首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in the distribution and amount of nitric oxide (NO) synthases (nNOS and iNOS) and the appearance of nitrotyrosine (NT) in the rat cerebral cortex were investigated following portacaval anastomosis (PCA), an experimental hepatic encephalopathy (HE) model. One month after PCA, rats showed more neurones immunoreactive to nNOS than did control animals. At 6 months post PCA, the number of neurones expressing nNOS had again increased and the intensity of the immunoreactions was stronger. Immunohistochemical analysis also showed that iNOS was increasingly expressed in pyramidal-like cortical neurones and in perivascular astrocytes from 1 to 6 months post PCA. In addition, a significant increase in cerebral iNOS concentration, at both post-PCA periods, was determined by Western blotting. The iNOS induction appears to be correlated with the length of the post-PCA period. PCA also induced the expression of NT, a nitration product of peroxynitrite. NT immunoreactivity was found in pyramidal-like cortical neurones. At 6 months, NT immunoreactivity was also evident in perivascular astrocytes, which was concomitant with a significant increase in NT protein level. PCA therefore not only increases the expression of nNOS but also induces the expression of iNOS and NT in both neurones and astrocytes. Taken together, these findings indicate that the induction of iNOS in pyramidal neurones and cortical astrocytes 6 months after PCA contributes to the generation of NT, and demonstrate the clear participation of NO in the pathogenic process of HE in this model.  相似文献   

2.
慢性间断性缺氧诱导一氧化氮合酶表达的研究   总被引:1,自引:0,他引:1  
目的:建立大鼠缺氧模型,检测神经元型一氧化氮合酶(nNOS)及诱导型一氧化氮合酶(iNOS)的表达情况。方法:1.建立缺氧模型:将SD大鼠置于常压低氧舱中,充入氮气调节氧浓度至所需氧浓度。2.动物分组:(1)急性缺氧组:在低氧舱中缺氧1.5小时。(2)慢性间断性缺氧组:每日在低氧舱中6小时。每周缺氧6天,共缺氧28天。3.采用免疫组化法检测nNOS和iNOS的表达。4.统计学分析检验。结果:急性缺氧后,iNOS、nNOS阳性神经元增加;慢性缺氧后,iNOS、nNOS阳性神经元仍持续增多,慢性缺氧时增加iNOS-IR细胞远远多于nNOS-IR细胞。结论:我们的研究表明缺氧可引起iNOS、nNOS阳性神经元增加,NOS亚型表达时间的不同说明其脑损伤具有阶段性。  相似文献   

3.
Nitric oxide (NO) production involves four different NO-synthases (NOSs) that are either constitutive (neuronal, nNOS; endothelial, eNOS; mitochondrial, mNOS) or inducible (iNOS) in nature. Three main processes regulate NO/NOSs output, i.e., the L-arginine/arginase substrate-competing system, the L-citrulline/arginosuccinate-recycling system and the asymmetric dimethyl-/monomethyl-L-arginine-inhibiting system. In adult animals, nNOS exhibits a dense innervation intermingled with pontine sleep structures. It is well established that the NO/nNOS production makes a key contribution to daily homeostatic sleep (slow-wave sleep, SWS; rapid eye movement sleep, REM sleep). In the basal hypothalamus, the NO/nNOS production further contributes to the REM sleep rebound that takes place after a sleep deprivation (SD). This production may also contribute to the sleep rebound that is associated with an immobilization stress (IS). In adult animals, throughout the SD time-course, an additional NO/iNOS production takes place in neurons. Such production mediates a transitory SD-related SWS rebound. A transitory NO/iNOS production is also part of the immune system. Such a production contributes to the SWS increase that accompanies inflammatory events and is ensured by microglial cells and astrocytes. Finally, with aging, the iNOS expression becomes permanent and the corresponding NO/iNOS production is important to ensure an adequate maintenance of REM sleep and, to a lesser extent, SWS. Despite such maintenance, aged animals, however, are not able to elicit a sleep rebound to deal with the challenge of SD or IS. Sleep regulatory processes in adult animals thus become impaired with age. Reduced iNOS expression during aging may contribute to accelerated senescence, as observed in senescence-accelerated mice (SAMP-8 mice).  相似文献   

