首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The medial portion of intrinsic buccal muscle 3 (I3m) is innervated by two excitatory motor neurons, B3 and B9. B3 uses glutamate as its fast transmitter and expresses the neuropeptide FMRFamide, whereas B9 uses acetylcholine as its fast transmitter and expresses the neuropeptide SCP. This preparation was used to study peptidergic modulation of muscles innervated by neurons that use different fast excitatory transmitters. First, we determined the effects of the application of the neuropeptides expressed in these neurons on excitatory junction potentials (EJPs) and contractions. FMRFamide increased the amplitude of EJPs and contractions evoked by B3 while decreasing those evoked by B9. This is the first observation in buccal muscle of a substance that modulates two excitatory neurons innervating the same muscle in opposite directions. SCP increased EJPs contraction amplitude, and the rate of muscle relaxation for both motor neurons. We determined that SCP potently increased cAMP levels in I3m as it does in other buccal muscles. Stimulation of B9 also caused increased cAMP levels in I3m providing independent evidence for SCP release. Finally, stimulation of B9 increased both the contraction amplitude and relaxation rate of B3-evoked I3m contractions in a manner similar to that observed using exogenous SCP. By inhibiting B9's cholinergic transmission with an antagonist, we were able to observe modulatory effects of B9 in the absence of fast excitatory effects. We found that the magnitude of the modulation was dependent on the firing frequency and did occur at frequencies and patterns of firing recorded previously for B9 during ingestive-like motor programs.  相似文献   

2.
1. Opaline release in Aplysia provides a simple model system for examining the biochemical and electrophysiological mechanisms underlying glandular secretion and its modulation. The opaline gland is a large multivesicular structure, which is innervated by at least three large identified motor neurons located within the right pleural ganglion (28). In this paper we have investigated the roles of dopamine (DA), acetylcholine (ACh), and serotonin (5-HT) in this simple neural system. 2. DA infusion produces a gland contraction that is similar to the response produced by neural activity in the previously identified opaline motor neurons. 3. The gland response to DA infusion is not affected by blocking synaptic transmission in the gland, suggesting that DA acts directly on muscle cells surrounding the gland and not through interposed interneurons. 4. In addition to its effect of producing contractions of the gland, DA enhances the size of subsequent neurally evoked gland contractions and increases the size of excitatory junctional potentials (EJPs) recorded from the opaline gland. Thus DA may have an additional modulatory role in opaline release. 5. DA antagonists such as fluphenazine and haloperidol inhibit the gland response to DA and also block the gland contraction produced by neural activity in the identified motor neurons. In addition, the DA antagonists reversibly block the EJPs recorded from the gland cells. Compounds known to block the effects of ACh or 5-HT have no effect on the dopamine-induced gland contractions, the contractions produced by firing the motor neurons, or the EJPs evoked by motor neuron stimulation. These results suggest that DA may be the neurotransmitter used by the identified opaline motor neurons. 6. ACh produces a decrease in pressure recorded from the lumen of the opaline gland that can be blocked by hexamethonium. 7. While 5-HT does not directly produce a contraction, treatment of the gland with the transmitter increases the size of subsequent gland responses produced either by DA infusion or activity in the opaline motor neurons. This enhancement has a relatively slow onset and long duration and persists for more than 15 min after the serotonin is washed out. In 60% of the experiments 5-HT also increased the size of the EJPs recorded from the opaline gland. The results suggest a modulatory role for serotonin in opaline secretion similar to the one it plays in other neural systems in Aplysia.  相似文献   

