide content and isoproterenol-induced relaxation were examined in the isolated opossum trachea. Although leukotriene D4 (-log EC50 = 6.70) was a more potent contractile agent than methacholine (-log EC50 = 5.78), the maximal response to leukotriene D4 was only 65% of the maximum response to methacholine. Contraction of tracheal strips with leukotriene D4 was accompanied by a 3-fold increase in cyclic GMP accumulation. Methacholine-induced contraction was not associated with an increase in cyclic GMP. Neither agent altered basal cyclic AMP content. Additional experiments were carried out to examine functional inhibitory interactions between bronchoconstricting and bronchodilating pathways. In these studies, cumulative isoproterenol concentration-response curves were constructed in tracheal strips contracted with three different concentrations of methacholine and in tissues contracted with three corresponding equieffective concentrations of leukotriene D4. Although the relaxant response to isoproterenol decreased as tissues were contracted with higher concentrations of either agent, the inhibitory effect of methacholine on isoproterenol-induced relaxation was much greater than the inhibitory effect of leukotriene D4. Previous studies from our laboratory suggested that a potential explanation for the greater inhibitory effect of methacholine on the mechanical response to isoproterenol was that methacholine may inhibit isoproterenol-stimulated cyclic AMP accumulation whereas leukotriene D4 may not. However, neither methacholine nor leukotriene D4 inhibited isoproterenol-stimulated cyclic AMP accumulation in the opossum trachea. The results of this study indicate that the sensitivity of airway smooth muscle to beta adrenoceptor agonists is influenced both by the initial contractile state of the tissue and by the type of agent used to induce tone.  相似文献   

5.
We have investigated the contribution of extra- and intracellular Ca++ and calmodulin to beta adrenergic receptor-stimulated prostaglandin synthesis in the isolated rabbit heart perfused with Krebs-Henseleit buffer. Administration of isoproterenol (100 ng) increased the output of immunoreactive 6-keto-prostaglandin F1 alpha and prostaglandin E2 as well as heart rate and developed tension; the coronary perfusion pressure was reduced. Isoproterenol-induced output of prostaglandins was positively correlated with the extracellular Ca++ concentration (0-5 mM). Infusion of the Ca++ channel blockers diltiazem (22 microM) or nifedipine (0.27 microM) inhibited isoproterenol-stimulated output of prostaglandins and the positive inotropic but not the positive chronotropic effect of the amine. Administration of the intracellular Ca++ antagonists 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride (23 microM) or ryanodine (1.6 microM) reduced the outflow of prostaglandins and the positive chronotropic and inotropic effect elicited by isoproterenol. The calmodulin inhibitors trifluoperazine (50 microM) or calmidazolium (1 microM) failed to alter isoproterenol-induced output of prostaglandins; trifluoperazine but not calmidazolium reduced the developed tension and coronary perfusion pressure without altering heart rate. The prostaglandin synthesis elicited by arachidonic acid (3 micrograms) was inhibited by indomethacin but not by alterations in extracellular Ca++, Ca++ channel blockers, intracellular Ca++ antagonists or calmodulin inhibitors. These data suggest that activation of beta adrenergic receptors promotes cardiac prostaglandin synthesis and myocardial contractility by increasing the trans-sarcolemmal flux of Ca++, which releases intracellular Ca++.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Prostaglandin (PG) synthesis elicited by adrenergic transmitter in the vascular smooth muscle cells (VSMC) of rabbit aorta is primarily mediated through activation of alpha-2C and alpha-1A adrenergic receptors (ARs). We have now investigated and compared the signal transduction mechanisms involved in alpha-2C and alpha-1A AR-stimulated prostacyclin (PGI2) production, measured as 6-keto-PGF1 alpha, in vascular smooth muscle cells. Norepinephrine, methoxamine (an alpha-1 AR agonist) and UK-14304 (an alpha-2 AR agonist) enhanced 6-keto-PGF1 alpha production. UK-14304 and norepinephrine (in the presence of propranolol), but not methoxamine, reduced basal adenosine 2':3'-cyclic monophosphate (cyclic AMP) as well as forskolin- and isoproterenol-stimulated cyclic AMP accumulation. Forskolin and isoproterenol did not alter basal 6-keto-PGF1 alpha production and alpha AR agonist-induced 6-keto-PGF1 alpha production. Alpha-2C and alpha-1A AR-stimulated 6-keto-PGF1 alpha production was independent of cyclic AMP levels in vascular smooth muscle cells. Both alpha-2C and alpha-1A AR-stimulated 6-keto-PGF1 alpha production required extracellular Ca++. Pertussis toxin prevented inhibition of cyclic AMP accumulation and reduced 6-keto-PGF1 alpha production in response to AR agonists. Guanosine 5'-O-(3-thiotriphosphate) potentiated 6-keto-PGF1 alpha production induced by norepinephrine and UK-14304 but not by methoxamine, whereas at a higher Mg++ concentration (4 mM), guanosine 5'-O-(3-thiotriphosphate) potentiated 6-keto-PGF1 alpha production by all three agonists. In contrast, the effect of UK-14304 on cyclic AMP was prevented in the presence of 4 mM Mg++. These data suggest that the pertussis toxin-sensitive G protein(s) mediated the stimulation of PG synthesis by alpha-1A and alpha-2C AR activation and the decrease in cyclic AMP accumulation by alpha-2C AR activation.  相似文献   