4.
5.
目的探讨磷酸二酯酶抑制剂西洛他唑对糖氧剥离后大鼠皮层细胞培养的影响及作用机制。方法原代混合培养大鼠皮层细胞,建立糖氧剥离的细胞损伤模型模拟细胞"缺血损伤",然后进行干预。测定细胞培养上清中乳酸脱氢酶(LDH)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)、神经元型一氧化氮合酶(nNOS)及诱导型一氧化氮合酶(i NOS)的含量;测定一氧化氮(NO)的分泌水平;测定细胞内环磷酸腺苷(cAMP)水平及四唑盐(MTT)比色试验测定细胞活力。结果西洛他唑组及依达拉奉组与糖氧剥离模型组比较,LDH、MDA漏出量显著减少(P均0.05),GSH-Px释放量明显升高(P均0.05),nNOS、i NOS的水平及NO的分泌量显著下降(P均0.05),细胞内cAMP水平明显升高(P均0.05);细胞存活率显著提高(P均0.05);西洛他唑与依达拉奉组比较,LDH、MDA漏出量及GSH-Px的释放量无差别,nNOS、i NOS和NO的水平明显降低(P均0.05),细胞内cAMP水平显著升高(P0.05);细胞存活率明显提高(P0.05)。结论西洛他唑对培养大鼠皮层细胞在糖氧剥离损伤中具有保护作用,其作用机制可能通过抗氧化、降低nNOS及i NOS的水平从而降低NO的分泌、升高细胞内cAMP水平来实现的。  相似文献   

6.
Nitric oxide (NO) plays an important role in the pathogenesis of neurodegenerative disease. It has been shown that neuronal NO synthase (nNOS), the enzyme that constitutively produces NO in brain, is a component of the dystrophin-associated protein complex. The absence of dystrophin causes Duchenne muscular dystrophy. Thus, we attempted to study whether or not a decrease of dystrophin expression would induce a modification in nNOS expression in cultured human neurons. Human fetal neuronal cultures were treated with antisense oligonucleotides against different isoforms of dystrophin and the expression of nNOS tested by RT-PCR and immunocytochemistry. Results showed that nNOS mRNA was significantly decreased by about 35% in neurons treated with brain-specific dystrophin (brain Dp427) antisense, whereas iNOS expression was not affected. Accordingly, a decrease in immunostaining for nNOS was observed in antisense treated neurons compared to controls. Expression of neuronal markers, such as bFGF or synaptophysin, was not affected by the same antisense treatment. Astrocytes were not affected by treatment, as shown by utrophin expression, a dystrophin-like protein that was not modified in pure astrocytic cultures. Thus, we conclude that a decrease of dystrophin in human neurons is associated with a decrease of nNOS expression.  相似文献   

7.
Serotonin (5HT) modulates the development and plasticity of its innervation areas in the central nervous system (CNS). Astrocytic 5HT(1A) receptors are involved in the plastic phenomena by releasing the astroglial-derived neurotrophic factor S-100beta. Several facts have demonstrated that nitric oxide (NO) and the nitric oxide synthase enzyme (NOS) may also be involved in this neuroglial interaction: (i) NO, S-100beta and 5HT are involved in CNS plasticity; (ii) micromolar S-100beta concentration stimulates inducible-NOS (iNOS) expression; (iii) neuronal NOS (nNOS) immunoreactive neurons are functionally and morphologically related to the serotoninergic neurons; (iv) monoamines level, including 5HT, can be modulated by NO release. We have already shown that 5HT depletion increases astroglial S-100beta immunoreactivity, induces neuronal cytoskeletal alterations and produces an astroglial reaction, while once 5HT level is recovered, a sprouting phenomenon occurs [Brain Res. 883 (2000) 1-14]. To further characterize the relationship among nNOS, iNOS and 5HT we have analyzed nNOS and iNOS expression in the CNS after 5HT depletion induced by parachlorophenylalanine (PCPA) treatment. Studies were performed immediately after ending the PCPA treatment and during a recovery period of 35 days. Areas densely innervated by 5HT fibers were studied by means of nNOS and iNOS immunoreactivity as well as NADPH diaphorase (NADPHd) staining. All parameters were quantified by computer-assisted image analysis. Increased nNOS immunoreactivity in striatum and hippocampus as well as increased NADPHd reactivity in the striatum, hippocampus and parietal cortex were found after PCPA treatment. The iNOS immunoreactivity in the corpus callosum increased 14 and 35 days after the end of PCPA treatment. These findings showed that nNOS immunoreactivity and NADPHd activity increased immediately after 5HT depletion evidencing a close functional interaction between nitrergic and serotoninergic systems. However, iNOS immunoreactivity increased when 5HT levels were normalized, which could indicate one of the biological responses to S-100beta release.  相似文献   