3.
Consummatory feeding movements in Aplysia californica are organized by a central pattern generator (CPG) in the buccal ganglia. Buccal motor programs similar to those organized by the CPG are also initiated and controlled by the cerebro-buccal interneurons (CBIs), interneurons projecting from the cerebral to the buccal ganglia. To examine the mechanisms by which CBIs affect buccal motor programs, we have explored systematically the synaptic connections from three of the CBIs (CBI-1, CBI-2, CBI-3) to key buccal ganglia CPG neurons (B31/B32, B34, and B63). The CBIs were found to produce monosynaptic excitatory postsynaptic potentials (EPSPs) with both fast and slow components. In this report, we have characterized only the fast component. CBI-2 monosynaptically excites neurons B31/B32, B34, and B63, all of which can initiate motor programs when they are sufficiently stimulated. However, the ability of CBI-2 to initiate a program stems primarily from the excitation of B63. In B31/B32, the size of the EPSPs was relatively small and the threshold for excitation was very high. In addition, preventing firing in either B34 or B63 showed that only a block in B63 firing prevented CBI-2 from initiating programs in response to a brief stimulus. The connections from CBI-2 to the buccal ganglia neurons showed a prominent facilitation. The facilitation contributed to the ability of CBI-2 to initiate a BMP and also led to a change in the form of the BMP. The cholinergic blocker hexamethonium blocked the fast EPSPs induced by CBI-2 in buccal ganglia neurons and also blocked the EPSPs between a number of key CPG neurons within the buccal ganglia. CBI-2 and B63 were able to initiate motor patterns in hexamethonium, although the form of a motor pattern was changed, indicating that non-hexamethonium-sensitive receptors contribute to the ability of these cells to initiate bursts. By contrast to CBI-2, CBI-1 excited B63 but inhibited B34. CBI-3 excited B34 and not B63. The data indicate that CBI-1, -2, and -3 are components of a system that initiates and selects between buccal motor programs. Their behavioral function is likely to depend on which combination of CBIs and CPG elements are activated.  相似文献   

4.
Neuromuscular synapses in buccal muscle I3a of Aplysia are modulated by the small cardioactive peptide (SCP), a peptide cotransmitter that is intrinsic to the motor neurons, and by serotonin (5-HT) released from modulatory neurons that are extrinsic to the motor circuit. Although the modulation of excitatory junction potentials (EJPs) and contractions by 5-HT and SCP has been studied extensively in this muscle, little is known about the mechanisms that underlie the modulation. 5-HT and SCP, at 1 microM, were found to potently increase the level of cAMP in I3a. Therefore we investigated whether the activation of the cAMP pathway was sufficient to modulate EJPs and contractions. The direct activation of adenylyl cyclase with forskolin increased the level of cAMP, facilitated EJPs, and potentiated contractions. Indeed, the short-term effects of forskolin were very similar to all aspects of the short-term effects of 5-HT and SCP. Membrane-permeable cAMP analogues also mimicked the effects of 5-HT and SCP on EJPs and contractions. However, it seems likely that some effects of 5-HT are also mediated through other second-messenger pathways because low concentrations of 5-HT modulate EJPs and contractions but do not significantly increase cAMP levels in I3a. It is possible that lower concentrations of 5-HT function through receptors linked to protein kinase C (PKC) because phorbol, an activator of PKC, modulated EJPs and contractions without increasing the levels of cAMP. In conclusion, we provide evidence that pharmacological agents that activate the cAMP pathway mimicked most of the effects of 5-HT or SCP and that more than one second-messenger system appears to be involved in the modulation of the I3a neuromuscular system.  相似文献   

