首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The anatomic generators of human median nerve somatosensory evoked potentials (SEPs) in the 40 to 250-ms latency range were investigated in 54 patients by means of cortical-surface and transcortical recordings obtained during neurosurgery. 2. Contralateral stimulation evoked three groups of SEPs recorded from the hand representation area of sensorimotor cortex: P45-N80-P180, recorded anterior to the central sulcus (CS) and maximal on the precentral gyrus; N45-P80-N180, recorded posterior to the CS and maximal on the postcentral gyrus; and P50-N90-P190, recorded near and on either side of the CS. 3. P45-N80-P180 inverted in polarity to N45-P80-N180 across the CS but was similar in polarity from the cortical surface and white matter in transcortical recordings. These spatial distributions were similar to those of the short-latency P20-N30 and N20-P30 potentials described in the preceding paper, suggesting that these long-latency potentials are generated in area 3b of somatosensory cortex. 4. P50-N90-P190 was largest over the anterior one-half of somatosensory cortex and did not show polarity inversion across the CS. This spatial distribution was similar to that of the short-latency P25-N35 potentials described in the preceding paper and, together with our and Goldring et al. 1970; Stohr and Goldring 1969 transcortical recordings, suggest that these long-latency potentials are generated in area 1 of somatosensory cortex. 5. SEPs of apparently local origin were recorded from several regions of sensorimotor cortex to stimulation of the ipsilateral median nerve. Surface and transcortical recordings suggest that the ipsilateral potentials are generated not in area 3b, but rather in other regions of sensorimotor cortex perhaps including areas 4, 1, 2, and 7. This spatial distribution suggests that the ipsilateral potentials are generated by transcallosal input from the contralateral hemisphere. 6. Recordings from the periSylvian region were characterized by P100 and N100, recorded above and below the Sylvian sulcus (SS) respectively. This distribution suggests a tangential generator located in the upper wall of the SS in the second somatosensory area (SII). In addition, N125 and P200, recorded near and on either side of the SS, suggest a radial generator in a portion of SII located in surface cortex above the SS. 7. In comparison with the short-latency SEPs described in the preceding paper, the long-latency potentials were more variable and were more affected by intraoperative conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. The anatomic generators of somatosensory evoked potentials (SEPs) to median nerve stimulation in the 10- to 30-ms latency range were investigated in monkeys (Macaca fascicularis) by means of cortical-surface and laminar recordings. 2. Three groups of SEPs evoked by stimulation of the contralateral median nerve were recorded from the hand representation area of sensorimotor cortex: P10-N20, recorded anterior to the central sulcus (CS); N10-P20, recorded posterior to the CS; and P12-N25, recorded near the CS. These potentials were similar in morphology and surface distribution whether the animal was awake or anesthetized. 3. P10-N20 exhibited a polarity inversion to N10-P20 across the CS, both in cortical-surface recordings and in laminar recordings within cortex and white matter of motor and somatosensory cortex. In contrast, P10-N20 and N10-P20 did not exhibit polarity inversion in recordings from the surface and white matter of the crowns of motor and somatosensory cortex, respectively. These results strongly suggest that these potentials are produced by a tangential generator located in the posterior wall of the CS, primarily in area 3b of somatosensory cortex. 4. P12-N25 was largest over the hand area of somatosensory cortex and showed polarity inversion across the crown of somatosensory cortex but not across the crown of motor cortex or across the walls of the CS, suggesting that P12-N25 is due to a radially oriented generator located in areas 1 and 2 of somatosensory cortex. 5. P10-N20 and P12-N25 are thought to be equivalent to the "primary evoked response" recorded from somatosensory cortex of other mammals. 6. These results are very similar to those obtained in human cortical-surface recordings and demonstrate that the monkey P10-N20, N10-P20, and P12-N25 potentials correspond to the human P20-N30, N20-P30, and P25-N35 potentials, respectively. The only appreciable difference in human and monkey SEPs is that the monkey P12-N25 appears to be generated in areas 1 and 2, whereas the human P25-N35 appears to be generated only in area 1. 7. There was no evidence of locally generated activity in areas 3a and 4.  相似文献   