8.
Nitric oxide (NO) is known to be involved in the modulation of neuroendocrine function. To clarify the role of different isoforms of NO synthase (NOS) in the neuroendocrine response to immune challenge, the expressions of neuronal NOS (nNOS) and inducible NOS (iNOS) genes in the hypothalamus following lipopolysaccharide (LPS) injection were examined using in situ hybridization. NOS activity was also determined by NADPH-diaphorase (NADPH-d) histochemistry. LPS (25 mg/kg) or sterile saline was injected intraperitoneally to male Wistar rats and the rats sacrificed 30 min, or 1, 2, 3, 5, 12 or 24 h after injection. nNOS mRNA expression in the paraventricular nucleus (PVN) was significantly increased 2 h after LPS injection. iNOS mRNA, which was not detected until 2 h after LPS injection, was significantly increased in the PVN 3 h after LPS injection. Both RNA expressions had returned to basal levels by 12 h after LPS injection. The number of NADPH-d positive cells was significantly increased 5 h after LPS injection. iNOS expression was more robust in parvocellular PVN, while nNOS was distributed mainly in the magnocellular PVN. Double in situ hybridization histochemistry revealed that some of the iNOS- (48.4%) or nNOS-positive cells (34. 3%) in the parvocellular PVN expressed CRF mRNA. The results demonstrate that LPS-induced sepsis causes significant increases in nNOS and iNOS gene expression with different time-courses and distributions, and that iNOS mRNA was more frequently co-localized with CRF-producing parvocellular neurons in the PVN. Thus, NO produced by iNOS and nNOS may play an important role in the neuroendocrine response to an immune challenge. Distinct differences in the distribution and time-course changes of iNOS and nNOS suggest different roles for the hypothalamic-pituitary-adrenal axis and/or neurohypophyseal system.  相似文献   

9.
Serotonin (5-HT) is expressed early during central nervous system (CNS) development and plays an important role during this period. Nitric oxide (NO) is also involved in neuronal development. Morphological and functional relationships between NO and 5-HT, demonstrated as alterations of the nitrergic system, were observed after a 5-HT depletion. It has been hypothesized that NO may be related to the neuronal damage induced by some 5-HT neurotoxins. A parachloroamphetamine (PCA) treatment is able to damage ascending 5-HT fibers proceeding from the dorsal raphe nucleus (DRN) and depletes 5-HT storage in neuronal somata. In order to study the effects of a 5-HT depletion on the nitrergic system during postnatal development, Wistar rat pups were injected subcutaneously twice, on postnatal day (PND) 3 and PND4 with PCA. Neuronal nitric oxide synthase (nNOS) immunoreactivity and NADPH diaphorase reactivity were performed on brain sections from PND5, 7, 12, 19, 29 and 62 animals. After the treatment, we found an increased NADPH-d staining and nNOS immunoreactivity in striatum, frontal cortex and hippocampus along the different studied time periods. Interestingly, the expression of both NO markers was higher when 5-HT depletion was more evident, suggesting a very close relationship between 5-HT and NO systems during postnatal development.  相似文献   

10.
Nitric oxide (NO)-mediated mechanisms have been assigned a role in cortical perfusion, learning and memory as well as in neuronal plasticity. Dysfunction of cortical cholinergic transmission has also been associated with reduced cortical cerebral blood flow and impaired performance in learning and memory tasks suggesting a link between the basal forebrain cholinergic system and cortical NO-mediated mechanisms. The aim of this study was therefore to study the influence of cholinergic input on neuronal NO-synthase (nNOS) activity in cortical cholinoceptive target neurons. A nearly complete loss of rat basal forebrain cholinergic cells was induced by a single intracerebroventricular application of the cholinergic immunotoxin 192IgG-saporin. Basal forebrain cholinergic hypofunction resulted in reduced catalytic and substrate binding activity of nNOS in a number of hippocampal and neocortical subregions 7 days after lesion as revealed by NADPH-diaphorase enzyme histochemistry and quantitative autoradiography of [3H]L-N(G)-nitro-arginine binding, respectively. The total amount of nNOS protein assayed by Western analysis, was not affected in the cortical and hippocampal regions examined. The data indicate that cortical cholinergic deafferentation results in reduced nNOS activity in select cholinoceptive neocortical and hippocampal neurons. As the total amount of cortical nNOS protein was not affected by basal forebrain cholinergic lesion, the results suggest that the ratio of catalytically active and inactive cortical nNOS is driven by basal forebrain cholinergic input presumably via M1-muscarinic cholinergic receptors.  相似文献   