5.
Glutamate is a major fast excitatory neurotransmitter in the CNS including the hypothalamus. Our previous experiments in hypothalamic neuronal cultures showed that a long-term decrease in glutamate excitation upregulates ACh excitatory transmission. Data suggested that in the absence of glutamate activity in the hypothalamus in vitro, ACh becomes the major excitatory neurotransmitter and supports the excitation/inhibition balance. Here, using neuronal cultures, fura-2 Ca(2+) digital imaging, and immunocytochemistry, we studied the mechanisms of regulation of cholinergic properties in hypothalamic neurons. No ACh-dependent activity and a low number (0.5%) of cholinergic neurons were detected in control hypothalamic cultures. A chronic (2 wk) inactivation of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptors, L-type voltage-gated Ca(2+) channels, calmodulin, Ca(2+)/calmodulin-dependent protein kinases II/IV (CaMK II/IV), or protein kinase C (PKC) increased the number of cholinergic neurons (to 15-24%) and induced ACh activity (in 40-60% of cells). Additionally, ACh activity and an increased number of cholinergic neurons were detected in hypothalamic cultures 2 wk after a short-term (30 min) pretreatment with bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid tetrakis(acetoxy-methyl) ester (BAPTA AM; 2.5 microM), a membrane permeable Ca(2+)-chelating agent that blocks cytoplasmic Ca(2+) fluctuations. An increase in the number of cholinergic neurons following a chronic NMDA receptor blockade was likely due to the induction of cholinergic phenotypic properties in postmitotic noncholinergic neurons, as determined using 5-bromo-2'-deoxyuridine (BrdU) labeling. In contrast, a chronic inactivation of non-NMDA glutamate receptors or cGMP-dependent protein kinase had little effect on the expression of ACh properties. The data suggest that Ca(2+), at normal intracellular concentrations, tonically suppresses the development of cholinergic properties in hypothalamic neurons. However, a decrease in Ca(2+) influx into cells (through NMDA receptors or L-type Ca(2+) channels), inactivation of intracellular Ca(2+) fluctuations, or downregulation of Ca(2+)-dependent signal transduction pathways (CaMK II/IV and PKC) remove the tonic inhibition and trigger the development of cholinergic phenotype in some hypothalamic neurons. An increase in excitatory ACh transmission may represent a novel form of neuronal plasticity that regulates the activity and excitability of neurons during a decrease in glutamate excitation. This type of plasticity has apparent region-specific character and is not expressed in the cortex in vitro; neither increase in ACh activity nor change in the number of cholinergic neurons were detected in cortical cultures under all experimental conditions.  相似文献   

6.
1. A study was made of the synthesis of acetylcholine (ACh) and other transmitters by the cell bodies of functionally identified neurons in leech segmental ganglia. 2. Choline acetyltransferase, the synthetic enzyme for ACh, was detected in excitatory motoneurons but not in mechanosensory cells or Retzius cells. The ability of motoneurons to synthesize ACh was also demonstrated by their accumulation of [3H]ACh following incubation of segmental ganglia with [3H]choline. [3H]ACh was not detected in the other cell types. When eserine was included in [3H]choline incubations, the amount of [3H]ACh in motoneurons increased severalfold and small amounts of [3H]ACh (1% that in motor cells) appeared in extracts of sensory and Retzius cells. 3. In addition to [3H]ACh segmental ganglia synthesized [3H]5-HT, [3H]gamma-aminobutyric acid, [3H]dopamine, and [3H]octopamine from exogenous, labeled precursors. None of these labeled transmitters was detected in identified neurons except [3H]5-HT, which was found in Retzius cells. 4. These results provide biochemical evidence that excitatory motoneurons in the leech are cholinergic, but leave open the identity of the sensory transmitter(s).  相似文献   

7.
The parapodial neuromuscular junction in the marine snail Aplysia brasiliana is a model synapse for the investigation of neural modulation. The parapodial muscle fibers are innervated by cholinergic motoneurons and by serotonergic modulatory cells. The physiological properties of voltage-gated currents of the muscle membranes and the effects of serotonin on these currents have been published previously. However, the pharmacological properties of the cholinergic receptors have not been investigated. Acetylcholine (ACh) applied exogenously to dissociated muscle fibers produces a response with a reversal potential of about -52 mV; the resting membrane potential of the average muscle fiber is approximately -56 mV. ACh induces variable responses (depolarizations or hyperpolarizations) in individual cells, but the transmitter never causes a depolarization adequate to produce muscle contraction. We demonstrate that the ACh response is the result of the activation of two distinct receptors. One receptor is linked to a chloride channel and induces a hyperpolarization with a reversal potential near -70 mV. This receptor is activated selectively by suberyldicholine and by nicotine and is antagonized by curare but not by hexamethonium. The second response, presumably caused by increased conductance to mixed cations, results in muscle fiber depolarization with a reversal potential near -35 mV and does induce muscle contraction. This receptor is activated by methylcarbamylcholine and selectively blocked by hexamethonium; atypically, this receptor is not activated by nicotine nor by carbachol. The depolarizing, cation-selective receptors likely are associated with identified excitatory cholinergic motoneurons the activity of which typically results in muscle contractions because the reversal potential for this ACh response is more depolarized than the activation threshold for voltage-gated calcium channels in these fibers. The hyperpolarizing, chloride-selective receptors may be associated with inhibitory motoneurons; such motoneurons have yet to be identified, but their presence is inferred because of the occurrence of spontaneous inhibitory junctional potentials recording from muscle fibers in situ. Muscle fiber responses to exogenously applied ACh reflect the relative contribution of each receptor type in each muscle fiber.  相似文献   