3.
1. To clarify the generators of human short-latency somatosensory evoked potentials (SEPs) thought to arise in sensorimotor cortex, we studied the effects on SEPs of surgical excision of somatosensory or motor cortex in humans and monkeys. 2. Normal median nerve SEPs (P20-N30, N20-P30, and P25-N35) were recorded from the cortical surface of a patient (G13) undergoing a cortical excision for relief of focal seizures. All SEPs were abolished both acutely and chronically after excision of the hand area of somatosensory cortex. Similarly, excision of the hand area of somatosensory cortex abolished corresponding SEPs (P10-N20, N10-P20, and P12-N25) in monkeys. Excision of the crown of monkey somatosensory cortex abolished P12-N25 while leaving P10-N20 and N10-P20 relatively unaffected. 3. After excision of the hand area of motor cortex, all SEPs were present when recorded from the cortical surface of a patient (W1) undergoing a cortical excision for relief of focal seizures. Similarly, all SEPs were present in monkeys after excision of the hand area of motor cortex. 4. Although all SEPs were present after excision of motor cortex in monkeys, variable changes were observed in SEPs after the excisions. However, these changes were not larger than the changes observed after excision of parietal cortex posterior to somatosensory cortex. We concluded that the changes were not specific to motor cortex excision. 5. These results support two major conclusions. 1) Median nerve SEPs recorded from sensorimotor cortex are produced by generators in two adjacent regions of somatosensory cortex: a tangentially oriented generator in area 3b, which produces P20-N30 (human) and P10-N20 (monkey) [recorded anterior to the central sulcus (CS)] and N20-P30 (human) and N10-P20 (monkey) posterior to the CS; and a radially oriented generator in area 1, which produces P25-N35 (human) and P12-N25 (monkey) recorded from the postcentral gyrus near the CS. 2) Motor cortex makes little or no contribution to these potentials.  相似文献   

4.
We investigated the mechanisms underlying the differences in gating effects on short- and long-latency somatosensory evoked potentials (SEPs) relating to movement. SEPs were recorded in normal subjects for 6 different tasks in Experiment 1: Control, Movement, Distraction, Attention, Movement during Distraction and Movement during Attention, and for 4 different tasks in Experiment 2: Control, Passive Movement, Contralateral Movement and Movement Imagery. The amplitudes of short-latency SEPs were significantly reduced by active and passive movement of the stimulated hand, but long-latency SEPs (N140-P200) were significantly enhanced by active movement of the stimulated hand. Attention, Distraction, Contralateral Movement and Movement Imagery did not affect the amplitudes of SEPs. The degree of enhancement of long-latency SEPs by active Movement was greater than that by active movement with Attention or Distraction. Gating effects on long-latency SEPs were different from those on short-latency SEPs. Since this effect was not related to Attention/Distraction, Passive Movement, Movement Imagery or Movement of another site, it is probably due to specific centrifugal effects, which are different from more direct gating effects on short-latency components. This study showed the difference in gating effects on somatosensory perception depending on time periods following stimulation, which may indicate an interaction between motor and somatosensory cortex.  相似文献   

5.
Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in short-latency somatosensory-evoked potentials (SEPs). The aim of this study is to clarify whether specific training in athletes affects the long-latency SEPs related to information processing of stimulation. The long-latency SEPs P100 and N140 were recorded at midline cortical electrode positions (Fz, Cz, and Pz) in response to stimulation of the index finger of the dominant hand in fifteen baseball players (baseball group) and in fifteen athletes in sports such as swimming, track and field events, and soccer (sports group) that do not require fine somatosensory discrimination or motor control of the hand. The long-latency SEPs were measured under a passive condition (no response required) and a reaction time (RT) condition in which subjects were instructed to rapidly push a button in response to stimulus presentation. The peak P100 and peak N140 latencies and RT were significantly shorter in the baseball group than the sports group. Moreover, there were significant positive correlations between RT and both the peak P100 and the peak N140 latencies. Specific athletic training regimens that involve the hand may induce neuroplastic alterations in the cortical hand representation areas playing a vital role in rapid sensory processing and initiation of motor responses.  相似文献   

6.
A chronic epileptic focus was induced by a microinjection of ferric chloride solution into the sensorimotor cortex of rats. Two types of somatosensory evoked potentials (SEPs) were recorded from the cortex near the injection site. In animals showing an initial positive-negative biphasic SEP, spikes appeared in electrocorticograms (ECoGs) more frequently on the side ipsilateral to the injection site than on the contralateral side, whereas in animals showing an initial negative monophasic SEP, spikes appeared more frequently on the contralateral side.  相似文献   