11.
Deng X  Cadet JL 《Brain research》1999,851(1-2):254-257
The accumulated evidence suggests that the overproduction of nitric oxide (NO) is involved in methamphetamine (METH)-induced neurotoxicity. Using NADPH-diaphorase histochemistry, neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) antibody immunohistochemistry, the possible overexpression of nNOS and iNOS was investigated in the brains of mice treated with METH. The number of positive cells or the density of positive fibers was assessed at 1 h, 24 h and 1 week after METH injections. There were no clear positive iNOS cells and fibers demonstrated in the brains of mice after METH treatment. In contrast, METH caused marked increases in nNOS in the striatum and hippocampus at 1 and 24 h post-treatment. The nNOS expression normalized by 1 week. There were no statistical changes in nNOS expression in the frontal cortex, the cerebellar cortex, nor in the substantia nigra. These results provide further support for the idea that NO is involved in the neurotoxic effects of METH.  相似文献   

12.
In vivo studies support selective neuronal vulnerability to hypoxia-ischemia (HI) in the developing brain. Since differences in intrinsic properties of neurons might be responsible, pure cultures containing immature neurons (6-8 days in vitro) isolated from mouse cortex and hippocampus, regions chosen for their marked vulnerability to oxidative stress, were studied under in vitro ischemic conditions-oxygen-glucose deprivation (OGD). Twenty-four hours of reoxygenation after 2.5 h of OGD induced significantly greater cell death in hippocampal than in cortical neurons (67.8% vs. 33.4%, P = 0.0068). The expression of neuronal nitric oxide synthase (nNOS) protein, production of nitric oxide (NO), and reactive oxygen species (ROS), as well as glutathione peroxidase (GPx) activity and intracellular levels of reduced glutathione (GSH), were measured as indicators of oxidative stress. Hippocampal neurons had markedly higher nNOS expression than cortical neurons by 24 h of reoxygenation, which coincided with an increase in NO production, and significantly greater ROS accumulation. GPx activity declined significantly in hippocampal but not in cortical neurons at 4 and 24 h after OGD. The decrease in GSH level in hippocampal neurons correlated with the decline of GPx activity. Our data suggest that developing hippocampal neurons are more sensitive to OGD than cortical neurons. This finding supports our in vivo studies showing that mouse hippocampus is more vulnerable than cortex after neonatal HI. An imbalance between excess prooxidant production (increased nNOS expression, and NO and ROS production) and insufficient antioxidant defenses created by reduced GPx activity and GSH levels may, in part, explain the higher susceptibility to OGD of immature hippocampal neurons.  相似文献   

13.
Wei IH  Wu YC  Wen CY  Shieh JY 《Brain research》2004,999(1):73-80
Recent studies have shown that (-)-epigallocatechin gallate (EGCG), one of the green tea polyphenols, has a potent antioxidant property. Nitric oxide (NO) plays an important role in the neuropathogenesis induced by brain ischemia/reperfusion and hypoxia. This study aimed to explore the potential neuroprotective effect of EGCG on the ganglionic neurons of the nodose ganglion (NG) in acute hypoxic rats. Thus, the young adult rats were pretreated with EGCG (10, 25, or 50 mg/kg, i.p.) 30 min before they were exposed to the altitude chamber at 10,000 m with the partial pressure of oxygen set at the level of 0.27 atm (pO2=43 Torr) for 4 h. All the animals examined were allowed to survive for 3, 7, and 14 successive days, respectively, except for those animals sacrificed immediately following hypoxic exposure. Nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and neuronal nitric oxide synthase (nNOS) immunohistochemistry were carried out to detect the neuronal NADPH-d/nNOS expression in the NG. The present results show a significant increase in the expression of NADPH-d/nNOS reactivity in neurons of the NG at various time intervals following hypoxia. However, the hypoxia-induced increase in NADPH-d/nNOS expression was significantly depressed only in the hypoxic rats treated with high dosages of EGCG (25 or 50 mg/kg). These data suggest that EGCG may attenuate the oxidative stress following acute hypoxia.  相似文献   