8.
Regulation of cholinergic phenotype in developing neurons   总被引:1,自引:0,他引:1  
Specification of neurotransmitter phenotype is critical for neural circuit development and is influenced by intrinsic and extrinsic factors. Recent findings in rat hypothalamus in vitro suggest the role of neurotransmitter glutamate in the regulation of cholinergic phenotype. Here we extended our previous studies on the mechanisms of glutamate-dependent regulation of cholinergic phenotypic properties in hypothalamic neurons. Using immunocytochemistry, electrophysiology, and calcium imaging, we demonstrate that hypothalamic expression of choline acetyltransferase (the cholinergic marker) and responsiveness of neurons to acetylcholine (ACh) receptor agonists increase during chronic administration of an N-methyl-D-aspartate receptor (NMDAR) blocker, MK-801, in developing rats in vivo and genetic and pharmacological inactivation of NMDARs in mouse and rat developing neuronal cultures. In hypothalamic cultures, an inactivation of NMDA receptors also induces ACh-dependent synaptic activity, as do inactivations of PKA, ERK/MAPK, CREB, and NF-kappaB, which are known to be regulated by NMDA receptors. Interestingly, the increase in cholinergic properties in developing neurons that is induced by NMDAR blockade is prevented by the blockade of ACh receptors, suggesting that function of ACh receptor is required for the cholinergic up-regulation. Using dual recording of monosynaptic excitatory postsynaptic currents, we further demonstrate that chronic inactivation of ionotropic glutamate receptors induces the cholinergic phenotype in a subset of glutamatergic neurons. The phenotypic switch is partial as ACh and glutamate are coreleased. The results suggest that developing neurons may not only coexpress multiple transmitter phenotypes, but can also change the phenotypes following changes in signaling in neuronal circuits.  相似文献   

9.
The functional activity of even simple cellular ensembles is often controlled by surprisingly complex networks of neuromodulators. One such network has been extensively studied in the accessory radula closer (ARC) neuromuscular system of Aplysia. The ARC muscle is innervated by two motor neurons, B15 and B16, which release modulatory peptide cotransmitters to shape ACh-mediated contractions of the muscle. Previous analysis has shown that key to the combinatorial ability of B15 and B16 to control multiple parameters of the contraction is an asymmetry in their peptide modulatory actions. B16, but not B15, releases myomodulin, which, among other actions, inhibits the contraction. Work in single ARC muscle fibers has identified a distinctive myomodulin-activated K current as a candidate postsynaptic mechanism of the inhibition. However, definitive evidence for this mechanism has been lacking. Here, working with the single fibers and then motor neuron-elicited excitatory junction potentials (EJPs) and contractions of the intact ARC muscle, we have confirmed two central predictions of the K-current hypothesis: the myomodulin inhibition of contraction is associated with a correspondingly large inhibition of the underlying depolarization, and the inhibition of both contraction and depolarization is blocked by 4-aminopyridine (4-AP), a potent and selective blocker of the myomodulin-activated K current. However, in the intact muscle, the experiments revealed a second, 4-AP-resistant component of myomodulin inhibition of both B15- and B16-elicited EJPs. This component resembles, and mutually occludes with, inhibition of the EJPs by another peptide modulator released from both B15 and B16, buccalin, which acts by a presynaptic mechanism, inhibition of ACh release from the motor neuron terminals. Direct measurements of peptide release showed that myomodulin also inhibits buccalin release from B15 terminals. At the level of contractions, nevertheless, the postsynaptic K-current mechanism is responsible for much of the myomodulin inhibition of peak contraction amplitude. The presynaptic mechanism, which is most evident during the initial build-up of the EJP waveform, underlies instead an increase of contraction latency.  相似文献   