7.
Shaw FZ  Lee SY  Chiu TH 《Sleep》2006,29(3):285-293
STUDY OBJECTIVE: To clarify the cortical evoked responses in the primary somatosensory cortex of the rat under states of waking, slow-wave sleep (SWS), paradoxical sleep (PS), and spike-wave discharges (SWDs), which are associated with absence seizure. DESIGN: Somatosensory evoked potentials (SEPs) in response to single- and paired-pulse stimulations under waking, SWS, PS, and SWDs were compared. SEPs to a single-pulse stimulus with regard to cortical spikes of sleep spindles and SWDs were also evaluated. PARTICIPANTS: Twenty Long Evans rats. INTERVENTIONS: Single- and paired-pulse innocuous electrical stimulations were applied to the tail of rats with chronically implanted electrodes in the primary somatosensory cortex and neck muscle under waking, SWS, PS, and SWDs. MEASUREMENTS AND RESULTS: SEPs displayed distinct patterns under waking/PS and SWS/SWDs. The short-latency P1-N1 wave of the SEP was severely impeded during SWDs but not in other states. Reduction of the P1-N1 magnitude to the second stimulus of the paired-pulse stimulus for interstimulus intervals of < or = 300 milliseconds appeared in waking and PS states, but the decrease occurred only at particular interstimulus intervals under SWS. Interestingly, augmentation was found under SWDs. Moreover, cyclic augmentation of the P1-N1 magnitude was associated with spindle spikes, but cyclic reduction was observed with SWD spikes. CONCLUSION: Changes in SEPs are not only behavior dependent, but also phase locked onto ongoing brain activity. Distinct short-term plasticity of SEPs during sleep spindles or SWDs may merit further studies for seizure control and tactile information processing.  相似文献   

8.
Rapid angular displacements of the wrist evoke cerebral potentials that precede the onset of the long-latency electromyographic (EMG) activity generated in muscles stretched by the displacement. The initial segment of the long-latency EMG activity (termed the M2 response) is thought to be mediated by a transcortical reflex. We used dipole source analysis to examine the source generators of the early components of the cerebral potentials and their relationship to the timing and magnitude of the M2 response. Subjects (n=10) were presented with instructions to either actively flex or extend the wrist in response to a torque motor-imposed extensor displacement or allow the wrist to be passively extended. Electroencephalographic (EEG) recordings were obtained from 32 scalp-surface electrodes, and EMG was recorded from the wrist flexors and extensors. For all three tasks, the M2 response was preceded by cerebral potentials that could be explained by a three-dipole model. One source generator localised to deep within the cerebrum, and the other two localised to the region of the contralateral sensorimotor cortex. We used the P20-N20 dipole evoked by electrical stimulation of the median nerve at the wrist, corresponding to synaptic activity within cortical area 3b, as a local spatial reference to examine the contributions of the pre- and postcentral cortex. This analysis showed that one of the sensorimotor dipoles was consistently located anterior to the P20-N20 dipole at a displacement (average 11.5 mm) appropriate for a generator originating within the deep layers of area 4 on the anterior bank of the central sulcus. The orientation of this dipole was also consistent with a precentral generator and not a reversal of the potentials generated by input to area 3b. The time course of the area-4 dipole moment (onset =35 ms, peak =54 ms) was appropriate to reflect synaptic activity onto corticospinal neurons whose descending volleys mediate the M2 response. Comparisons across tasks showed that the magnitude of the M2 was modulated with task instruction, being largest with active and smallest with passive resistance. In contrast, the magnitude of the early evoked potentials (up to 75 ms) did not grade across tasks. We interpret these results as suggesting that instruction-dependent modulation of the M2 response occurs downstream from inputs to the primary motor cortex.  相似文献   

9.
We have summarized the history of electroencephalography(EEG) since 1875, when a paper by Richard Caton was published describing the first EEG recordings in animals. Somatosensory evoked potentials (SEPs) were recorded by George Dawson in 1951. Thereafter, SEPs were developed for clinical use with other evoked potentials such as auditory evoked potentials(VEPs). To understand evoked potentials, related mechanism of induction of far-fields-potentials(FFP) following stimulation of the median nerve has been discussed. SEPs consisted of P9, N9, N10, P11, N11, N13, P13, P14, N18, N20 and P20/P22. Scalp recorded P9 FFP arises from the distal portion of the branchial plexus as reflected by N9 stationary negative potential recorded over the stimulated arm. Cervical N11 and N13 arise from the root entry zone and dorsal horn, respectively. Scalp recorded P13, P14 and N18 FFP originate from the brainstem. In this communication, magnetoencephalography(MEG) and results of one of our recent studies on somatosensory evoked fields(SEFs) are also discussed. One of the important features of MEG is that magnetic signals detected outside the head arise mainly from cortical currents tangential to the skull. Since the net postsynaptic current follows the orientation of cortical pyramidal cells, the MEG signals mainly reflect activity of the fissural cortex, whereas radial current may remain undetected. In our study, we demonstrated SEFs elicited by compression and decompression of a subject's glabrous skin by a human operator. Their dipoles were tangentially oriented from the frontal lobe to parietal lobe.  相似文献   