7.
Atrial natriuretic peptide II (ANP II) raises cyclic GMP and relaxes vascular smooth muscle in vitro. The manner in which ANP II relaxes vascular smooth muscle is unknown but may involve alterations in the concentration of free intracellular Ca++. To examine this possibility, changes in intracellular Ca++ were monitored in rat aortic strips using the Ca++-dependent conversion of phosphorylase b to a, while Ca++ levels and phosphorylase were measured in cultured rat aortic smooth muscle cells. ANP II produced time- and concentration-dependent decreases in phosphorylase a and tension in norepinephrine-contracted aortic strips. The decrease in the formation of phosphorylase a was accompanied by an increase in cyclic GMP content. ANP II also decreased phosphorylase a formation in K+-depolarized tissues but to a lesser extent. Agonists such as angiotensin II and arginine vasopressin, and depolarizing concentrations of K+ elevated Ca++ levels in cultured aortic cells. ANP II inhibited Ca++ accumulation to either agonists or K+, but was more effective against agonists. Phosphorylase a formation which was increased by agonists and K+ in cultured cells was also inhibited by ANP II. We conclude that phosphorylase a formation can be a useful indicator of intracellular Ca++ concentrations in smooth muscle preparations and that ANP II regulates Ca++ levels in agonist and depolarized smooth muscle, suggesting that ANP II affects mainly Ca++ removal from the cytoplasm.  相似文献   

8.
The biochemical basis for the functional interaction between bronchoconstricting and bronchodilating pathways was investigated. Contracting canine trachealis strips with increasing concentrations of methacholine resulted in a progressive shift to the right of isoproterenol concentration-response curves. Thus, the EC50 for the relaxant response to isoproterenol was nearly 500-fold higher in preparations exposed to 3.0 microM methacholine than in tissues exposed to 0.03 microM methacholine. The maximum relaxation produced by isoproterenol was also dependent upon the initial muscarinic cholinergic tone. For example, isoproterenol reversed completely the contraction induced by 0.03 microM methacholine but did not relax trachealis strips contracted with 30 microM methacholine. To identify the molecular mechanism responsible for this functional antagonism, experiments were conducted to determine the effect of methacholine on isoproterenol-stimulated cyclic AMP accumulation and cyclic AMP-dependent protein kinase activation. Methacholine did not alter basal cyclic AMP content but did reduce cyclic AMP accumulation in response to isoproterenol. Furthermore, the ability of isoproterenol to activate cyclic AMP-dependent protein kinase was inhibited by methacholine in a concentration-dependent manner. This inhibition paralleled the decrease in mechanical responsiveness to isoproterenol. These results suggest that muscarinic cholinergic stimulation of canine tracheal smooth muscle functionally antagonizes the relaxant responses to beta adrenergic agonists and that a portion of this antagonism may be due to a suppression of catecholamine-stimulated cyclic AMP accumulation and cyclic AMP-dependent protein kinase activation.  相似文献   