10.
Many neuromuscular and central synapses exhibit activity-dependent plasticity. The sustained high-frequency firing needed to elicit some forms of plasticity are similar to those often required to release neuropeptides. We wanted to determine if neuropeptide release could contribute to post-tetanic potentiation (PTP) and chose neuromuscular synapses in buccal muscle I3a to explore this issue. This muscle is innervated by two motor neurons (termed B3 and B38) that show PTP in response to tetanic stimulation. B3 and B38 use glutamate as their fast transmitter but express different modulatory neuropeptides. B3 expresses FMRFamide, a neuropeptide that only slightly increases its own excitatory junction potentials (EJPs). B38 expresses the small cardioactive peptide (SCP), a neuropeptide that dramatically increases its own EJPs. It was our hypothesis that SCP released from B38's terminals during tetanic stimulation mediated a component of PTP for B38. Because no antagonist to SCP currently exists, we used several indirect approaches to test this hypothesis. First, we studied the effects of increasing stimulation frequency during the tetanus or lowering temperature on PTP. Both of these changes are known to dramatically increase SCP release. We found that increasing the frequency of stimulation increased PTP for both neurons; however, the effects were larger for B38. Decreasing the temperature tended to reduce PTP for B3, while increasing PTP for B38. These results were consistent with known properties of SCP release from B38. Next we selectively superfused the neuromuscular synapses with exogenous SCP to determine if this would occlude the effects of SCP released from B38 during a tetanus. We found that exogenous SCP dramatically reduced PTP for B38 but had little effect on PTP for B3. Thus our results support the hypothesis that physiological stimulation of B38 elicits PTP that is predominantly dependent on the release of SCP from its own terminals. They also demonstrate that the mechanisms underlying PTP can be very different for two motor neurons innervating the same target muscle.  相似文献   

11.
Types and projections of neurons that received cholinergic, purinergic and other fast excitatory synaptic inputs in myenteric ganglia of the guinea-pig distal colon were identified using combined electrophysiological recording, application of selective antagonists, marker dye filling via the recording microelectrode, and immunohistochemical characterisation. Fast synaptic inputs were recorded from all major subtypes of uniaxonal neurons including Dogiel type I neurons, filamentous interneurons, circular muscle motor neurons and longitudinal muscle motor neurons. Fast excitatory postsynaptic potentials were completely blocked by the nicotinic receptor antagonists hexamethonium or mecamylamine in 62% of neurons tested and were partially inhibited in the remaining neurons. The P2 purine receptor antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid, reduced the amplitudes of fast excitatory postsynaptic potentials in 20% of myenteric neurons. The 5-hydroxytryptamine(3) receptor antagonist granisetron reduced the amplitude of fast excitatory postsynaptic potentials in only one of 15 neurons tested. In five of five neurons tested, the combination of a nicotinic antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid, granisetron and 6-cyano-7-nitroquinoxaline-2,3-dione did not completely block the fast excitatory postsynaptic potentials. Immunohistochemical studies of the neurons that had been identified electrophysiologically and morphologically imply that P2X(2) receptors may mediate fast transmission in some neurons, and that other P2X receptor subtypes may also be involved in fast synaptic transmission to myenteric neurons of the guinea-pig distal colon. Neurons with nicotinic and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid-sensitive fast excitatory postsynaptic potentials were present in both ascending and descending pathways in the distal colon. Thus, neither cholinergic nor mixed cholinergic/purinergic synaptic responses are confined to a particular class of neuron. The results indicate that acetylcholine and ATP are the major fast excitatory neurotransmitters in guinea-pig distal colon myenteric ganglia.  相似文献   