10.
目的:探讨痉挛性斜颈患者大脑皮层功能的变化。方法:对30例痉挛性斜颈患者刺激正中神经后体感诱发电位(SEP)的P22、N30波潜伏期及P22、N30波幅进行比较分析,30例正常对照组仅在颈部主动向右侧扭转时对双侧P22、N30波幅进行比较分析。结果:病例组SEPP22、N30潜伏期正常,双侧比较差异无统计学意义,头部扭转方向的对侧大脑半球前中央区的P22-N30波幅比明显高于对侧,差异有统计学意义。正常对照组前中央区记录的双侧P22N30波幅比较差异无统计学意义。结论:SEP P22、N30潜伏期正常提示传导通路结构完整,头部扭转方向的对侧大脑半球前中央区的P22-N30波幅比明显高于对侧,提示患者对侧大脑皮层前中央区电活动存在异常的兴奋及抑制,即抑制性减弱,兴奋性增高,N30记录的是刺激正中神经SEP中长潜伏成分,可能来源于运动辅助区,进一步提示患者存在感觉一运动整合功能异常。  相似文献   

11.
Summary At the current state of technology, multichannel simultaneous recording of combined electric potentials and magnetic fields should constitute the most powerful tool for separation and localization of focal brain activity. We performed an explorative study of multichannel simultaneous electric SEPs and magnetically recorded SEFs. MEG only sees tangentially oriented sources, while EEG signals include the entire activity of the brain. These characteristics were found to be very useful in separating multiple sources with overlap of activity in time. The electrically recorded SEPs were adequately modelled by three equivalent dipoles located: (1) in the region of the brainstem, modelling the P14 peak at the scalp, (2) a tangentially oriented dipole, modelling the N20-P20 and N30-P30 peaks, and part of the P45, and (3) a radially oriented dipole, modelling the P22 peak and part of the P45, both located in the region of the somatosensory cortex. Magnetically recorded SEFs were adequately modelled by a single equivalent dipole, modelling the N20-P20 and N30-P30 peaks, located close to the posterior bank of the central sulcus, in area 3b (mean deviation: 3 mm). The tangential sources in the electrical data were located 6 mm on average from the area 3b. MEG and EEG was able to locate the sources of finger stimulated SEFs in accordance with the somatotopic arrangement along the central fissure. A combined analysis demonstrated that MEG can provide constraints to the orientation and location of sources and helps to stabilize the inverse solution in a multiple-source model of the EEG.  相似文献   

12.
Previous behavioral work has shown the existence of both anticipatory and reactive grip force responses to predictable load perturbations, but how the brain implements anticipatory control remains unclear. Here we recorded electroencephalographs while participants were subjected to predictable and unpredictable external load perturbations. Participants used precision grip to maintain the position of an object perturbed by load force pulses. The load perturbations were either distributed randomly over an interval 700- to 4,300-ms (unpredictable condition) or they were periodic with interval 2,000 ms (predictable condition). Preparation for the predictable load perturbation was manifested in slow preparatory brain potentials and in electromyographic and force signals recorded concurrently. Preparation modulated the long-latency reflex elicited by load perturbations with a higher amplitude reflex response for unpredictable compared with predictable perturbations. Importantly, this modulation was also reflected in the amplitude of sensorimotor cortex potentials just preceding the long-latency reflex. Together, these results support a transcortical pathway for the long-latency reflex and a central modulation of the reflex grip force response.  相似文献   

13.
A planar vector projection of short-latency somatosensory evoked potentials (SEP) following stimulation of the median nerve was obtained by recording SEP over Fpz-Oz and T3-T4 and plotting the amplitudes on both channels at corresponding time points against each other. The resulting curve showed three successive loops pointing ipsilateral occipital (N1), contralateral occipital (N2) and ipsilateral frontal (N3) to the stimulated side. Normal values for latency, amplitude and direction of these loops were obtained from 10 normal adults. N1 can be attributed to the cuneate nucleus and medial lemniscus, N2 to the primary somatosensory cortex and N3 to the frontal cortex.  相似文献   

