首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Peripheral visceral afferents in the guinea pig were labeled by injections of wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) into the L2 and L3 dorsal root ganglia bilaterally. After anterograde transport of the tracer the following areas were examined for the presence of HRP-labeled fibers: the inferior mesenteric ganglion (IMG), the inferior mesenteric artery (IMA) with surrounding tissue, the hypogastric nerves, parts of the descending and sigmoid colon as well as the urinary bladder. Large numbers of heavily labeled fibers were found in the IMG, in the colonic nerves around the IMA and in the hypogastric nerves. In the IMG, profiles suggestive of being labeled axon terminals were observed. Labeled fibers were observed in the muscle layers of the colon and in the bladder wall. The results show that anterograde tracing with WGA-HRP can be used successfully in analyzing the morphology and structural organization of visceral afferents in the periphery.  相似文献   

2.
The projections of primary afferents from rostral cervical segments to the brainstem and the spinal cord of the rat were investigated by using anterograde and transganglionic transport techniques. Projections from whole spinal ganglia were compared with those from single nerves carrying only exteroceptive or proprioceptive fibers. Injections of horseradish peroxidase (HRP) or wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) were performed into dorsal root ganglia C2, C3, and C4. Free HRP was applied to the cut dorsal rami C2 and C3, greater occipital nerve, sternomastoid nerve, and to the C1/2 anastomosis, which contains afferents from suboccipital muscles and the atlanto-occipital joint. WGA-HRP injections into ganglia C7 and L5 were performed for comparative purposes. Injections of WGA-HRP or free HRP into rostral cervical dorsal root ganglia and HRP application to C2 and C3 dorsal rami produced labeling in dorsal and ventral horns at the level of entrance, the central cervical nucleus, and in external and main cuneate nuclei. From axons ascending to pontine and descending to upper thoracic spinal levels, medial collaterals were distributed to medial and descending vestibular, perihypoglossal and solitary nuclei, and the intermediate zone and Clarke's nucleus dorsalis in the spinal cord. Lateral collaterals projected mainly to the trigeminal subnucleus interpolaris and to lateral spinal laminae IV and V. Results from HRP application to single peripheral nerves indicated that medial collaterals were almost exclusively proprioceptive, whereas lateral collaterals were largely exteroceptive with a contribution from suboccipital proprioceptive fibers. WGA-HRP injections into dorsal root ganglia C7 and L5 failed to produce significant labeling within vestibular and periphypoglossal nuclei, although they demonstrated classical projection sites within the brainstem and spinal cord. The consistent collateralisation pattern of rostral cervical afferents along their whole rostrocaudal course enables them to contact a variety of precerebellar, vestibulospinal, and preoculomotor neurons. These connections reflect the well-known significance of proprioceptive neck afferents for the control of posture, head position, and eye movements.  相似文献   

3.
4.
Peripheral synaptic pathways to neurons in the guinea pig inferior mesenteric ganglion (IMG) were studied. Nerve trunks innervating neurons in the ganglion were surgically sectioned and intracellular electrical responses to nerve stimulation were measured 6-8 days after surgery. In all animals ganglia were decentralized by removal of the lumbar sympathetic chain ganglia L2 through L4 and in addition two peripheral nerves were sectioned leaving the ganglion innervated by only one peripheral nerve. Fast and slow excitatory postsynaptic potential (EPSP) were evoked with electrical stimulation of each of the nerve trunks and with distension of the colon. The thresholds to evoke fast EPSPs and the amplitude of slow EPSPs were compared for each nerve trunk among the different surgical groups including sham-operated controls and completely denervated ganglia. Both fast and slow EPSPs could be evoked electrically from each intact peripheral nerve trunk after the other three nerve trunks had been sectioned, which demonstrates that nerve fibers with cell bodies in the regions innervated by the peripheral nerves make functional synaptic connections with neurons in the inferior mesenteric ganglion. In general, nerve sections increased the threshold for evoking fast EPSPs and decreased the amplitude of electrically-evoked slow EPSPs compared to control ganglia. Synaptic potentials could also be evoked with stimulation of cut nerve trunks, demonstrating that branches of nerve fibers from peripheral nerves enter other nerve trunks. The hypogastric nerve was unique in that branches of axons eliciting fast but not slow synaptic potentials in the ganglion entered this nerve trunk. Distension-induced fast and slow EPSPs were present only if the lumbar colonic nerve was intact and they were not altered by section of the other nerve trunks. In contrast, the slow EPSPs evoked with electrical stimulation of the lumbar colonic nerve were significantly smaller when at least one other nerve trunk was sectioned suggesting that the axon branches from other nerve trunks which enter the lumbar colonic nerve are not activated by distension. These studies demonstrate that neurons eliciting either fast or slow synaptic potentials with cell bodies in regions innervated by the peripheral nerve trunks make functional synaptic connections with neurons of the inferior mesenteric ganglion. The results also suggest that the majority of mechanosensory neurons mediating excitatory synaptic responses to colon distension are neurons with a peripheral cell body.  相似文献   