14.
The neuronal isoform of nitric oxide synthase (nNOS), a NADPH-dependent diaphorase, is considered to play a role in motoneuron death induced by sciatic nerve transection in neonatal rats. Neuronal loss in these circumstances has been correlated with nitric oxide (NO) production and NADPH-diaphorase positivity in motoneurons after axotomy. In the present study we looked for a possible protective effect of melatonin, an antioxidant agent and inhibitor of nNOS, on spinal motoneurons after axonal injury. Neonatal Wistar rats (P2) were submitted to sciatic nerve transection and allowed to survive to P7. Melatonin at doses of 1, 5, 10, 50 and 100 mg/kg was given subcutaneously before and at intervals after the surgery. Controls operated in the same way received dilution vehicle or no treatment. The animals were killed by perfusion of fixative and the spinal cord was examined in serial paraffin sections. The motoneurons of the sciatic pool were counted in the axotomized and contralateral sides. Immunohistochemistry for nNOS and glial fibrillary acidic protein was used to evaluate nNOS expression in the axotomized cells and the astrocytic response. We found that melatonin at doses of 1-50 mg/kg decreased neuronal death. Astrocytic hypertrophy in melatonin treated animals was less intense. There were no differences in nNOS expression between treated and control rats, and surviving motoneurons of the sciatic pool did not express the enzyme, suggesting that nNOS may not be involved in neuronal death or survival in these experimental conditions. Possible mechanisms of melatonin neuroprotection, which was equally effective at doses of 1-50 mg/kg, are discussed. Doses of 50 and 100 mg/kg caused failure to thrive, seizures or death. The fact that neuroprotective doses were far smaller than toxic ones should encourage testing of melatonin in neurologic diseases.  相似文献   

15.
When exposed to chronic sublethal hypoxia the developing brain responds with increases in permeability and angiogenesis. Vascular endothelial growth factor (VEGF) may mediate this response. Here, we present data on the localization of VEGF in the rat brain cortex during postnatal development and its correlation to vascularization. We reared newborn rats under normoxic conditions and in hypoxic chambers (FiO(2) 9.5%), removed them at postnatal days (P) 3, 8, 13, 24, and 33 and prepared the cortical brain tissue for immunohistochemistry, in situ hybridization (ISH), Western blot analyses and vessel density counting. When compared to age-matched controls, hypoxic-reared animals displayed a significant increase in platelet endothelial cell adhesion molecule 1 (PECAM-1) protein levels, cerebral microvascular lumen diameter and number and density of vessels (number of capillaries per area). In control animals, ISH and immunohistochemistry revealed that localization of VEGF is restricted almost exclusively to cortical neurons at early stages of development. As the vascular bed begins to stabilize, predominant VEGF expression switches to maturing glial cells which invest vessels while neuronal expression is reduced to a basal level. In hypoxic animals, early localization of VEGF is also restricted to cortical neurons, however, during later developmental stages, glial cells express elevated levels of VEGF protein and high neuronal expression also persists. Thus chronic sublethal hypoxia disrupts the temporal-spatial expression of VEGF, which correlates with continuing hypoxia-driven angiogenesis.  相似文献   

16.
Background Intestinal ischemia and reperfusion (I/R) injury leads to abnormalities in motility, namely delay of transit, caused by damage to myenteric neurons. Alterations of the nitrergic transmission may occur in these conditions. This study investigated whether an in vitro I/R injury may affect nitric oxide (NO) production from the myenteric plexus of the guinea pig ileum and which NO synthase (NOS) isoform is involved. Methods The distribution of the neuronal (n) and inducible (i) NOS was determined by immunohistochemistry during 60 min of glucose/oxygen deprivation (in vitro ischemia) followed by 60 min of reperfusion. The protein and mRNA levels of nNOS and iNOS were investigated by Western‐immunoblotting and real time RT‐PCR, respectively. NO levels were quantified as nitrite/nitrate. Key Results After in vitro I/R the proportion of nNOS‐expressing neurons and protein levels remained unchanged. nNOS mRNA levels increased 60 min after inducing ischemia and in the following 5 min of reperfusion. iNOS‐immunoreactive neurons, protein and mRNA levels were up‐regulated during the whole I/R period. A significant increase of nitrite/nitrate levels was observed in the first 5 min after inducing I/R and was significantly reduced by Nω‐propyl‐l ‐arginine and 1400 W, selective inhibitors of nNOS and iNOS, respectively. Conclusions & Inferences Our data demonstrate that both iNOS and nNOS represent sources for NO overproduction in ileal myenteric plexus during I/R, although iNOS undergoes more consistent changes suggesting a more relevant role for this isoform in the alterations occurring in myenteric neurons following I/R.  相似文献   