14.
A warning signal followed by an imperative signal generates anticipatory and preparatory activities, which regulate sensory evoked neuronal activities through a top-down centrifugal mechanism. The present study investigated the centrifugal regulation of neuronal responses evoked by a task-relevant somatosensory signal, which triggers a voluntary movement without a warning signal. Eleven healthy adults participated in this study. Electrical stimulation was delivered to the right median nerve at a random interstimulus interval (1.75–2.25 s). The participants were instructed to extend the second digit of the right hand as fast as possible when the electrical stimulus was presented (ipsilateral reaction condition), or extend that of the left hand (contralateral reaction condition). They also executed repetitively extension of the right second digit at a rate of about 0.5 Hz, irrespective of electrical stimulation (movement condition), to count silently the number of stimuli (counting condition). In the control condition, they had no task to perform. The amplitude of short-latency somatosensory evoked potentials, the central P25, frontal N30, and parietal P30, was significantly reduced in both movement and ipsilateral reaction conditions compared to the control condition. The amplitude of long-latency P80 was significantly enhanced only in the ipsilateral reaction condition compared to the control, movement, contralateral reaction, and counting conditions. The long-latency N140 was significantly enhanced in both movement and ipsilateral reaction conditions compared to the control condition. In conclusion, short- and long-latency neuronal activities evoked by task-relevant somatosensory signals were regulated differently through a centrifugal mechanism even when the signal triggered a voluntary movement without a warning signal. The facilitation of activities at a latency of around 80 ms is associated with gain enhancement of the task-relevant signals from the body part involved in the action, whereas that at a latency of around 140 ms is associated with unspecific gain regulation generally induced by voluntary movement. These may be dissociated from the simple effect of directing attention to the stimulation.  相似文献   

15.
Summary Median nerve somatosensory evoked potentials were recorded from exposed cerebral cortex during craniotomies. This technique is valuable when knowledge of the motor cortex location can influence surgical decisions about resection limits or biopsy sites. Two different recording techniques were compared: strips of electrodes and arrays of electrodes. The arrays recorded electrical potentials suitable for topographic mapping. We found that motor cortex could be identified more quickly when using the topographic mapping of SEPs from arrays. We conclude that topographic mapping of SEP from sensorimotor regions during craniotomies works well in general and can be done more quickly than the traditional electrode strip technique.  相似文献   

16.
Many previous papers have reported the modulation of somatosensory evoked potentials (SEPs) during voluntary movement, but the locus and mechanism underlying the movement-induced centrifugal modulation of the SEPs elicited by a task-relevant somatosensory stimulus still remain unclear. We investigated the centrifugal modulation of the SEPs elicited by a task-relevant somatosensory stimulus which triggers a voluntary movement in a forewarned reaction time task. A pair of warning (S1: auditory) and imperative stimuli (S2: somatosensory) was presented with a 1 s interstimulus interval. Subjects were instructed to respond by moving the hand ipsilateral or contralateral to the somatosensory stimulation which elicits the SEPs. In four experiments, the locus and selectivity of the SEPs’ modulation, the contribution of cutaneous afferents and the effect of contraction magnitude were examined, respectively. A control condition where subjects had no task to perform was compared to several task conditions. The amplitude of the frontal N30, parietal P30, and central P25 was decreased and that of the long latency P80 and N140 was increased when the somatosensory stimuli triggered a voluntary movement of the stimulated finger compared to the control condition. The N60 decreased with the movement of any finger. These results were considered to be caused by the centrifugal influence of neuronal activity which occurs before a somatosensory imperative stimulus. The present findings did not support the hypothesis that the inhibition of afferent inputs by descending motor commands can occur at subcortical levels. A higher contraction magnitude produced a further attenuation of the amplitude of the frontal N30, while it decreased the enhancement of the P80. Moreover, the modulation of neuronal responses seems to result mainly from the modulation of cutaneous afferents, especially from the moved body parts. In conclusion, the short- and long-latency somatosensory neuronal activities evoked by task-relevant ascending afferents from the moved body parts are regulated differently by motor-related neuronal activities before those afferent inputs. The latter activities may be associated with sensory gain regulation related to directing attention to body parts involved in the action.  相似文献   