5.
The origins and routes of the postganglionic sympathetic nerve supply to the upper and lower uterus and to the cervix were investigated in the rat by using denervation procedures combined with immunohistochemistry and retrograde tracing. The sympathetic nerve fibers of the upper part of the uterus arise from the ovarian plexus nerve. They mainly originate (90%) from neurons of the suprarenal ganglia (SRG) and of the T10 to L3 ganglia of the paravertebral sympathetic chain. Fluoro-Gold injections into different regions of the upper uterus showed that the SRG neurons mainly provide innervation to the tubal extremity (52%) rather than to the uterine portion below this area (26%). Very few neurons of the celiac ganglion or the aorticorenal ganglia participated in this innervation. Most of the sympathetic innervation of the lower uterus and the cervix (90%) originates from neurons of the paravertebral ganglia T13 to S2, principally at the L2–L4 levels. By using immunocytochemistry, we show that very few tyrosine hydroxylase–positive neurons of the pelvic plexus project to these areas, where they represent only 3% of the sympathetic nerve supply. Again, very few neurons of the inferior mesenteric ganglion (IMG) supply the lower uterus and the cervix. The comparison between retrograde tracing experiments in intact animals and after the removal of the IMG shows that very few sympathetic postganglionic axons from the paravertebral chain pass through the IMG to reach the lower uterus and the cervix. In contrast, these axons mainly project to splanchnic nerves bypassing the IMG to connect with the hypogastric nerves. In addition, some axons supplying the lower uterus follow the superior vesical arteries and then reach the organ. Taken together, these results show that the upper region of the uterus receives a sympathetic innervation that is different in origin and route from that of the lower uterus and the cervix. Such a marked region-specific innervation suggests that nerve control of the myometrial activity may be functionally different between the oviduct and the cervical ends of the uterus. J. Comp. Neurol. 399:403–412, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The effects of testosterone on the electrical properties and nicotinic activation of prevertebral ganglion neurones were investigated in vitro on the male rat major pelvic ganglion and rabbit coeliac ganglion. The electrical activity of the neurones was recorded using intracellular recording techniques. Nicotinic activation was triggered for neurones of the major pelvic ganglion by stimulating the hypogastric, pelvic and cavernous nerves and for coeliac neurones by stimulating the splanchnic nerves. Testosterone modified the resting membrane potential of neurones in the major pelvic ganglion by triggering a slow depolarization, and was without significant effect on the resting membrane potential of coeliac ganglion neurones. In neurones of the major pelvic and coeliac ganglia, testosterone had no significant effect on the firing pattern, on the characteristics of the action potential (firing threshold, duration, overshoot) and on the after-hyperpolarization (amplitude and duration). Testosterone affected, in opposite ways, the nicotinic activation of neurones of the two prevertebral ganglia. In the major pelvic ganglion, testosterone triggered an increase in the amplitude of excitatory postsynaptic potentials induced by stimulation of the hypogastric, pelvic and cavernous nerves with a single pulse, revealing a facilitation of nicotinic activation. On coeliac ganglion neurones, testosterone elicited a decrease in the amplitude of excitatory postsynaptic potentials induced by stimulation of the splanchnic nerves, indicating an inhibition of nicotinic activation. Our study shows that testosterone acts differently on neurones of prevertebral ganglia involved in the nervous control of different functions, its facilitatory action being exerted on neurones of the major pelvic ganglion which is particularly involved in the control of the urogenital tract. Our study reinforces the concept, derived from neuroanatomical and pharmacological studies, of the major pelvic ganglion as a major peripheral target for testosterone.  相似文献   

