首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoplasmic/nuclear relocalization of beta-catenin and ZO-1 from the adherens and tight junctions are common processes of the epithelial-mesenchymal transition (EMT) associated with tumor invasion. Data are now accumulating to demonstrate that these molecules, which shuttle between the plasma membrane and the nucleus or the cytosol, are involved in signaling pathways, and contribute to the regulation of genes such as vimentin or matrix metalloproteinase-14 which are turned on during EMT.  相似文献   

2.
Cancer-associated fibroblasts (CAFs) are key determinants in the malignant progression of cancer, supporting tumorigenesis and metastasis. CAFs also mediate epithelial mesenchymal transition (EMT) of tumor cells and their achievement of stem cell traits. We demonstrate that CAFs induce EMT and stemness through a proinflammatory signature, which exploits reactive oxygen species to drive a migratory and aggressive phenotype of prostate carcinoma cells. CAFs exert their propelling role for EMT in strict dependence on cycloxygenase-2 (COX-2), nuclear factor-κB, and hypoxia-inducible factor-1. CAF-secreted metalloproteases elicit in carcinoma cells a Rac1b/COX-2-mediated release of reactive oxygen species, which is mandatory for EMT, stemness, and dissemination of metastatic cells. Tumor growth is abolished, and metastasis formation is severely impaired by RNA interfering-mediated targeting of the proinflammatory signature, thereby supporting the therapeutic targeting of the circuitry COX-2/nuclear factor-κB /hypoxia-inducible factor-1 as a valuable antimetastatic tool affecting cancer cell malignancy.  相似文献   

3.
The majority of human malignancies are believed to have epithelial origin, and the progression of cancer is often associated with a transient process named epithelial-mesenchymal transition (EMT). EMT is characterized by the loss of epithelial markers and the gain of mesenchymal markers that are typical of "cancer stem-like cells," which results in increased cell invasion and metastasis in vivo. Therefore, it is important to uncover the mechanistic role of factors that may induce EMT in cancer progression. Studies have shown that platelet-derived growth factor (PDGF) signaling contributes to EMT, and more recently, PDGF-D has been shown to regulate cancer cell invasion and angiogenesis. However, the mechanism by which PDGF-D promotes invasion and metastases and whether it is due to the acquisition of EMT phenotype remain elusive. For this study, we established stably transfected PC3 cells expressing high levels of PDGF-D, which resulted in the significant induction of EMT as shown by changes in cellular morphology concomitant with the loss of E-cadherin and zonula occludens-1 and gain of vimentin. We also found activation of mammalian target of rapamycin and nuclear factor-kappaB, as well as Bcl-2 overexpression, in PDGF-D PC3 cells, which was associated with enhanced adhesive and invasive behaviors. More importantly, PDGF-D-overexpressing PC3 cells showed tumor growth in SCID mice much more rapidly than PC3 cells. These results provided a novel mechanism by which PDGF-D promotes EMT, which in turn increases tumor growth, and these results further suggest that PDGF-D could be a novel therapeutic target for the prevention and/or treatment of prostate cancer. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

4.
Loss of the epithelial phenotype and disruption of adhesion molecules is a hallmark in the epithelial-mesenchymal transition (EMT) reported in several types of cancer. Most of the studies about the relevance of adhesion and junction molecules in lung cancer have been performed using established tumors or in vitro models. The sequential molecular events leading to EMT during lung cancer progression are still not well understood. We have used a rat model for multistep lung carcinogenesis to study the status of adherens and tight junction proteins and mesenchymal markers during EMT. After silica-induced chronic inflammation, rats sequentially develop epithelial hyperplasia, preneoplastic lesions, and tumors such as adenocarcinomas and squamous cell carcinomas. In comparison with normal and hyperplastic bronchiolar epithelium and with hyperplastic alveolar type II cells, the expression levels of E-cadherin, alpha-catenin and beta-catenin were significantly reduced in adenomatoid preneoplastic lesions and in late tumors. The loss of E-cadherin in tumors was associated with its promoter hypermethylation. alpha- and beta-catenin dysregulation lead to cytoplasmic accumulation in some carcinomas. No nuclear beta-catenin localization was found at any stage of any preneoplastic or neoplastic lesion. Zonula occludens protein-1 was markedly decreased in 66% of adenocarcinomas and in 100% squamous cell carcinomas. The mesenchymal-associated proteins N-cadherin and vimentin were analyzed as markers for EMT. N-cadherin was de novo expressed in 32% of adenocarcinomas and 33% of squamous cell carcinomas. Vimentin-positive tumor cells were found in 35% of adenocarcinomas and 88% of squamous cell carcinomas. Mesenchymal markers were absent in precursor lesions, both hyperplastic and adenomatoid. The present results show that silica-induced rat lung carcinogenesis is a good model to study EMT in vivo, and also provide in vivo evidence suggesting that the changes in cell-cell adhesion molecules are an early event in lung carcinogenesis, while EMT occurs at a later stage.  相似文献   