17.
Newborn feeding, maternal, bonding, growth and wellbeing depend upon intact odor recognition in the early postnatal period. Antenatal stress may affect postnatal odor recognition. We investigated the exact role of a neurotransmitter, nitric oxide (NO), in newborn olfactory function. We hypothesized that olfactory neuron activity depended on NO generated by neuronal NO synthase (NOS). Utilizing in vivo functional manganese enhanced MRI (MEMRI) in a rabbit model of cerebral palsy we had shown previously that in utero hypoxia-ischemia (H-I) at E22 (70% gestation) resulted in impaired postnatal response to odorants and poor feeding. With the same antenatal insult, we manipulated NO levels in the olfactory neuron in postnatal day 1 (P1) kits by administration of intranasal NO donors or a highly selective nNOS inhibitor. Olfactory function was quantitatively measured by the response to amyl acetate stimulation by MEMRI. The relevance of nNOS to normal olfactory development was confirmed by the increase of nNOS gene expression from fetal ages to P1 in olfactory epithelium and bulbs. In control kits, nNOS inhibition decreased NO production in the olfactory system and increased MEMRI slope enhancement. In H-I kits the MEMRI slope did not increase, implicating modification of endogenous NO-mediated olfactory function by the antenatal insult. NO donors as a source of exogenous NO did not significantly change function in either group. In conclusion, olfactory epithelium nNOS in newborn rabbits probably modulates olfactory signal transduction. Antenatal H-I injury remote from delivery may affect early functional development of the olfactory system by decreasing NO-dependent signal transduction.  相似文献   

18.
19.
Role of Nitric Oxide in the Epileptogenesis of EL Mice   总被引:10,自引:1,他引:9  
Summary: Purpose : To understand the role of nitric oxide (NO) in the regulation of seizures, we measured the extracellular levels of the NO metabolites nitrite and nitrate as indices of NO generation in the parietal cortex, hippocampus, and temporal cortex of EL mice. Furthermore, alterations of neuronal, endothelial, and inducible nitric oxide synthetase (nNOS, eNOS, and iNOS, respectively) were observed to correlate them with epileptogenesis.
Methods : EL mice of 20 weeks and 30 weeks of age (before and after the establishment of epileptogenesis, respectively) were used. Nitrite was quantified using the specific absorbancy of diazo dye. NOS isoenzymes (nNOS, iNOS, and eNOS) were also investigated in the hippocampus during development until mice were 30 weeks old. Samples (total protein, 8·33 to 8·43 μg) were separated by sodium dodecyl sulfate—polyacrylamide gel electrophoresis and identified by immunoblotting.
Results : EL mice that experienced repetitive seizures showed a remarkable increase in nitrite in the hippocampus at 30 weeks of age compared with EL mice that had no experience of seizures. nNOS and iNOS were major and minor components, respectively, and both increased in parallel with the development of epileptogenesis. eNOS was not detectable.
Conclusions : Excess iNOS (and subsequent increase in harmful NO) and deficient eNOS (and subsequent decrease in NO identified as an endothelium-derived relaxing factor) may work together to form a focus complex.  相似文献   

20.
The hippocampus (dentate gyrus DG plus Cornu Ammonis, CA) is vulnerable to neuropathological events such as ischemia. The DG is a region where neurogenesis takes place and it has been demonstrated that ischemia stimulates neurogenesis. Nitric oxide (NO) plays a major role in ischemic damage evolution and increases in rat hippocampus after ischemia. No information is available on the presence of nNOS-immunoreactive(IR) neurons in the hippocampus of ischemic animals; whereas, the presence of the iNOS protein has been reported in the DG after focal ischemia.We evaluated, immunohistochemically, the cell types expressing nNOS and iNOS in the rat hippocampus by 24 up to 144 h after transient middle cerebral artery occlusion to ascertain whether ischemia induces changes in nNOS or iNOS expression and whether a relationship exists between these changes and the animal survival.nNOS-IR interneurons were detected in control and ischemic rats; in the latter, their number was significantly decreased at all time points. iNOS-IR interneurons appeared in the hippocampus of ischemic rats at 24 h; their number was significantly higher in the animals with longer survival and did not change at later time points. More than 50% of the nNOS-IR interneurons co-expressed iNOS-IR. All these changes were seen both in the ipsilateral and contralateral hippocampus.In conclusion, the focal ischemia affects the hippocampus which responds bilaterally to the injury. We hypothesize that the decrease in the nNOS-IR neurons is likely due to either a neuronal loss or a switching towards the iNOS production which, by inducing neurogenesis, might compensate the neuronal loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号