9.
A specific system of transport for p-aminohippurate (PAH) is demonstrated in rabbit renal basal-lateral membrane vesicles. The PAH uptake into an intravesicular space is inhibited by probenecid in concentrations above 0.2 mM. The transport is saturable and is also temperature-dependent with an optimum between 37 and 45 degrees C. Divalent cations are able to enhance the uptake 2- to 3-fold. The stimulatory effect of the divalent cations diminishes in the following order: Mg++ = Mn++, Ba++, Ca++ and Sr++. Maximum stimulation occurs between 2.5 and 5 mM Mg++. The divalent cation stimulatory effect is not the result of changes in the size of the vesicles, in the degree of vesiculation, in the net charge of the membrane or of a transient potential difference across the membrane. Several inhibitors, more inhibitory than probenecid, were found. These are: lithium diiodosalicylate; 4-acetamido-4'-isothiocyano 2,2'-disulfonic acid stilbene; the mercurials, mersalyl acid, p-chloromercuriphenyl sulfonate and Hg++; and 5,5'-dithiobis(nitrobenzoate). Among these, mersalyl acid is the most potent inhibitor for PAH uptake. Its inhibitory effect is probably a combination of its reactivity toward sulfhydryl groups and its anionic character. The results with sulfhydryl reagents indicate that the PAH transport system contains sulfhydryl groups which are essential for the uptake activity. These sulfhydryl groups are probably buried in a hydrophobic region within the lipoprotein matrix of the basal-lateral membrane.  相似文献   

10.
Our previous observations suggested that beta adrenergic-mediated relaxation of the rat myometrium could not be ascribed solely to cyclic AMP. The present study examines the relationships between relaxation and cyclic AMP accumulation in the myometrium in response to isoproterenol, forskolin and the combination of both. The diterpene enhanced cyclic AMP generation and potentiated the rises in cyclic AMP due to isoproterenol and prostaglandin (PG) E2. Isoproterenol-induced relaxation of a carbachol-contracted myometrium was associated with modest increments in cyclic AMP (6-12 pmol/mg of protein) in contrast to forskolin whose relaxing effect could be expressed only when associated with large increases in cyclic AMP (80-180 pmol/mg of protein). PGE2, although elevating cyclic AMP to the same extent as isoproterenol, caused contractions which were antagonized by isoproterenol and forskolin, respectively, associated with low and high cyclic AMP concentrations. Both PGE2 and forskolin, by virtue of their stimulatory effect on cyclic AMP generation, enhanced the efficiency of isoproterenol to cause relaxation. Likewise, the greater efficacy of forskolin to relax a PGE2- as opposed to a carbachol-contracted myometrium, was ascribed to its potentiated cyclic AMP response when combined with PGE2. It is proposed that the beta adrenoceptor-linked relaxation results from the concerted effects of both a cyclic AMP-dependent (sensitive to low cyclic AMP) and a cyclic AMP-independent process; the latter is postulated to operate at the membrane level with an ultimate reduction in cytosolic Ca++. On the other hand, cyclic AMP, provided it reached a critical concentration essential to mediate intracellular Ca++ sequestration, would be the sole determinant for forskolin-elicited relaxation.  相似文献   