5.
6.
SNAIL, a potent repressor of E-cadherin expression, plays a key role in inducing epithelial-to-mesenchymal transition (EMT) in epithelial cells. During EMT, epithelial cells lose cell polarity and adhesion, and undergo drastic morphological changes acquiring highly migratory abilities. Although there is increasing evidence that EMT is involved in the progression of some human cancers, its significance in the progression of pancreatic cancer remains elusive. In Panc-1, a well-known human pancreatic cancer cell line in which EMT is triggered by TGF-β1 treatment, SNAIL and vimentin are highly expressed, whereas E-cadherin expression is scant. In contrast, another human pancreatic cancer cell line, BxPC3, in which SNAIL expression is not detected, has high levels of E-cadherin expression and does not undergo EMT upon TGF-β1 treatment. After transfecting the SNAIL gene into BxPC3, however, the cells undergo EMT with remarkable alterations in cell morphology and molecular expression patterns without the addition of any growth factors. Furthermore, in an orthotopic transplantation model using SCID mice, SNAIL-transfected BxPC3 displayed highly metastatic and invasive activities. In the immunohistochemical analysis of the tumor derived from the SNAIL-expressing BxPC3, alterations suggestive of EMT were observed in the invasive tumor front. SNAIL enabled BxPC3 to undergo EMT, endowing it with a highly malignant potential in vivo. These results indicate that SNAIL-mediated EMT may be relevant in the progression of pancreatic cancer, and SNAIL could be a molecular target for a pancreatic cancer intervention.  相似文献   

7.
The role of epithelial-mesenchymal transition in cancer pathology   总被引:12,自引:0,他引:12  
Guarino M  Rubino B  Ballabio G 《Pathology》2007,39(3):305-318
Invasion, the hallmark of malignancy, consists in the translocation of tumour cells from the initial neoplastic focus into neighbouring host tissues, and also allows tumour cells to penetrate vessel endothelium and enter the circulation to form distant metastasis. A histological pattern found at the periphery of carcinomas is the presence of individual malignant cells detached from the tumour mass and staying independently within the interstitial matrix of the stroma. While they are readily identified by the pathologist as invading malignant cells, their relationship with the compact-appearing portions of the tumour as well as the mechanism underlying the development of this pattern are not immediately evident at histological level. There is growing evidence suggesting that this change in tumour tissue architecture takes place through a peculiar phenotype modulation known as epithelial-mesenchymal transition (EMT). The essential features of EMT are the disruption of intercellular contacts and the enhancement of cell motility, thereby leading to the release of cells from the parent epithelial tissue. The resulting mesenchymal-like phenotype is suitable for migration and, thus, for tumour invasion and dissemination, allowing metastatic progression to proceed. Although the molecular bases of EMT have not been completely elucidated, several interconnected transduction pathways and a number of signalling molecules potentially involved have been identified. These include growth factors, receptor tyrosine kinases, Ras and other small GTPases, Src, beta-catenin and integrins. Most of these pathways converge on the down-regulation of the epithelial molecule E-cadherin, an event critical in tumour invasion and a 'master' programmer of EMT. E-cadherin gene is somatically inactivated in many diffuse-type cancers such as lobular carcinoma of the breast and diffuse gastric carcinoma, in which neoplastic cells through the entire tumour mass have lost many of their epithelial characteristics and exhibit a highly invasive, EMT-derived histological pattern. E-cadherin down-modulation is also seen in solid, non-diffuse-type cancers at the tumour-stroma boundary where singly invading, EMT-derived tumour cells are seen in histological sections. In this latter scenario, E-cadherin loss and EMT could be transient, reversible processes possibly regulated by the tumour microenvironment and, as a matter of fact, neoplastic cells that have undergone EMT during invasion seem to regain E-cadherin expression and their epithelial, cohesive characteristics at the secondary foci. Since the molecules involved in EMT represent potential targets for pharmacological agents, these findings open new avenues for the control of metastatic spread in the treatment of malignancies.  相似文献   

