首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Adipose tissue-associated chronic inflammation is involved in the pathogenesis of obesity-related diseases. Dietary fatty acids are known to influence inflammatory processes. The aim of this study was to investigate, whether diets with regular fat contents but variable fat qualities affect adipose tissue-associated inflammation through the fatty acid composition of mesenteric adipose tissue (MAT).

Methods

Obese Zucker rats were fed diets containing 7 % wt:wt rapeseed oil, corn oil, or lard for 10 weeks. Fatty acid composition and endocrine function regarding adipokines and cytokines of MAT, number of total CD3+ T cells, and cytokine secretion of mesenteric lymph node (MLN)-derived lymphocytes were determined. Local effects in MAT and MLN were compared to systemic effects assessed in serum and peripheral blood mononuclear cells.

Results

Fatty acid composition of MAT reflected dietary fatty acid intake, without affecting endocrine function. Feeding the lard diet for 10 weeks increased the serum adiponectin and TNF-α secretion of blood lymphocytes, whereas CD3+ T cells in blood were decreased. No effects were seen for the secretion of adipokines and cytokines from MAT, the amount of T cells in MLN, and cytokine secretion of MLN lymphocytes.

Conclusions

In conclusion, feeding obese rats a diet with regular fat content but variable fat sources for 10 weeks, changed the fatty acid composition of MAT but not its secretory properties or MLN functions. Although the local immune system was not influenced, lard-feeding induced minor changes in systemic immune function.  相似文献   

2.
目的 探讨n-3多不饱和脂肪酸(n-3 polyunsaturated fatty acids,n-3 PUFAs)对饮食诱导肥胖小鼠肠道菌群的影响。方法 将30只3~4 周龄C57BL/ 6J雄性小鼠,随机分为3组(10只/组),分别给予高脂饲料、鱼油n-3 PUFAs高脂饲料(脂肪含量均为34.9%,供能比均为60%)以及正常脂饲料(脂肪来源于猪油和葵花籽油,脂肪含量为4.3%,供能比为10%)喂养16周。然后采集粪便,采用16sDNA-实时荧光定量PCR方法检测肠道菌群变化;取结肠组织,采用实时荧光定量PCR方法检测白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、白细胞介素-10(IL-10)、肿瘤坏死因子-α(TNF-α)以及单核细胞趋化蛋白-1(monocyte chemoattractant protein-1,MCP-1)的mRNA表达水平。结果 与正常脂饲料喂养对照组小鼠相比,高脂饲料诱导肥胖小鼠粪便中厚壁菌门及乳杆菌属的数量显著增多,而拟杆菌门、放线菌门、变形菌门以及双歧杆菌属的数量则显著减少(P<0.05)。两组肥胖小鼠相比,鱼油n-3 PUFAs高脂组肥胖小鼠的粪便双歧杆菌属数量明显增加,而乳杆菌属数量显著减少(P<0.05)。对结肠炎性因子mRNA表达水平检测显示,高脂饲料组肥胖小鼠的IL-1β、IL-6、TNF-α及MCP-1表达量较正常脂饲料组小鼠均明显升高(P<0.05),而IL-10的表达量无变化;鱼油n-3 PUFAs高脂饲料组肥胖小鼠的IL-1β、TNF-α较高脂饲料组肥胖小鼠有显著性的降低(P<0.05)。结论 鱼油n-3 PUFAs可以改善肥胖状态下的肠道菌群紊乱及肠道炎症状态。  相似文献   