12.
Intracellular recordings were made from sympathetic B neurons to investigate an interaction between peptidergic and cholinergic responses in bullfrog sympathetic ganglia. Simultaneous stimulations of 3rd-5th and 8th spinal nerves evoked the fast excitatory postsynaptic potential (EPSP) superimposed with the late slow EPSP at the same sympathetic neuron. The amplitude of fast EPSPs was reduced during the course of the late slow EPSP in a majority of sympathetic neurons. A nicotinic depolarization produced by an ionophoretic application of ACh (ACH potential) was not significantly affected during the late slow EPSP. The quantal content of the fast EPSP calculated by the variance method was depressed during the late slow EPSP. Luteinizing hormone-releasing hormone (LH-RH), a putative transmitter for the late slow EPSP decreased the amplitude and the quantal content of the fast EPSP. [D-Phe2,6, Pro3]-LH-RH, and [D-DGlu1, D-Phe2, D-Trp3,6]-LH-RH, antagonists for LH-RH receptors prevented the inhibition of the fast EPSP induced by the late slow EPSP and LH-RH. These results suggest that cholinergic nicotinic transmission is inhibited during the late slow EPSP by a decreased ACh-release from nerve terminals in bullfrog sympathetic ganglia.  相似文献   

13.
Acetylcholine (ACh), acting at muscarinic ACh receptors (mAChRs), modulates the excitability and synaptic connectivity of hippocampal pyramidal neurons. CA1 pyramidal neurons respond to transient ("phasic") mAChR activation with biphasic responses in which inhibition is followed by excitation, whereas prolonged ("tonic") mAChR activation increases CA1 neuron excitability. Both phasic and tonic mAChR activation excites pyramidal neurons in the CA3 region, yet ACh suppresses glutamate release at the CA3-to-CA1 synapse (the Schaffer-collateral pathway). Using mice genetically lacking specific mAChRs (mAChR knockout mice), we identified the mAChR subtypes responsible for cholinergic modulation of hippocampal pyramidal neuron excitability and synaptic transmission. Knockout of M1 receptors significantly reduced, or eliminated, most phasic and tonic cholinergic responses in CA1 and CA3 pyramidal neurons. On the other hand, in the absence of other G(q)-linked mAChRs (M3 and M5), M1 receptors proved sufficient for all postsynaptic cholinergic effects on CA1 and CA3 pyramidal neuron excitability. M3 receptors were able to participate in tonic depolarization of CA1 neurons, but otherwise contributed little to cholinergic responses. At the Schaffer-collateral synapse, bath application of the cholinergic agonist carbachol suppressed stratum radiatum-evoked excitatory postsynaptic potentials (EPSPs) in wild-type CA1 neurons and in CA1 neurons from mice lacking M1 or M2 receptors. However, Schaffer-collateral EPSPs were not significantly suppressed by carbachol in neurons lacking M4 receptors. We therefore conclude that M1 and M4 receptors are the major mAChR subtypes responsible for direct cholinergic modulation of the excitatory hippocampal circuit.  相似文献   

14.
The petrosal ganglion (PG) contains the somata of primary afferent neurons that innervate the chemoreceptor (glomus) cells in the carotid body (CB). The most accepted model of CB chemoreception states that natural stimuli trigger the release of one or more transmitters from glomus cells, which in turn acting on specific post-synaptic receptors increases the rate of discharge in the nerve endings of PG neurons. However, PG neurons that project to the CB represent only small fraction (roughly 20%) of the whole PG and their identification is not simple since their electrophysiological and pharmacological properties are not strikingly different as compared with other PG neurons, which project to the carotid sinus or the tongue. In addition, differences reported on the actions of putative transmitters on PG neurons may reflect true species differences. Nevertheless, some experimental strategies have contributed to identify and characterize the properties of PG neurons that innervate the CB. In this review, we examined the electrophysiological properties and pharmacological responses of PG neurons to putative CB excitatory transmitters, focusing on the methods of study and species differences. The evidences suggest that ACh and ATP play a major role in the fast excitatory transmission between glomus cells and chemosensory nerve endings in the cat, rat and rabbit. However, the role of other putative transmitters such as dopamine, 5-HT and GABA is less clear and depends on the specie studied.  相似文献   