8.
TGFβ is a known driver of epithelial-mesenchymal transition (EMT) which is associated with tumor aggressiveness and metastasis. However, EMT has not been fully explored in clinical specimens of castration-resistant prostate cancer (CRPC) metastases. To assess EMT in CRPC, gene expression analysis was performed on 149 visceral and bone metastases from 62 CRPC patients and immunohistochemical analysis was performed on 185 CRPC bone and visceral metastases from 42 CRPC patients. In addition, to assess the potential of metastases to seed further metastases the mitochondrial genome was sequenced at different metastatic sites in one patient. TGFβ was increased in bone versus visceral metastases. While primarily cytoplasmic; nuclear and cytoplasmic Twist were significantly higher in bone than in visceral metastases. Slug and Zeb1 were unchanged, with the exception of nuclear Zeb1 being significantly higher in visceral metastases. Importantly, nuclear Twist, Slug, and Zeb1 were only present in a subset of epithelial cells that had an EMT-like phenotype. Underscoring the relevance of EMT-like cells, mitochondrial sequencing revealed that metastases could seed additional metastases in the same patient. In conclusion, while TGFβ expression and EMT-associated protein expression is present in a considerable number of CRPC visceral and bone metastases, nuclear Twist, Slug, and Zeb1 localization and an EMT-like phenotype (elongated nuclei and cytoplasmic compartment) was only present in a small subset of CRPC bone metastases. Mitochondrial sequencing from different metastases in a CRPC patient provided evidence for the seeding of metastases from previously established metastases, highlighting the biological relevance of EMT-like behavior in CRPC metastases.  相似文献   

9.
Matrix metalloproteinases (MMPs) are a family of more than 28 enzymes that were initially identified on the basis of their ability to cleave most elements of the extracellular matrix (ECM) but have subsequently been found to be upregulated in nearly every tumor type. As digestion of the ECM is essential for tumor invasion and metastasis, MMPs have been studied for their role in these later stages of tumor development. More recently, exposure to these enzymes has been found to impact cellular signaling pathways that stimulate cell growth at early stages of tumor progression. MMPs have also been found to cleave intracellular targets and so inducing mitotic abnormalities and genomic instability. Emerging evidence indicates that tumor-associated MMPs can also stimulate processes associated with epithelial-mesenchymal transition (EMT), a developmental process that is activated in tumor cells during cell invasion and metastasis. Investigations of potential therapeutic MMP inhibitors aimed at blocking the protumorigenic tissue alterations induced by MMPs have been complicated by the side effects associated with nonspecific inhibition of normal physiological processes; recent investigations have shown how delineation of the extracellular targets and intracellular signaling pathways by which MMP action on cancer cells can induce EMT provides insight into novel therapeutic targets. Here, we provide an overview of recent findings of MMP action in tumors and the mechanisms by which MMPs induce both phenotypic and genotypic alterations that facilitate tumor progression.  相似文献   

10.
Invasion is a defining feature of malignancy, but the mechanisms of invasion in many common cancers, including gynaecological malignancies, remain unclear. However, it has been proposed that malignant cells may usurp a normal embryological process, epithelial–mesenchymal transition (EMT), as a means of acquiring migratory capacity. The synergistic role of the tumour microenvironment in EMT induction has also been explored and helps to explain the spatially restricted distribution of EMT at the deep tumour margin (invasive front). Furthermore, tumour cells undergoing EMT may acquire cancer stem cell characteristics, and this may be relevant to the entire metastatic process and to tumour recurrence and treatment failure. Nevertheless, doubts persist regarding the role of EMT in malignant progression in vivo, partly because few studies have correlated molecular and histological alterations in clinical pathology specimens. In the current review we summarize the evidence for EMT in the common gynaecological epithelial malignancies, and discuss the morphological and immunohistochemical changes occurring at the invasive tumour front that may represent EMT‐like processes. The possibility that carcinosarcomas represent a variant type of EMT with ‘fixed’ mesenchymal differentiation is also considered. Diagnostic histopathologists are ideally placed to critically evaluate the role of EMT in gynaecological and other types of malignancy.  相似文献   