7.
By different denervation procedures the origin of dynorphin-(1-17) and enkephalin immunoreactive fibers in the guinea pig inferior mesenteric ganglion was investigated. It was found that the dynorphin-(1-17)-positive fibers reached the ganglion predominantly via the colonic nerves and to a lesser extent via the hypogastric and intermesenteric nerves whereas the enkephalin-positive fibers reached the ganglion via the lumbar splanchnic nerves. These findings show that the dynorphin-(1-17) and enkephalin systems are separate in this ganglion.  相似文献   

8.
The existence of afferent fibers in the cat hypoglossal nerve was studied by transganglionic transport of horseradish peroxidase (HRP). Injections of wheat germ agglutinin-conjugated HRP (WGA-HRP) into the hypoglossal nerve resulted in some retrograde labeling of cell bodies within the superior ganglia of the ipsilateral glossopharyngeal and vagal nerves. A few labeled cell bodies were also present ipsilaterally within the inferior ganglion of the vagal nerve and the spinal ganglion of the C1 segment. Some of the labeled glossopharyngeal and vagal fibers reached the nucleus of the solitary tract by crossing the dorsal portion of the spinal trigeminal tract. Others distributed to the spinal trigeminal nucleus pars interpolaris and to the ventrolateral part of the medial cuneate nucleus by descending through the dorsal portion of the spinal trigeminal tract. In the spinal cord these descending fibers, intermingling with labeled dorsal root fibers, distributed to laminae I, IV-V and VII-VIII of the C1 and C2 segments. Additional HRP experiments revealed that the fibers in laminae VII-VIII originate mainly from dorsal root of the C1 segment.  相似文献   

9.
Afferent fibers mediating pain from myocardial ischemia classically are believed to travel in sympathetic nerves to enter the thoracic spinal cord. After sympathectomies, angina pectoris still may radiate to the neck and inferior jaw. Sensory fibers from those regions are thought to enter the central nervous system through upper spinal cord segments. We postulated that axons from nodose ganglion cells might project to cervical cord segments. The purpose of this study was to determine the density and pathway of vagal afferent innervation to the upper cervical spinal cord. Following an injection of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the upper cervical spinal cord, approximately 5.8% of cells in the nodose ganglion contained reaction product. Cervical vagotomy did not diminish the density of WGA-HRP labeled cells in the nodose ganglion. However, a spinal cord hemisection cranial to the injection site eliminated labeling of nodose cells. These data indicate that a portion of vagal afferent neurons project from the nodose ganglion to the upper cervical spinal cord. In addition, vagal afferent fibers reach the spinal cord via a central route rather than through dorsal root ganglia.  相似文献   

10.
Region-specific patterns of nerves with immunoreactivity to neuropeptide Y (NPY) have been described previously in the submucous plexus of guinea pig large intestine. Because these may have functional significance, the possibility of similar, characteristic variations of NPY-like immunoreactivity (NPY-ir) in the myenteric plexus was explored. Regional differences were found in the occurrence and pattern of distribution of NPY-ir in the myenteric plexus of the guinea pig large intestine. NPY-ir was present rarely within neuron somata in any region of the large intestine, and NPY-ir nerve fibers were present only within the distal large intestine, increasing progressively in density from the distal spiral to the rectum. Lesion of the colonic nerves, but not the hypogastric, intermesenteric, or lumbar splanchnic nerves, resulted in a loss of NPY-ir in the distal spiral and transverse colon but not in the descending colon or rectum. Ring myotomies in the descending colon resulted in a loss of NPY-ir proximal to the lesion. Dual-labeling immunohistochemical studies revealed that the NPY-ir nerve fibers rarely contained immunoreactivity for tyrosine hydroxylase (TH). Extrinsic nerve lesions resulted in an unequivocal reduction in NPY-ir in intraganglionic fibers of the submucosal plexuses of the transverse colon and a partial loss in the distal spiral and descending colon: the rectum was unaffected; in only a minority of guinea pigs, however, was any decrease in the NPY-ir innervation of submucosal blood vessels detected. The principal projections of NPY-ir nerves were from and through the inferior mesenteric ganglion; however, NPY-ir was not colocalized with TH-ir. It is proposed that nonnoradrenergic, NPY-containing neurons located in the inferior mesenteric ganglion project through the colonic nerves and that these proximally directed fibers innervate the transverse colon and the distal spiral. Nonnoradrenergic, NPY-ir neurons lying in the pelvic ganglia or sacral sympathetic chain may make an important contribution to the innervation of the myenteric plexus of the rectum and the descending colon.  相似文献   