17.
OBJECTIVES: Our study aimed at investigating the effect of repetitive recordings on somatosensory evoked potentials (SEPs) related to spatial attention in a population of healthy elderly subjects. METHODS: Fifteen healthy elderly subjects were tested for six consecutive days using a somatosensory oddball paradigm, in which target stimuli were applied above the elbow and the non-target stimuli on the ipsilateral shoulder. Brain electrical activity was recorded from six scalp electrodes (Fz, Cz, F3, F4, T3 and T4). RESULTS: The N140 response to target stimuli showed a significantly decreased amplitude across the sessions with the lowest value during the fourth day of recording and with a partial recovery at the sixth day. On the contrary, the amplitude of the N140 response to non-target stimuli and that of the P300 potential to target stimuli were not significantly modified. CONCLUSIONS: The significant amplitude reduction of the N140 potential in target, but not in non-target recordings across sessions, suggests that the voluntarily oriented attention is reduced by stimulus repetition, while the automatic attention is not.  相似文献   

18.
糖尿病患者的体感诱发电位   总被引:1,自引:0,他引:1  
应用电子计算机迭加平均技术,记录了23名正常人和25例糖尿病患者的电刺激正中神经和胫后神经的体感诱发电位(somatosensory evoked potentials,SEPs)。结果发现,大部分患者均有SEPs成份峰值潜伏期的延长,以及正中神经和胫后神经传入纤维传导速度的减慢;部分患者有中枢传导时间(N13-N20传导时间和P40-N80传导时间)的延长。此外,外周神经三相电位的波形也出现异常变化。这些结果提示,糖尿病患者不仅可出现外周神经传导功能障碍,而且也可出现中枢神经传导功能异常。  相似文献   

19.
 It is well established that voluntary hyperventilation (HV) slows down electroencephalographic (EEG) rhythms. Little information is available, however, on the effects of HV on cortical responses elicited by sensory stimulation. In the present study, we recorded auditory evoked potentials (AEPs) and magnetic fields (AEFs), and somatosensory evoked magnetic fields (SEFs) from healthy subjects before, during, and after a 3- to 5-min period of voluntary HV. The effectiveness of HV was verified by measuring the end-tidal CO2 levels. Long-latency (100–200 ms) AEPs and long-latency AEFs originating at the supratemporal auditory cortex, as well as long-latency SEFs from the primary somatosensory cortex (SI) and from the opercular somatosensory cortex (OC), were all reduced during HV. The short-latency SEFs from SI were clearly less modified, there being, however, a slight reduction of the earliest cortical excitatory response, the N20m deflection. A middle-latency SEF deflection from SI at about 60 ms (P60 m) was slightly increased. For AEFs and SEFs, the center-of-gravity locations of the activated neuronal populations were not changed during HV. All amplitude changes returned to baseline levels within 10 min after the end of HV. The AEPs were not altered when the subjects breathed 5% CO2 in air in a hyperventilation-like manner, which prevented the development of hypocapnia. We conclude that moderate HV suppresses long-latency evoked responses from the primary projection cortices, while the early responses are less reduced. The reduction of long-latency responses is probably mediated by hypocapnia rather than by other nonspecific effects of HV. It is suggested that increased neuronal excitability caused by HV-induced hypocapnia leads to spontaneous and/or asynchronous firing of cortical neurones, which in turn reduces stimulus-locked synaptic events. Received: 14 October 1997 / Accepted: 28 October 1998  相似文献   

20.
Modification of somatosensory processing depending on the behavioral setting was studied. Active alternating movements of the fingers, passive tactile stimuli to the hand, and active exploration of objects were performed during recording of somatosensory evoked potentials (SEPs). SEPs were elicited by compound electrical median nerve stimulation and electrical stimulation at detection threshold of cutaneous median nerve fascicles identified by microneurography. Electrical stimulation was not time-locked to the studied condition.In comparison with SEPs at rest there was attenuation of early cortical potentials up to 25 ms post-trigger in all nonresting conditions. In stimulation of the compound median nerve as well as of isolated cutaneous fascicles of a hand actively exploring an object there was an additional increased negativity, peaking at 28 ms. This facilitory effect was independent of attentional focusing and was absent during exploration using the ipsilateral, non-electrically stimulated hand. In patients with parietal lesions the facilitatory effect was diminished on the affected side. Spline interpolated brain maps at this latency based on 32channel recordings in healthy volunteers showed a shift of local contralateral positive maximum from frontal to parietal during exploration, indicating enhancement of a tangential dipole. It is suggested that in conditions involving close sensorimotor interaction such as exploratory hand movements there is preactivation of a cortical area which is located in the central sulcus and receives cutaneous somatosensory inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号