11.
12.
In addition to allowing epithelial cells to escape the structural constraints imposed by tissue architecture and adopt a phenotype more amenable to cell movement, it is now recognized that the epithelial-mesenchymal transition (EMT) may also represent a critical component permitting the progression of carcinomas towards invasive and metastatic disease. However, data supporting the actual occurrence of EMT in specific solid tumors and its relevance to the process of progression of these cancers has been scant. Despite an extensive knowledge of the genetic basis for colorectal cancer, the translation of this information into effective treatments has been limited. Clearly, there is a desperate need for new and improved therapies and since the switch to a metastatic phenotype is critical for outcome, it is of paramount importance to elucidate the biology that underlies the progression of this disease. Thus, the unique LIM 1863 model for studying the EMT of colorectal carcinoma has been used to both substantiate the importance of the transition for this cancer type and to identify molecular events that contribute to disease progression. Importantly, it has emerged that not only does EMT enhance migratory capacity, but also elicits additional selective advantages to colonic tumor cells. Specifically, the acquisition of autocrine growth factor signaling loops, mechanisms to evade apoptosis, and expression of specific integrins allowing invasive cells to interact with interstitial matrices and sustain activation of TGF-beta combine to provide a compelling new biochemical framework for understanding how EMT contributes to tumor evolution.  相似文献   

13.
Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer   总被引:1,自引:0,他引:1  
EMT (epithelial–mesenchymal transition) is a morphogenetic process in which cells loose their epithelial characteristics and gain mesenchymal properties during embryogenesis. Similar processes regulated by similar pathways are recapitulated during tumour progression, endowing cells with invasive properties, thereby contributing to the formation of metastases. In this review, we outline key features of EMT and discuss the evidence for its involvement in the dissemination of tumours. Finally we review the recent literature concerning the mechanisms that regulate EMT in the tumour context, with a particular focus on breast cancer.  相似文献   

14.
Cholangiocarcinoma morbidity and mortality is attributable to local invasiveness and regional lymph node and distant organ metastasis. Cholangiocarcinoma progression follows a series of sequential events that resemble wound healing reactions: local invasion resembles the epithelial migration phase involving epithelial–mesenchymal transition (EMT); colonization at distant sites resembles epithelial restitution seen during the reverse process, mesenchymal–epithelial transition (MET). In this study we compare the in vivo local and metastatic growth potential of cholangiocarcinoma cell lines with respect to expression of a novel pSTAT3-dependent, biliary epithelial cell wound healing protein, small proline-rich protein 2A (SPRR2A). SPRR2A has been associated with local aggressiveness, but decreased metastatic capabilities in other cancers. Stable SPRR2A transfection into two cholangiocarcinoma cell lines (SG231 and HuCCT-1), previously shown by us to induce permanent EMT, resulted in local aggressiveness but an inability to form metastases. In contrast, SPRR2A-negative epithelial control cells showed relatively poor local aggressiveness, but readily formed metastatic tumors. Post-intrasplenic injection cell tracking showed that: (a) mesenchymal (SPRR2A+) cells were not trapped in the liver, but were rapidly cleared through mesenteric lymph nodes and did not form metastases; whereas (b) epithelial (SPRR2A?) controls were primarily entrapped within MUC-1-associated liver “micro-infarcts” that later evolved into metastatic colonies. SPRR2A-associated tumor behavior was mimicked by MUC1 shRNA, which induced EMT and, like SPRR2A+ cells, showed reduced metastatic capabilities. Cholangiocarcinoma local invasion involves EMT processes, whereas MET and MUC1 expression promote metastasis. A better understanding of disease progression should help target treatment for this deadly neoplasm.  相似文献   

15.
16.
Cell interactions with their extracellular matrix (ECM) microenvironments play a major role in directing cellular processes that can drive wound healing and tissue regeneration but, if uncontrolled, lead to pathological progression. One such process, epithelial to mesenchymal transition (EMT), if finely controlled could have significant potential in regenerative medicine approaches. Despite recent findings that highlight the influence of biochemical and mechanical properties of the ECM on EMT, it is still unclear how these two orthogonal cues act synergistically to control epithelial cell phenotype. Here, we cultured lung epithelial cells on combinations of different mutants of fibronectin's cell binding domain that preferentially engage specific integrins and substrates of varying stiffness. Our results suggest that while stiff substrates induce spontaneous EMT, this response can be overcome by with fragments of fibronectin that support α3 and α5 integrin engagement. Furthermore, we found that substrate-induced EMT correlates with transforming growth factor beta activation by resident epithelial cells and is dependent on Rho/ROCK signaling. Suppressing cell-contractility was sufficient to maintain an epithelial phenotype. Our results suggest that integrin-specific engagement of fibronectin adhesive domains and the mechanics of the ECM act synergistically to direct EMT.  相似文献   