11.
Injection of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP), into the hemisected spinal cord of the rat, cat and monkey consistently resulted in the intense anterograde labeling of ascending spinal projections such as the spinothalamic tract and spinocerebellar tracts and their terminal fields. Injections of WGA-HRP in the dorsal column nuclei resulted in the anterograde labeling of the medial lemniscus and its terminal fields in the thalamus. Injection of similar amounts of horseradish peroxidase alone (HRP) in hemisected animals or the dorsal column nuclei resulted in little anterograde labeling. The rate of the anterograde transport of WGA-HRP in cut axons appears to be greater than 200 mm/day. Small amounts of transneuronal labeling appeared to occur after injection of WGA-HRP in both cut axons and undamaged cell bodies. These results suggest that the amount of anterograde labeling observed after injection of WGA-HRP into both cut axons and undamaged cell bodies is significantly greater than the anterograde labeling observed after injections of HRP alone. Therefore, in the central nervous system WGA-HRP appears to be a far more effective anterograde tracer than HRP alone.  相似文献   

12.
The components of the hypogastric nerve in male and female guinea pigs   总被引:2,自引:0,他引:2  
A quantitative study has been made of the neural components of the hypogastric nerves of male and female guinea pigs using retrograde transport of horseradish peroxidase (HRP) to identify the population of neurones projecting in the nerve trunk, and electronmicroscopic analysis of the myelinated and unmyelinated axons present. Application of HRP to the transected axons of the hypogastric nerve labelled the cell bodies of sensory neurones in lumbar and sacral dorsal root ganglia, preganglionic neurones in the lumbar and sacral spinal cord, and postganglionic neurones in the inferior mesenteric ganglion and in the lumbar paravertebral chain; some ganglion cells of the pelvic plexus were also labelled. The number and distribution of each type of neurone with axons in the hypogastric nerve differed between the sexes: in particular, about twice as many preganglionic axons were present in the male as in the female.  相似文献   

13.
The origin of the canine ovarian sensory and sympathetic nerves was studied by applying horseradish peroxidase (HRP) or wheat germ agglutinin conjugated to HRP (WGA-HRP) to the ovarian stroma and into the ovarian bursa. HRP/WGA-HRP positive neurons were found bilaterally in the dorsal root ganglia of T10 to L4 segment with the majority located in T13 to L2. In sympathetic paravertebral ganglia, labeled neurons were distributed bilaterally in ganglia from T11 to L4 with the majorities located in segments T13 to L2. Both distributions show ipsilateral predominance. Labeled prevertebral neurons were mainly located in the aorticorenal ganglion, ovarian ganglia and caudal mesenteric ganglion. No labeled neurons were found in the dorsal motor nucleus of vagus, nodose ganglia or sacral segment from S1 to S3. This study provides the possible morphological basis of electro-acupuncture concerning the somato-visceral reflex of the ovary.  相似文献   

14.
The sensory innervation of the rat kidney and ureter was investigated in wholemount preparations and sectioned materials by labeling the afferent nerve fibers with wheat germ agglutinin-horseradish peroxidase (WGA-HRP) transported anterogradely from dorsal root ganglia. Labeled fibers were seen in large numbers in the ureter and in the lining of the renal pelvis, where they were located in the adventitia, smooth muscle, subepithelial connective tissue, and epithelium. Most of the fibers in the ureter and ureteropelvic junctional zone traveled parallel to the long axis of the organ. In contrast, fibers in the widest part of the funnel-shape renal pelvis were oriented predominantly in a circumferential fashion. Many of the pelvic afferents were extremely fine and appeared to terminate as free nerve endings. Modest networks of labeled axons were also observed around branches of the renal artery; the greatest innervation was supplied to the distal portions of the interlobar arteries and to the arcuate arteries. Only single axons were observed around the interlobular arteries, and very few fibers were seen around afferent arterioles or near glomeruli. In contrast to the arteries, branches of the renal vein were relatively sparsely innervated. Occasional labeled fibers entered the renal cortex and formed intimate associations with renal tubules; however, the vast majority of renal tubular elements were not contacted by labeled sensory fibers. Labeled fibers were never observed in the renal medulla or in the papilla. The present study represents the first time that the sensory innervation of the kidney and ureter has been investigated by using a highly specific anterograde nerve tracing technique. The pattern of innervation demonstrated here reveals an anatomical configuration of ureteral and renal pelvic sensory nerves consistent with a role in detection of ureteral and pelvic pressure and chemical changes and a renal vascular sensory innervation that may monitor changes in renal arterial and venous pressure and chemical content. Still other renal afferent nerve endings may signal renal pain.  相似文献   