3.
We examined the effect of dietary fats rich in n-3 polyunsaturated fatty acids (PUFA) on mRNA levels in white and brown adipose tissues in rats. Four groups of rats were fed on a low-fat diet (20 g safflower oil/kg) or a high-fat diet (200 g/kg) containing safflower oil, which is rich in n-6 PUFA (linoleic acid), or perilla (alpha-linolenic acid) or fish oil (eicosapentaenoic and docosahexaenoic acids), both of which are rich in n-3 PUFA, for 21 d. Energy intake was higher in rats fed on a high-safflower-oil diet than in those fed on low-fat or high-fish-oil diet, but no other significant differences were detected among the groups. Perirenal white adipose tissue weight was higher and epididymal white adipose tissue weight tended to be higher in rats fed on a high-safflower-oil diet than in those fed on a low-fat diet. However, high-fat diets rich in n-3 PUFA, compared to a low-fat diet, did not increase the white adipose tissue mass. High-fat diets relative to a low-fat diet increased brown adipose tissue uncoupling protein 1 mRNA level. The increases were greater with fats rich in n-3 PUFA than with n-6 PUFA. A high-safflower-oil diet, compared to a low-fat diet, doubled the leptin mRNA level in white adipose tissue. However, high-fat diets rich in n-3 PUFA failed to increase it. Compared to a low-fat diet, high-fat diets down-regulated the glucose transporter 4 mRNA level in white adipose tissue. However, the decreases were attenuated with high-fat diets rich in n-3 PUFA. It is suggested that the alterations in gene expression in adipose tissue contribute to the physiological activities of n-3 PUFA in preventing body fat accumulation and in regulating glucose metabolism in rats.  相似文献   

4.
目的探讨富含不同脂肪酸高脂饮食诱导的肥胖大鼠肝脏骨桥蛋白(OPN)表达及胰岛素抵抗的差异。方法 100只雄性SD大鼠,分别给予添加猪油(富含饱和脂肪酸)和大豆油(富含多不饱和脂肪酸)的高脂饲料喂养10w,建立肥胖模型,然后分别将猪油喂养的肥胖组(HL)和大豆油喂养的肥胖组(HS)随机分为两组,一组继续原高脂饲料喂养(HL-DIO-HL;HS-DIO-HS)另一组改用低脂基础饲料(LF)喂养(HL-DIO-LF;HS-DIO-LF),对照组始终用基础饲料喂养。每组动物均为6头第18w末处死动物,取血样和组织样。检测各组大鼠肝脏OPN、TNF-αmRNA表达水平,胰岛素及血糖水平和肝脏甘油三酯含量。结果 HL-DIO-HL和HS-DIO-HS组的体重和累计能量摄入无差异(P>0.05),但HL-DIO-HL组的体脂比、胰岛素、HOMA-IR指数、肝脏TG含量以及肝脏OPN mRNA和TNF-αmRNA表达水平均显著高于HS-DIO-HS组(P<0.05)。HL-DIO-LF和HS-DIO-LF组与其相应高脂组相比,累积能量摄入、体脂比、肝脏TG含量以及肝脏TNF-αmRNA表达水平均显著下降(P<0.05)。结论多不饱和脂肪酸能显著改善肥胖大鼠肝脏炎性反应和胰岛素敏感性。[营养学报,2012,34(6):567-571]  相似文献   

5.
ObjectiveThe goal of this study was to investigate the effects of a high-fat diet supplemented with fish oil or olive oil, fed to C57BL/6J mice for an extended period, on metabolic features associated with type 2 diabetes.MethodsMice were fed one of four diets for 30 wk: a low-fat diet, a high-fat diet supplemented with lard, a high-fat diet supplemented with fish oil, or a high-fat diet supplemented with olive oil. Phenotypic and metabolic analysis were determined at 15 and 25 to 30 wk, thereby providing comparative analysis for weight gain, energy consumption, fat distribution, glucose and insulin tolerance, and hepatic/plasma lipid analysis.ResultsMice fed a high-fat diet supplemented with fish oil had improved glucose tolerance after an extended period compared with mice fed a high-fat diet supplemented with lard. Moreover, mice fed a high-fat diet supplemented with fish oil had significantly decreased concentrations of liver cholesterol, cholesteryl ester, and triacylglycerol compared with mice fed a high-fat diet supplemented with either lard or olive oil.ConclusionMice fed a high-fat diet supplemented with fish oil improved metabolic features associated with type 2 diabetes such as impaired glucose tolerance and hepatic steatosis.  相似文献   

6.
7.