17.
In a previous study of phyllodes tumours, it has been shown that both the stroma and the epithelium can exhibit distinct molecular changes, suggesting that both are part of the neoplastic process. In view of this finding, it was decided to study stromal-epithelial interactions in these tumours by examining the Wnt-APC-beta-catenin pathway. Beta-catenin and cyclin D1 immunohistochemistry was performed on 119 phyllodes tumours. Eighty-six (72%) showed stromal nuclear beta-catenin localization and in 57% the staining was moderate or strong; however, of the eight malignant tumours in the series, seven showed absent or weak nuclear staining (p<0.025). In no tumour was nuclear beta-catenin staining seen in the epithelial component. Moderate or strong stromal cyclin D1 staining correlated with nuclear stromal beta-catenin staining (p<0.05). Forty-five of the tumours, including two malignant lesions, were screened for beta-catenin exon 3 mutations using SSCP and sequencing, but none was found. Loss of heterozygosity (LOH) of the marker D5S346 was used to infer APC mutation, but only one (benign) tumour showed LOH. Wnt2 and Wnt5a mRNA was localized by in situ hybridization in 13 cases (three malignant) chosen to reflect the different beta-catenin staining patterns. There was an association between strong nuclear beta-catenin staining of stromal cells and epithelial Wnt5a expression (p<0.0015). These data suggest that stromal proliferation in benign phyllodes tumours relies on abnormalities in the Wnt pathway which result not from mutation, but from Wnt5a expression in the epithelium. In the progression to malignancy, the stromal proliferation appears to become independent of the Wnt pathway and, presumably, of the epithelial component of these tumours.  相似文献   

18.
During tumor progression, malignant cells exploit critical developmental and tissue remodeling programs, often promoting a plastic phenotype referred to as an epithelial-mesenchymal transition (EMT). Autocrine/paracrine signaling due to tumor microenvironment cytokines, such as members of the transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) families, largely regulates the morphological and invasive phases of the EMT phenotype. Notably, epithelial cell initiation often coincides with a switch in the response of these cells to TGF-beta and is concomitant with EGF receptor amplification. Modeling these events, we have observed that premalignant human keratinocytes, HaCaTs, acquire a highly motile and scattered phenotype indicative of EMT following stimulation with TGF-beta1 and EGF. TGF-beta1 and EGF have been shown to upregulate a number of matrix metalloproteinases (MMP) in epithelial cells, which may in turn play a role in developing metastatic potential in these cells. We have established that an increase in MMP-10 expression occurs following treatment of HaCaT cells with a combination of TGF-beta1 and EGF. This increase in MMP-10 expression paralleled the development of a collagenolytic phenotype that was sensitive to components of the plasminogen activation system, including the plasminogen activator inhibitor type-1 (PAI-1). Significantly high levels of MMP-10 have been detected in squamous cell carcinomas of the head and neck, esophagus, oral cavity and skin. Importantly, TGF-beta1 in addition to upregulating MMP-10 has been shown to upregulate PAI-1 expression in HaCaT cells. Taken together, these observations suggest that TGF-beta1 and EGF play a complex role in modulating proteolytic and transitional events such as EMT that may facilitate the progression of human premalignant epithelial cells toward a more invasive phenotype.  相似文献   

19.
Gastric cancer is one of the most common causes of digestive tract tumor. Despite of recent advances in surgical techniques and development of adjuvant therapy, the underlying mechanisms of gastric cancer remain poorly understood and relevant insight into novel treatment strategies using gene target remains incomplete. Recently, several studies report that epithelial to mesenchymal transition (EMT) is a crucial process for the invasion and metastasis of epithelial tumors; however, the molecular mechanisms underlying this transition are unknown. As a cis-Golgi matrix protein, GM130 plays an important role in cell cycle progression and transport of protein in the secretory pathway. In this study, we found that GM130 expression has a positive correlation with the pathological differentiation and tumor node metastasis (TNM) stage of gastric cancer. High GM130 expression levels also predict shorter overall survival of gastric cancer patients. RNA interference-mediated knockdown of GM130 expression increased epithelial marker (E-cadherin) and decreased mesenchymal marker (N-cadherin and vimentin) expression in gastric cancer cells, suppressing cell invasion, and tumor formation. Furthermore, we found that GM130 upregulated expression of the key EMT regulator Snail (SNAI1), which mediated EMT activation and cell invasion by GM130. Taken together, our study indicates GM130 may be a promising therapeutic biomarker for gastric cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号