15.
The innervation of the rat hard palate and the bordering part of the soft palate was studied after anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) and to choleragenoid (B-HRP) in separate experiments. WGA-HRP labeling showed leakage from several types of nerve endings, whereas B-HRP did not. Both conjugates gave rise to heavy labeling of a variety of nerve endings. Intragemmal and, especially, perigemmal fibers were labeled in chemosensory corpuscles, which were most common in the medial wall of the incisive canal and in the most anterior part of the soft palate. Ruffini endings of different sizes were labeled in the incisive papilla. Other subepithelial endings forming elongated expanded profiles with medium-to large-caliber source fibers were most common in protruding parts of the palate. Labeled intraepithelial endings included Merkel endings, which were most frequent in the incisive papilla and the rugae. Other labeled profiles were medium-caliber afferents giving rise to irregular, beaded, and sometimes branched endings often located far superficially in the epithelium. Such endings were present both within and between protruding parts of the palate. Fine-caliber intraepithelial endings were labeled almost exclusively in WGA-HRP experiments. © 1995 Willy-Liss, Inc.  相似文献   

16.
The present study uses selective surgical ablations combined with electron microscopic analyses to determine the number of axons in yarious catagories in rat hypogastric, pelvic, and pudendal nerves, these being the nerves to the pelvic viscera in this animal. Unmyelinated fibers predominate in all of these nerves. One of the most significant findings is that the pelvic nerve contains almost as many postganglionic sympathetic fibers as the hypogastric nerve. Previous investigators thought that the pelvic nerve supplied the parasympathetic inflow and the hypogastric nerve the sympathetic inflow to the pelvic viscera. The finding that there is a sizable sympathetic component in the pelvic nerve negates this idea, at least for the rat, and presumably calls for a reevaluation of the syndromes that arise from pelvic as opposed to hypogastric nerve section. Other findings of interest are (1) that there are unmyelinated efferent axons in the pudendal nerve, indicating that the pudendal is not a typical somatic nerve, (2) that the hypogastric nerve has a very small sensory component, and (3) that there are fibers surviving in the distal stumps of all these nerves, particularly the pelvic and hypogastric nerves.  相似文献   

17.
The contributions of central versus peripheral nerve pathways to neurons of the inferior mesenteric ganglion of guinea pigs were studied. Nerve trunks innervating neurons in the ganglion were surgically sectioned and intracellular electrical responses to nerve stimulation were measured 6-8 days after surgery. Guinea pigs were divided into two experimental groups: (1) those that had the lumbar sympathetic chain ganglia (LSG) L2 through L4 removed and (2) those that had the intermesenteric, lumbar colonic and hypogastric nerves sectioned leaving central connections intact. After 6-8 days fast excitatory postsynaptic potentials (EPSPs) and slow EPSPs were recorded intracellularly in randomly selected principal ganglionic neurons. The threshold stimulus voltage to elicit a fast EPSP, the amplitude of the slow EPSP and the number of neurons in which each type of synaptic potential occurred in response to stimulation of each of the nerve trunks was compared between surgically-sectioned animals and sham-operated controls. Neither section of preganglionic nerve trunks nor of postganglionic nerve trunks eliminated all synaptic input to neurons in the ganglion, indicating that neurons with cell bodies located central to the ganglion as well as in visceral target organs made synaptic connections in the ganglion. Both fast and slow synaptic potentials could be evoked by stimulation of postganglionic nerve trunks even after they were sectioned provided that preganglionic nerves were intact, indicating that axons of central origin which synapse in the ganglion may continue out into postganglionic nerve trunks. In like manner, evidence was obtained indicating that fibers from peripheral nerve trunks which initiate either fast or slow synaptic potentials in ganglionic neurons may continue out into the lumbar splanchnic nerves. These studies demonstrate that the synaptic potentials recorded in the inferior mesenteric ganglion arise not only from neurons with cell bodies central to the ganglion but also from neurons with cell bodies located in the visceral organs which this ganglion subserves.  相似文献   