Purpose

To investigate the protective mechanisms of an 85 % pure extract of (?) epigallocatechin gallate (EGCG) in the development of fibrosis, oxidative stress and inflammation in a recently developed dietary-induced animal model of non-alcoholic fatty liver disease (NAFLD).

Methods

Female Sprague–Dawley rats were fed with either normal rat diet or high-fat diet for 8 weeks to develop NAFLD. For both treatments, rats were treated with or without EGCG (50 mg/kg, i.p. injection, 3 times per week). At the end, blood and liver tissue samples were obtained for histology, molecular, and biochemical analyses.

Results

Non-alcoholic fatty liver disease (NAFLD) rats showed significant amount of fatty infiltration, necrosis, fibrosis, and inflammation. This was accompanied by a significant expressional increase in markers for fibrosis, oxidative stress, and inflammation. TGF/SMAD, PI3 K/Akt/FoxO1, and NF-κB pathways were also activated. Treatment with EGCG improved hepatic histology (decreased number of fatty score, necrosis, and inflammatory foci), reduced liver injury (from ~0.5 to ~0.3 of ALT/AST ratio), attenuated hepatic changes including fibrosis (reduction in Sirius Red and synaptophysin-positive stain) with down-regulation in the expressions of key pathological oxidative (e.g. nitrotyrosine formation) and pro-inflammatory markers (e.g. iNOS, COX-2, and TNF-α). EGCG treatment also counteracted the activity of TGF/SMAD, PI3 K/Akt/FoxO1, and NF-κB pathways. Treatment with EGCG did not affect the healthy rats.

Conclusions

Epigallocatechin gallate (EGCG) reduced the severity of liver injury in an experimental model of NAFLD associated with lower concentration of pro-fibrogenic, oxidative stress, and pro-inflammatory mediators partly through modulating the activities of TGF/SMAD, PI3 K/Akt/FoxO1, and NF-κB pathways. Therefore, green tea polyphenols and EGCG are useful supplements in the prevention of NAFLD.  相似文献   

8.

Background

Adipocytes express inflammatory mediators that contribute to the low-level, chronic inflammation found in obese subjects and have been linked to the onset of cardiovascular disorders and insulin resistance associated with type 2 diabetes mellitus. A reduction in inflammatory gene expression in adipocytes would be expected to reverse this low-level, inflammatory state and improve cardiovascular function and insulin sensitivity. The natural products, curcumin and resveratrol, are established anti-inflammatory compounds that mediate their effects by inhibiting activation of NF-κB signaling. In the present study, we examined if these natural products can inhibit NF-κB activation in adipocytes and in doing so reduce cytokine expression.

Methods

Cytokine (TNF-α, IL-1β, IL-6) and COX-2 gene expression in 3T3-L1-derived adipocytes was measured by quantitative real-time PCR (qRT-PCR) with or without TNFα-stimulation. Cytokine protein and prostaglandin E2 (PGE2) expression were measured by ELISA. Effects of curcumin and resveratrol were evaluated by treating TNFα-stimulated adipocytes with each compound and 1) assessing the activation state of the NF-κB signaling pathway and 2) measuring inflammatory gene expression by qRT-PCR and ELISA.

Results

Both preadipocytes and differentiated adipocytes express the genes for TNF-α, IL-6, and COX-2, key mediators of the inflammatory response. Preadipocytes were also found to express IL-1β; however, IL-1β expression was absent in differentiated adipocytes. TNF-α treatment activated NF-κB signaling in differentiated adipocytes by inducing IκB degradation and NF-κB translocation to the nucleus, and as a result increased IL-6 (6-fold) and COX-2 (2.5-fold) mRNA levels. TNF-α also activated IL-1β gene expression in differentiated adipocytes, but had no effect on endogenous TNF-α mRNA levels. No detectable TNFα or IL-1β was secreted by adipocytes. Curcumin and resveratrol treatment inhibited NF-κB activation and resulted in a reduction of TNF-α, IL-1β, IL-6, and COX-2 gene expression (IC50 = 2 μM) and a reduction of secreted IL-6 and PGE2 (IC50 ~ 20 μM).