11.
It has been suggested that amrinone and AR-L57 enhance cardiac contractility either by inhibiting phosphodiesterase activity or altering Ca++ homeostasis. Because these novel agents are potentially useful in the management of heart failure, it was of interest to more clearly define their mechanism(s) of action. Amrinone and AR-L57 caused concentration-dependent increases in the contractile states of either perfused guinea-pig hearts or cultured rat cardiomyocytes. To determine whether these actions might result from an increase in sarcolemmal Ca++ movement, the effects of these agents on Ca++ accumulation were studied in a simple system, dog erythrocytes. Both agents promoted erythrocyte Ca++ accumulation in time and concentration-dependent manners, effects that resulted primarily from increased Ca++ entry. However, because these effects were not measurable at inotropic drug concentrations and were apparent only after a 30-min incubation, they did not provide an explanation for the inotropic effects of these agents. Amrinone and AR-L57 inhibited dog heart phosphodiesterase activity (isozyme III) with EC50 values of 23 and 420 microM, respectively; however, only the inotropic responses to amrinone were attenuated by the muscarinic agonist, carbachol, thereby implying a cAMP (cyclic AMP)-dependent mechanism. In cultured ventricular cells, concentrations of amrinone (2 X 10(-4) M) and AR-L57 (3 X 10(-5) M) that caused maximal inotropic responses were associated with the activation of glycogen phosphorylase, but neither drug significantly increased the activation state of cAMP-dependent protein kinase. To further probe the effects of these drugs on intracellular cAMP and Ca++ metabolism, their effects on protein phosphorylation were studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Basophil leukocytes from human blood secrete histamine in the absence of a membrane stimulus when incubated in a medium containing Sr++, 1 to 10 mM. Spontaneous histamine secretion in the presence of Sr++ is inhibited by La+++, 1 to 1000 nM and 2 deoxy-D-glucose, 30 to 300 microM. Spontaneous secretion in the presence of Sr++ increases with increasing pH in the range 6.5 to 8.5. Agents which cause a rise of intracellular cyclic AMP level increase the spontaneous secretion in 194th presence of Sr++. The results suggest that spontaneous histamine release is a secretory response of the cells, and evidence is provided for a dual role of cyclic AMP in the control of histamine secretion.  相似文献   

13.
The excitatory phase of the biphasic action on transmitter release of the neurotoxin, beta-bungarotoxin (beta-BuTX; 0.5 microgram ml-1), was studied on miniature end-plate potentials (MEPPs) at frog sciatic nerve-sartorius muscle junctions. The most common type of excitatory response was characterized by a continuous increase in MEPP frequency that reached a plateau; a less common form was characterized by irregular episodic bursts of firing. There was a direct relationship between toxin activity and [K+]O (2.5-10.0 mM) with virtually no effect of the toxin at normal [K]O+ at the concentration of toxin used. In the absence of Mg++, there was a paradoxical inverse relationship between toxin activity and [Ca++]O (0.5-4.0 mM) at higher [K+]O. However, in the presence of 1.0 mM Mg++ the increased MEPP frequency produced by beta-BuTX was independent of [Ca++]O. The action of beta-BuTX was very sensitive to blockade by Mg++. Toxin activity was demonstrated in a Sr++-containing, Ca++-free solution, but not in a Mg++-containing, Ca++-free solution. It is probable that beta-BuTX causes a slight depolarization of the nerve terminals by a mechanism not sensitive to blockade by tetrodotoxin and that the ability of beta-BuTX to depolarize the terminals can account for the enhancement of the response by raising [K+]O and the depression of the response by Mg++. Alternatively, beta-BuTX could be producing its effects by some, as yet undefined, direct action on the release process.  相似文献   

14.
Regulation of the cytosolic free calcium concentration is important to neutrophil function. In these studies, an ATP-dependent calcium uptake pump has been identified in human neutrophil lysosomes. This energy-dependent Ca++ uptake pump has a high affinity for Ca++ (Michaelis constant [Km] Ca++ = 107 nM) and a maximum velocity (Vmax) of 5.3 pmol/mg of protein per min. ATP was the only nucleotide that supported Ca++ uptake by lysosomes. The Km for ATP was 177 microM. ATP-dependent Ca++ uptake by neutrophil lysosomes was temperature- and pH-sensitive with optimal Ca++ pump activity at 37 degrees C and pH 7.0-7.5. Mg++ was also essential for ATP-dependent Ca++ uptake by lysosomes. Azide and antimycin A had no effect on the energy-dependent uptake of Ca++ by neutrophil lysosomes. The chemotactic peptide formyl-methionyl-leucyl-phenylalanine inhibited ATP-dependent Ca++ accumulation by isolated lysosomes. Butoxycarbonyl-phenylalanine-leucine-phenylalanine-leucine-phenylalanine , a competitive antagonist of the chemotactic peptide, blocked this inhibitory effect. These studies demonstrate the presence of an ATP-dependent Ca++ uptake pump in human neutrophil lysosomes that functions at physiologic intracellular concentrations of Ca++, ATP, and H+ and may be important to regulating neutrophil function by modulating cytosolic Ca++.  相似文献   