18.
The cell bodies of thoracolumbar sensory and sympathetic pre- and postganglionic neurons that project to the colon and pelvic organs of the male rat were labeled retrogradely with horseradish peroxidase (HRP) in order to study numbers, segmental distribution, and location of the somata of these neurons quantitatively. HRP was applied to one hypogastric nerve (HGN), to the lumbar colonic nerves (LCN) and to the intermesenteric nerve (IMN). In order to estimate the significance of the branching of one axon into both hypogastric nerves a double-labeling technique with fluorogold and HRP was used. About 2640 neurons project into the two HGN added together (800 afferent, 1320 pre-, and 520 postganglionic), 4650 neurons into the LCN (360 afferent, 0 pre- and 4290 postganglionic), and 5990 into the IMN (1500 afferent, 1250 pre-, and 3240 postganglionic). About 4190 sympathetic postganglionic prevertebral neurons innervate the colon and pelvic organs, 1900 are located in the inferior mesenteric ganglion and 2290 in ganglia of the IMN. Considering the efferent component, the HGN mainly are preganglionic and the LCN exclusively postganglionic nerves. Branching of one axon into both HGN is a rare event and quantitatively negligible (less than 3%). Afferent neurons of all three nerves were found in the dorsal root ganglia (DRG) T12-L2 with the maximum in L1 and L2. The distribution of afferent neurons projecting into the LCN is shifted slightly more rostrally compared to neurons projecting into the HGN. The IMN distribution is located in a position in between. Preganglionic neurons projecting into the IMN are located in the spinal cord segments T12-L3 with the maximum in L1 and L2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The cell bodies of the lumbar sensory and sympathetic pre- and postganglionic neurons that project to the pelvic organs in the hypogastric nerve of the cat have been labeled retrogradely with horseradish peroxidase applied to the central end of their cut axons. The numbers, segmental distribution, location, and size of these labeled somata have been determined quantitatively. Afferent and preganglionic cell bodies were located bilaterally in dorsal root ganglia and spinal cord segments L3-L5, with the maximum numbers in L4. Very few cells lay rostral to L3. Afferent cell bodies were generally very small in cross-sectional area relative to the entire population in the dorsal root ganglia. Most of the preganglionic cell bodies lay clustered just medial to the region of the intermediolateral column and extended caudally well beyond its usual limit in the upper part of L4. These neurons were, on the average, larger than the cells of the intermediolateral column itself, with the largest cells lying in the most medial positions. Most of the post-ganglionic somata were in the ipsilateral distal lobe of the inferior mesenteric ganglion, while some (usually less than 10%) lay in accessory ganglia along the lumbar splanchnic nerves and in paravertebral ganglia L3-L5. Postganglionic somata in the inferior mesenteric ganglion were larger than both labeled and unlabeled ganglion cells in the paravertebral ganglia. From the data, it is estimated that about 1,300 afferent neurons, about 1,700 preganglionic neurons, and about 17,000 postganglionic neurons project in each hypogastric nerve in the cat.  相似文献   

20.
The afferent and sympathetic innervation of different regions of the urinary bladder (bladder dome vs. bladder base) was examined in the female rat using simultaneous injections of two fluorescent tracers. Retrogradely labeled cells were found in the dorsal root ganglia (DRG; L1-L3 and L6-S1), the sympathetic chain (SC; T12-L6), the inferior mesenteric ganglia (IMG) and the major pelvic ganglia (MPG). There were very few double-labeled cells, indicating that the dome and the base of the bladder receive innervation (afferent or sympathetic) from separate and distinct neuronal populations. Most of the sympathetic innervation of the bladder arose from the SC (dome: 77%; base: 89%) and it was carried equally by the hypogastric and pelvic nerves. The distributions of SC postganglionic neurons innervating the dome and the base of the bladder were very similar. In contrast, the contribution of IMG neurons was almost entirely restricted to the dome of the bladder (22%), with less than 1% innervating the base. Tyrosine hydroxylase-immunoreactive (TH) neurons in the MPG displayed a strong sexual dimorphism. Many TH neurons were found in the male MPG, but very few in the female MPG. In the female, these TH neurons projected almost exclusively to the bladder base of the female rat and were responsible for 10% of the sympathetic innervation of the base. Less than 1% innervated the dome. Therefore, prevertebral ganglia (IMG and MPG) show a strong regional selectivity in the innervation of the bladder of the female rat. The possible functional implications of this organization are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号