Conclusion

Curcumin and resveratrol are able to inhibit TNFα-activated NF-κB signaling in adipocytes and as a result significantly reduce cytokine expression. These data suggest that curcumin and resveratrol may provide a novel and safe approach to reduce or inhibit the chronic inflammatory properties of adipose tissue.  相似文献   

9.

Purpose

The isoprenoid geranylgeraniol (GGOH) inhibits nuclear factor-kappa B (NF-κB) activation in the liver, yet the mechanism remains unclear. We investigated the modulation and inhibition of lipopolysaccharide (LPS)-induced NF-κB signaling in the liver of rats fed a GGOH-supplemented diet.

Methods

Rats were fed a diet supplemented with or without GGOH for 10 days. Rats were then intraperitoneally injected with 0.5 mg/kg LPS or vehicle (sterilized saline) and fasted for 18 h. Plasma levels of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and the liver damage indicators alanine and aspartate aminotransferases (ALT and AST) were assessed. Liver mRNA and proteins were assayed for changes in NF-κB target genes and signal transduction genes.

Results

Rats fed a high-dose, GGOH-supplemented diet showed significantly lower levels of plasma inflammatory cytokines and ALT and AST activities. In the liver, GGOH significantly suppressed NF-κB activation and mRNA expression of its pro-inflammatory target genes. Furthermore, GGOH supplementation substantially suppressed mRNA expression of signal transducer genes upstream of the IκB kinase complex. Western blotting of liver extracts further demonstrated the substantial decrease in total IL-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6), leading to lower signal transduction and inhibition of NF-κB after LPS.

Conclusion

A 10-day, high-dose, GGOH-supplemented diet was sufficient to inhibit LPS-induced inflammation and activation of NF-κB in rat livers. GGOH significantly modulated NF-κB signaling molecules, inhibiting its signal transduction and activation in the liver, thus protecting against liver damage.  相似文献   

10.

Background

Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome.

Methods

Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised.

Results

High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1.

Conclusions

Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.  相似文献   

11.

Background

Increasing evidence suggests that diets high in polyunsaturated fatty acids (PUFA) confer health benefits by improving insulin sensitivity and lipid metabolism in liver, muscle and adipose tissue.

Methods

The present study investigates metabolic responses in two different lines of mice either selected for high body weight (DU6) leading to rapid obesity development, or selected for high treadmill performance (DUhTP) leading to a lean phenotype. At 29 days of age the mice were fed standard chow (7.2% fat, 25.7% protein), or a high-fat diet rich in n-3 PUFA (n-3 HFD, 27.7% fat, 19% protein) or a high-fat diet rich in n-6 PUFA (n-6 HFD, 27.7% fat, 18.6% protein) for 8 weeks. The aim of the study was to determine the effect of these PUFA-rich high-fat diets on the fatty acid profile and on the protein expression of key components of insulin signalling pathways.

Results

Plasma concentrations of leptin and insulin were higher in DU6 in comparison with DUhTP mice. The high-fat diets stimulated a strong increase in leptin levels and body fat only in DU6 mice. Muscle and liver fatty acid composition were clearly changed by dietary lipid composition. In both lines of mice n-3 HFD feeding significantly reduced the hepatic insulin receptor β protein concentration which may explain decreased insulin action in liver. In contrast, protein kinase C ζ expression increased strongly in abdominal fat of n-3 HFD fed DUhTP mice, indicating enhanced insulin sensitivity in adipose tissue.

Conclusions

A diet high in n-3 PUFA may facilitate a shift from fuel deposition in liver to fuel storage as fat in adipose tissue in mice. Tissue specific changes in insulin sensitivity may describe, at least in part, the health improving properties of dietary n-3 PUFA. However, important genotype-diet interactions may explain why such diets have little effect in some population groups.  相似文献   

12.