15.
Methylisobutylxanthine (MIX) augmented contractions and Ca++-dependent action potentials in ventricles isolated from embryonic and hatched chicks. Acetylcholine (ACh) inhibited these effects of MIX. In ventricles from chicks on the 18th incubation day, cyclic AMP content was increased to about 150% of basal after 3 min in 3 X 10(-4) M MIX. ACh (10(-6) M) did not reduce the cyclic AMP accumulation caused by MIX, although the increase in twitch tension was abolished. However, 10(-4) M ACh blocked the MIX-induced increases in both twitch tension and cyclic AMP. We conclude, therefore, that ACh antagonizes the effects of MIX both by blocking the action of elevated cyclic AMP and in higher concentrations, also by inhibiting the accumulation of cyclic AMP. In homogenates of chick ventricles. ACh neither stimulated phosphodiesterase activity nor blocked the inhibition of phosphodiesterase by MIX. Therefore, inhibition of cyclic AMP accumulation by higher concentrations of ACh may result from an inhibition of adenylate cyclase activity. Since neither 10(-6) nor 10(-4) M ACh reduced basal cyclic AMP content, basal adenylate cyclase is presumably not affected by ACh. We speculate that MIX may indirectly increase adenylate cyclase activity by antagonizing an inhibitory effect of endogenous adenosine. Furthermore, ACh may interfere with this effect of MIX, thereby facilitating the inhibition of adenylate cyclase by adenosine.  相似文献   

16.
Bath application of methylmercury (MeHg) at the murine neuromuscular junction blocks synchronous evoked release of acetylcholine (ACh) and then increases spontaneous release of ACh effects observed electrophysiologically as cessation of EPPS, and increased MEPP frequency (MEPPf), respectively. The objectives of the present study were to test whether the effect of MeHg on spontaneous release was Ca++-specific by substituting Sr++ or Ba++ for Ca++, whether the time course of MeHg-induced block of synchronous evoked release was altered by varying Ca++ concentrations or substituting Sr++ and whether the processes involved in the decay of elevated MEPPf after repetitive stimulation (asynchronous evoked release) were altered by MeHg. MEPPf was recorded continuously from the rat hemidiaphragm using conventional methods during pretreatment with 2 mM Ca++, 2 mM Sr++ or 0.5 mM Ba++ and subsequently with the cation plus 100 microM MeHg. The time to peak MEPPf in MeHg was not different under any condition; however, peak MEPPf was lower in Sr++ solutions than in Ca++ or Ba++ solutions. EPPs were recorded from the rat hemidiaphragm cut muscle preparation during pretreatment with either 2, 4 or 8 mM Ca++ or 2 or 4 mM Sr++ and subsequently with the cation plus 100 microM MeHg. The latency to block of the EPP in 4 and 8 mM Ca++ was not significantly different from the latency in 2 mM Ca++. The latency to block in 2 or 4 mM Sr++ was also not different from that in Ca++. In addition, under all conditions EPP amplitude remained virtually unchanged from pretreatment values until block occurred after 8 to 9 min exposure to MeHg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Calcium and cyclic AMP are important in the stimulation of insulin release. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) raises islet cAMP levels and causes insulin release at nonstimulatory glucose concentrations. In isolated rat pancreatic islets maintained for 2 d in tissue culture, the effects of IBMX on insulin release and 45Ca++ fluxes were compared with those of glucose. During perifusion at 1 mM Ca++, 16.7 mM glucose elicited a biphasic insulin release, whereas 1 mM IBMX in the presence of 2.8 mM glucose caused a monophasic release. Decreasing extracellular Ca++ a monophasic release. Decreasing extracellular Ca++ to 0.1 mM during stimulation reduced the glucose effect by 80% but did not alter IBMX-induced release. Both glucose and IBMX stimulated 45Ca++ uptake (5 min). 45Ca++ efflux from islets loaded to isotopic equilibrium (46 h) was increased by both substances. IBMX stimulation of insulin release, of 45Ca++ uptake, and of efflux were not inhibited by blockade of Ca++ uptake with verapamil, whereas glucose-induced changes are known to be inhibited. Because IBMX-induced insulin release remained unaltered at 0.1 mM calcium, it appears that cAMP-stimulated insulin release is controlled by intracellular calcium. This is supported by perifusion experiments at 0 Ca++ when IBMX stimulated net Ca++ efflux. In addition, glucose-stimulated insulin release was potentiated by IBMX. These results suggest that cAMP induced insulin release is mediated by increases in cytosolic Ca++ and that cAMP causes dislocation of Ca++ from intracellular stores.  相似文献   