15.
1. The effects of L-glutamate superfusion over identified neurons within the buccal ganglia of Helisoma trivolvis were examined. Glutamate mirrored the effect of activity of subunit 2 (S2) of the tripartite feeding central pattern generator (CPG) on S2 postsynaptic neurons. Neurons that are excited by S2 are depolarized by glutamate, whereas neurons that are inhibited by S2 are hyperpolarized by glutamate. Glutamate also stimulated rhythmic S2 activity. 2. Different glutamate agonists could mimic specific components of the effects of glutamate on buccal neurons. Kainate produced depolarizations in neurons that receive S2 excitatory postsynaptic potentials (EPSPs) and activated rhythmic S2 activity. Quisqualate produced hyperpolarizations in neurons that receive S2 inhibitory postsynaptic potentials (IPSPs). 3. The non-N-methyl-D-aspartate glutamate receptor antagonist cyano-7-nitroquinoxaline-2,3-dione (CNQX) blocked the effects of S2 EPSPs and depolarizations produced by application of glutamate and kainate, but was ineffective in blocking S2 IPSPs or hyperpolarizations produced by application of glutamate and quisqualate. 4. These data support the hypothesis that glutamate is the transmitter of S2 of the feeding CPG in Helisoma, acting at CNQX-sensitive kainate-like receptors at excitatory synapses and CNQX-insensitive quisqualate-like receptors at inhibitory synapses.  相似文献   

16.
In chloralosed cats. usually with ligated adrenals and paralysed with gallamine, the thoracic dorsal roots were electrically stimulated and gastric motor responses were recorded. Thoracic dorsal root stimulation regularly elicited gastric contractions after pretreatment with guanethidine and/or hexamethonium which were readily blocked by atropine. It was established that these gastric motor responses were due to peripheral stimulation of the dorsal root and not to spread to the ventral roots. Together with other results (Delbro & Lisander 1980) the findings suggest an antidromic activation of thin afferent fibres with excitatory collaterals to intramural cholinergic neurons which convey the gastric contractions.  相似文献   

17.
Neural control of circulation in Aplysia. III. Neurotransmitters.   总被引:3,自引:0,他引:3  
In the abdominal ganglion of Aplysia californica, seven motoneurons have been described which modulate the myogenic heart beat and vasomotor tone (28). These neurons mediate their motor effects by chemical transmission. In this paper we have attempted to specify the transmitters of six of these motoneurons. We have 1) studied the effects of several common transmitters on the innervated structures and compared these effects with the effects of firing the motoneurons, 2) examined whether blocking agents influence similarly the effect of a putative transmitter applied to the innervated structure and the effect of firing a motoneuron, and 3) tested the capability of the motoneurons to synthesize the putative transmitters from precursors. The positive inotropic and chronotropic effects of firing the excitor motoneuron RB(HE) were mimicked by perfusion of the heart with serotonin at a low concentration. Cinanserin blocked both the effects of motoneuron excitation and serotonin perfusion. RB(HE) was also shown to synthesize [3H]serotonin from L-[3H]tryptophan injected directly into the cell body. The effects of firing the two LD(HI) heart-inhibitory motoneurons were mimicked by perfusion of the heart with acetylcholine. Benzoquinonium blocked the effects of the inhibitory motoneuron and acetylcholine perfusion. Perfusion with arecoline also inhibited the heart beat. Acetylcholine applied to the arteries mimicked the vasoconstriction caused by the LB(VC) motoneurons. Aortic constriction in response to activity in LB(VC) cells or to acetylcholine was blocked by hexamethonium and curare. The heart inhibitor and vasoconstrictor motoneurons synthesized [3H] acetylcholine from [3H] choline injected into their cell bodies. Thus, as in vertebrates, acetylcholine mediates inhibition to the heart. Unlike vertebrates, however, serotonin mediates excitation to the heart and acetylcholine mediates peripheral vasoconstriction.  相似文献   