Purpose

Inflammation is a hallmark of many diseases, such as atherosclerosis, autoimmune diseases, obesity, and cancer. Isoflavone-free soy protein diet (SPI?) has been shown to reduce atherosclerotic lesions in a hyperlipidemic mouse model compared to casein (CAS)-fed mice, despite unchanged serum lipid levels. However, possible mechanisms contributing to the athero-protective effect of soy protein remain unknown. Therefore, we investigated whether and how SPI? diet inhibits inflammatory responses associated with atherosclerosis.

Methods

Apolipoprotein E knockout (apoE?/?) mice (5-week) were fed CAS or SPI? diet for 1 or 5 week to determine LPS- and hyperlipidemia-induced acute and chronic inflammatory responses, respectively. Expression of NF-κB-dependent inflammation mediators such as VCAM-1, TNF-α, and MCP-1 were determined in aorta and liver. NF-κB, MAP kinase, and AKT activation was determined to address mechanisms contributing to the anti-inflammatory properties of soy protein/peptides.

Results

Isoflavone-free soy protein diet significantly reduced LPS-induced VCAM-1 mRNA and protein expression in aorta compared to CAS-fed mice. Reduced VCAM-1 expression in SPI?-fed mice also paralleled attenuated monocyte adhesion to vascular endothelium, a critical and primary processes during inflammation. Notably, VCAM-1 mRNA and protein expression in lesion-prone aortic arch was significantly reduced in apoE?/? mice fed SPI? for 5 weeks compared with CAS-fed mice. Moreover, dietary SPI? potently inhibited LPS-induced NF-κB activation and the subsequent upregulation of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1β, and MCP-1. Interestingly, SPI? inhibited NF-κB-dependent inflammatory responses by targeting I-κB phosphorylation and AKT activation with no effect on MAP kinase pathway. Of the five putative soy peptides, four of the soy peptides inhibited LPS-induced VCAM-1, IL-6, IL-8, and MCP-1 protein expression in human vascular endothelial cells in vitro.

Conclusions

Collectively, our findings suggest that anti-inflammatory properties of component(s) of soy protein/peptides may be a possible mechanism for the prevention of chronic inflammatory diseases such as atherosclerosis.  相似文献   

13.

Background

Lipoic acid (LA) is an antioxidant with antiobesity and antidiabetic properties. Adiponectin is an adipokine with potent anti-inflammatory and insulin-sensitizing properties. AMP-activated protein kinase (AMPK) is a key enzyme involved in cellular energy homeostasis. Activation of AMPK has been considered as a target to reverse the metabolic abnormalities associated with obesity and type 2 diabetes.

Aim of the study

The aim of this study was to determine the effects of LA on AMPK phosphorylation and adiponectin production in adipose tissue of low-fat (control diet) and high-fat diet-fed rats.

Results

Dietary supplementation with LA reduced body weight and adiposity in control and high-fat-fed rats. LA also reduced basal hyperinsulinemia as well as the homeostasis model assessment (HOMA) levels, an index of insulin resistance, in high-fat-fed rats, which was in part independent of their food intake lowering actions. Furthermore, AMPK phosphorylation was increased in white adipose tissue (WAT) from LA-treated rats as compared with pair-fed animals. Dietary supplementation with LA also upregulated adiponectin gene expression in WAT, while a negative correlation between adiposity-corrected adiponectin levels and HOMA index was found. Our present data suggest that the ability of LA supplementation to prevent insulin resistance in high-fat diet-fed rats might be related in part to the stimulation of AMPK and adiponectin in WAT.  相似文献   

14.

Background

Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of β3-adrenoceptor (β3-AR) agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective β3-AR agonist (ZD7114) could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet.

Methods

Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the β3-AR agonist ZD7114 (1 mg/kg per day) or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study.

Results

In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG) and diacylglycerol (DAG) accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet.