18.
Synaptic transmission in the isolated bullfrog sympathetic ganglion was studied during graded reductions in extracellular Ca++, from the normal of 1.8 mM, in the absence and in the presence of different concentrations of 3,4-diaminopyridine (3,4-DAP). In drug-free Ringer's synaptic transmission, measured as the amplitude of the postganglionic compound action potential, failed progressively as Ca++ was reduced from 1.8 to 0.47 mM. This Ca++-dependence curve of synaptic transmission was shifted to the left (lower Ca++) by 3,4-DAP in dose-related fashion with threshold at 0.1 microM and maximum shift at 10 microM 3,4-DAP. At maximum shift (4- to 5-fold) in the Ca++-dependence curve, compound action potential amplitude was normal at 0.33 mM Ca++ then failed progressively as Ca++ was reduced to 0.12 mM. Also 3,4-DAP causes stimulus-bound repetitive postganglionic responses (SBR) to single preganglionic stimuli (Apatoff and Riker, 1982). SBR were selectively abolished as Ca++ was reduced form 1.8 to 0.47 mM. The data reveal that 3,4-DAP facilitates presynaptic influx or binding of Ca++. Furthermore, the high Ca++ requirement for 3,4-DAP-induced SBR, as well as the difference between threshold drug concentrations for preserving transmission (0.1 microM) and for generating SBR (2-5 microM), lead to the speculation that there may be two presynaptic receptors for 3,4-DAP.  相似文献   

19.
The analgesic effect of morphine was antagonized in mice by intracerebroventricular injection of Ca++, Mg++ and Mn++ and was potentiated by ethylene glycol tetraacetic acid but was not altered by Sr++, Ba++, Ni++, Hg++, Cd++ or ethylenediamine tetraacetic acid. The antagonistic effect of Ca++ was not altered by pretreatment with pargyline or 6-hydroxydopamine indicating that altered release of catecholamines or serotonin was not involved in this action of Ca++. Induction of morphine tolerance by pellet implantation also did not alter the antagonistic effect of Ca++. The antagonistic effects of Ca++ and naloxone were additive in both nontolerant and tolerant animals and the apparent affinity of naloxone for its receptors, as estimated by in vivo pA2 determinations, was not altered by Ca++. However, the ionophore X537A was found to increase greatly the narcotic antagonist effect of a low dose of Ca++ although the ionophore alone did not alter the effects of morphine. This indicates that Ca"++ must penetrate cell membranes in order to reduce the analgesic effects of morphine. These findings indicate the importance of Ca++ localization in the actions of narcotic agonists and antagonists.  相似文献   

20.
Effects of selective (nicardipine) and nonselective (Cd++) Ca++ channel antagonists on the responses of isolated dog cerebral arteries to vasodilator nerve stimulation, substance P, serotonin and prostaglandin F2 alpha were investigated; the relaxation caused by the nerve stimulation and the peptide is mediated by NO, possibly from the nerve and endothelium, respectively. Relaxant responses to nerve stimulation by electrical pulses and nicotine in the endothelium-denuded arteries were attenuated by Cd++, but not influenced by nicardipine; the concentrations of these antagonists were sufficient to suppress contractions caused by prostaglandin F2 alpha and serotonin to a similar extent. Increase in cyclic GMP by nicotine was also suppressed solely by Cd++. In the endothelium-intact arteries treated with indomethacin, relaxations induced by substance P were not affected by nicardipine, but were significantly attenuated by Cd++. The peptide-induced increase in cyclic GMP was suppressed by Cd++, but not by nicardipine. It is concluded that functional properties of the Ca++ channel responsible for increasing cytosolic Ca++ in the nerve and endothelium for the synthesis and release of nitric oxide or endothelium-derived relaxing factor differ from those of the channel in smooth muscle. Because Ca++ is a prerequisite for the synthesis of NO, smooth muscle does not appear to be the site of production of NO that transmits vasodilator information from the nerve or endothelium to cerebroarterial smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号