18.
Acetylcholine profoundly affects neocortical function, being involved in arousal, attention, learning, memory, sensory and motor function, and plasticity. The majority of cholinergic afferents to neocortex are from neurons in nucleus basalis. Nucleus basalis also contains projecting neurons that release other transmitters, including GABA and possibly glutamate. Hence, electrical stimulation of nucleus basalis evokes the release of a mixture of neurotransmitters in neocortex, and this lack of selectivity has impeded research on cholinergic signaling in neocortex. We describe a method for the selective stimulation of cholinergic axons in neocortex. We used the Cre-lox system and a viral vector to express the light-activated protein channelrhodopsin-2 in cholinergic neurons in nucleus basalis and their axons in neocortex. Labeled neurons depolarized on illumination with blue light but were otherwise unchanged. In anesthetized mice, illumination of neocortex desynchronized the local field potential, indicating that light evoked release of ACh. This novel technique will enable many new studies of the cellular, network, and behavioral physiology of ACh in neocortex.  相似文献   

19.
The pharmacology of molluscan neurons   总被引:3,自引:0,他引:3  
It is commonly accepted that the basic physiological properties of the neurons as well as the nature of transmitter substances have remained relatively unchanged through evolution, while brain size and neuron number have greatly increased. Among invertebrates the molluscs, due to the large size of their neurons and lesser complexity of the neural networks controlling specific behavior, have proved to be especially useful for studying elementary properties of single neurons, network organization as well as various forms of learning and memory. The study of putative neurotransmitters has indicated that molluscs use the same low molecular-weight substances and peptides or their metabolites and cyclic nucleotides as transmitters and second messengers as the other species of various phyla. At the same time the receptors of neurotransmitters were found to have certain characteristic properties in the molluscs. The large molluscan neurons have permitted the isolation of individual identifiable nerve cells, and the subsequent analysis of quantities of the transmitters and their metabolic enzymes. These studies have demonstrated that single neurons frequently can contain more than one putative neurotransmitter. It can be expected that this model will contribute to an understanding of the role of multiple transmitters within a single neuron assuring the plasticity of the nervous system. The cellular mechanisms of plasticity have been demonstrated first in molluscan nervous systems. It was proved in identified Aplysia neurons that the same transmitter (ACh) can be released from an interneuron onto two or more follower neurons and can excite one and inhibit another or evoke a biphasic response on a third type of cell. The biphasic response of the molluscan neurons to neurotransmitters was the first demonstration of the plastic synaptic changes. The discovery of individual neurons with their groups of follower cells acting as chemical units has provided an insight into the organization of various behavioral acts. Study of the gastropod molluscs has also shown that the giant serotonergic cells can act as peripheral modulator neurons, as well as interneurons, and in this way they can affect their target organs at more than one level.The molluscan studies have provided more information on transmitter receptors as it was shown that molluscan neurons have at least six different 5HT receptors, three Ach receptors which can be separated pharmacologically. This type of study has led to the discovery of numerous new antagonists and poisons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Acetylcholine (ACh) induces a hyperpolarization during current clamp and an outward current during voltage clamp in tail sensory neurons of Aplysia kurodai. This response was proved to be produced by a specific increase in membrane permeability toward potassium ions, the cholinergic antagonists, d-tubocurarine chloride (d-TC), and atropine mildly reduced the ACh response, while tetraethylammonium (TEA) most effectively blocked this response. These findings provide evidence that tail sensory neurons have the inhibitory ACh receptor in addition to the known receptors for serotonin (5-HT), small cardioactive peptide B (SCPB), and neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号