Conclusions

These results show that activation of the β3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with β3-AR activation.  相似文献   

15.

Background

High-fat diets are usually associated with greater weight (W) gain and body fat (BF). However, it is still unclear whether the type and amount of fat consumed influence BF. Additionally, dietary fat intake may also have consequences on skeletal health.

Objective

To evaluate in healthy growing rats the effects of high-fat diets and type of dietary fat intake (saturated or vegetable oils) on energy and bone metabolism.

Methods

At weaning, male Wistar rats (n?=?50) were fed either a control diet (C; fat?=?7% w/w) or a high-fat diet (20% w/w) containing either: soybean oil, corn oil (CO), linseed oil (LO), or beef tallow (BT) for 8?weeks. Zoometric parameters, BF, food intake and digestibility, and total and bone alkaline phosphatase (b-AP) were assessed. Total skeleton bone mineral density (BMD) and content (BMC), BMC/W, spine BMD, and bone volume (static-histomorphometry) were measured.

Results

Animals fed BT diet achieved lower W versus C. Rats fed high-fat vegetable oil diets showed similar effects on the zoometric parameters but differed in BF. BT showed the lowest lipid digestibility and BMC. In contrast, high vegetable oil diets produced no significant differences in BMC, BMC/W, BMD, spine BMD, and bone volume. Marked differences were observed for LO and BT groups in b-AP and CO and BT groups in bone volume.

Conclusion

BT diet rich in saturated fatty acids had decreased digestibility and adversely affected energy and bone metabolisms, in growing healthy male rats. There were no changes in zoometric and bone parameters among rats fed high vegetable oil diets.  相似文献   

16.

Purpose

Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis.

Methods

Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70 % w/w) or in fat (20 and 35 % w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel.

Results

Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases.

Conclusions

The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.  相似文献   

17.
目的探讨鱼油摄入对肥胖大鼠体重增量、脂肪组织、瘦素基因表达、血清瘦素及胰岛素水平的影响。方法雄性Wistar大鼠在高脂(猪油20%WT/WT)饮食8 w后,以体重比对照组重30g及以上(约1个标准差)为标准分出肥胖大鼠,并按体重随机分为两组:猪油组(猪油20/100 WT/WT)和鱼油组(鱼油20/100WT/WT),保留对照组,分别饲以相应饲料,继续饲养4w。腹腔麻醉,心脏穿刺取血并分离血清,测血清瘦素及胰岛素水平;处死大鼠,分离腹膜后、附睾脂肪组织,称湿重,做腹膜后脂肪组织切片,以目镜测微计测脂肪细胞直径;RT-PCR检测脂肪组织瘦素mRNA。结果 (1)鱼油组大鼠体重增量、腹膜后、附睾脂肪组织湿重、脂肪细胞体积显著低于猪油组;其脂肪组织瘦素mRNA表达水平、血清瘦素、胰岛素水平均有降低趋势,但未达到统计学意义上的显著差异。(2)猪油、鱼油两组大鼠血清瘦素水平与血清胰岛素水平均呈显著的相关关系。结论鱼油饮食4w能显著降低肥胖大鼠体重增量、脂肪组织含量,但未能显著降低脂肪组织瘦素mRNA水平、血清瘦素及胰岛素水平。[营养学报,2013,35(2):146-149]  相似文献   

18.

Purpose

To explore the effect of a fructose-rich diet on morphological and functional changes in white adipose tissue (WAT) that could contribute to the development of insulin resistance.

Methods

Adult sedentary rats were fed a fructose-rich diet for 8 weeks. Glucose tolerance test was carried out together with measurement of plasma triglycerides, non-esterified fatty acids and lipid peroxidation. In subcutaneous abdominal and intra-abdominal WAT, number and size of adipocytes together with cellular insulin sensitivity and lipolytic activity were assessed.

Results

Rats fed a fructose-rich diet exhibited a significant increase in plasma insulin, triglycerides, non-esterified fatty acids and lipid peroxidation, together with significantly increased body lipids and epididymal and mesenteric WAT, compared to controls. Mean adipocyte volume in subcutaneous abdominal WAT was significantly lower, while mean adipocyte volume in intra-abdominal WAT was significantly higher, in rats fed a fructose-rich diet compared to controls. A significant increase in larger adipocytes and a significant decrease in smaller adipocytes were found in intra-abdominal WAT in rats fed a fructose-rich diet compared to controls. Insulin’s ability to inhibit lipolysis was blunted in subcutaneous abdominal and intra-abdominal adipocytes from fructose-fed rats. Accordingly, lower p-Akt/Akt ratio was found in WAT in rats fed a fructose-rich diet compared to controls.

Conclusions

Long-term consumption of high levels of fructose elicits remarkable morphological and functional modifications, particularly in intra-abdominal WAT, that are highly predictive of obesity and insulin resistance and that contribute to the worsening of metabolic alterations peculiar in a fructose-rich, hypolipidic diet.  相似文献   

19.

Purpose

To investigate whether a maternal high-fat diet (HF) during pregnancy and/or suckling periods predisposes adult C57BL/6 mice offspring to morphological pancreatic modifications.

Methods

Male pups were divided into 5 groups: SC (standard chow)—from dams fed SC during gestation and lactation, maintaining an SC diet from postweaning to adulthood; G—from dams fed HF diets during gestation; L—from dams fed HF diets during lactation; GL—from dams fed HF diets during gestation and lactation; and GL/HF—from dams fed HF diets during gestation and lactation, maintaining an HF diet from postweaning to adulthood. We analysed body mass (BM), plasma insulin, pancreas and adipose tissue structures.

Results

During the entire experiment, the SC group had the lowest BM. However, GL/HF offspring were heavier than the other groups. This weight gain was also accompanied by adipocyte hypertrophy. At 3 months, G offspring showed an increased insulin levels and impairment in carbohydrates metabolism. Furthermore, pancreatic islets were hypertrophied in G, GL and GL/HF offspring in comparison with SC offspring.

Conclusion

HF diet administration during the gestation period is more harmful than during the lactation period, exerting deleterious effects on pancreatic morphology in addition to larger fat deposits in adult mice offspring.  相似文献   

20.

Background and aims

Protein malnutrition affects resistance to infection by impairing the inflammatory response, modifying the function of effector cells, such as macrophages. Recent studies have revealed that glutamine—a non-essential amino acid, which could become conditionally essential in some situations like trauma, infection, post-surgery and sepsis—is able to modulate the synthesis of cytokines. The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappa B (NF-κB) signalling pathway of peritoneal macrophages from malnourished mice.

Methods

Two-month-old male Balb/c mice were submitted to protein-energy malnutrition (n = 10) with a low-protein diet containing 2 % protein, whereas control mice (n = 10) were fed a 12 % protein-containing diet. The haemogram and analysis of plasma glutamine and corticosterone were evaluated. Peritoneal macrophages were pre-treated in vitro with glutamine (0, 0.6, 2 and 10 mmol/L) for 24 h and then stimulated with 1.25 μg LPS for 30 min, and the synthesis of TNF-α and IL-1α and the expression of proteins related to the NF-κB pathway were evaluated.

Results

Malnourished animals had anaemia, leucopoenia, lower plasma glutamine and increased corticosterone levels. TNF-α production of macrophages stimulated with LPS was significantly lower in cells from malnourished animals when cultivated in supraphysiological (2 and 10 mmol/L) concentrations of glutamine. Further, glutamine has a dose-dependent effect on the activation of macrophages, in both groups, when stimulated with LPS, inducing a decrease in TNF-α and IL-1α production and negatively modulating the NF-κB signalling pathway.

Conclusions

These data lead us to infer that the protein malnutrition state interferes with the activation of macrophages and that higher glutamine concentrations, in vitro, have the capacity to act negatively in the NF-κB signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号