首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Families with nonsyndromic dentinogenesis imperfecta (DGI) and the milder, dentin dysplasia (DD), have mutations in one allele of the dentin sialophosphoprotein (DSPP) gene. Because loss of a single Dspp allele in mice (and likely, humans) causes no dental phenotype, the mechanism(s) underling the dominant negative effects were investigated. DSPP mutations occur in three classes. (The first class, the mid-leader missense mutation, Y6D, was not investigated in this report.) All other 5′ mutations of DSPP result in changes/loss in the first three amino acids (isoleucine-proline-valine [IPV]) of mature DSPP or, for the A15V missense mutation, some retention of the hydrophobic leader sequence. All of this second class of mutations caused mutant DSPP to be retained in the rough endoplasmic reticulum (rER) of transfected HEK293 cells. Trafficking out of the rER by coexpressed normal DSPP was reduced in a dose-responsive manner, probably due to formation of Ca2+-dependent complexes with the retained mutant DSPP. IPV-like sequences begin many secreted Ca2+-binding proteins, and changing the third amino acid to the charged aspartate (D) in three other acidic proteins also caused increased rER accumulation. Both the leader-retaining A15V and the long string of hydrophobic amino acids resulting from all known frameshift mutations within the 3′-encoded Ca2+-binding repeat domain (third class of mutations) caused retention by association of the mutant proteins with rER membranes. More 5′ frameshift mutations result in longer mutant hydrophobic domains, but the milder phenotype, DD, probably due to lower effectiveness of the remaining, shorter Ca2+-binding domain in capturing normal DSPP protein within the rER. This study presents evidence of a shared underlying mechanism of capturing of normal DSPP by two different classes of DSPP mutations and offers an explanation for the mild (DD-II) versus severe (DGI-II and III) nonsyndromic dentin phenotypes. Evidence is also presented that many acidic, Ca2+-binding proteins may use the same IPV-like receptor/pathway for exiting the rER.  相似文献   

2.
OBJECTIVE: To determine the specificity and efficiency of the tamoxifen (TM)-induced Cre-recombination in articular chondrocytes of adult Col2a1-CreER(T2) transgenic mice. METHODS: Col2a1-CreER(T2) transgenic mice were bred with Rosa26 reporter mice. Two-week-old Col2a1-CreER(T2);R26R mice were administered TM for 5 days and were sacrificed 1 and 6 months after TM induction. X-Gal staining was performed. RESULTS: Efficient Cre-recombination is achieved in adult articular chondrocytes 1 and 6 months after TM induction. CONCLUSION: Our findings demonstrate that the Col2a1-CreER(T2) transgenic mouse model is a valuable tool to target genes specifically expressed in articular chondrocytes in a temporally controlled manner in adult mice.  相似文献   

3.
Col1a1 (one of the subunit of collagen type I) is a collagen, which belongs to a family of extracellular matrix (ECM) proteins that play an important role in cellular proliferation and differentiation. However, the role of Col1a1 in spermatogenesis, especially in the control of proliferation and differentiation of spermatogonial stem cells (SSCs), remains unknown. In this study, we explored effects of downregulation of Col1a1 on differentiation and proliferation of mouse spermatogonia. Loss-of-function study revealed that Oct4 and Plzf, markers of SSC self-renewal, were significantly decreased, whereas the expression of c-kit and haprin, hallmarks of SSC differentiation, was enhanced after Col1a1 knockdown. Cell cycle analyses indicated that two-thirds of spermatogonia were arrested in S phase after Col1a1 knockdown. In vivo experiments, DNA injection and electroporation of the testes showed that spermatogonia self-renewal ability was impaired remarkably with the loss-of-function of Col1a1. Our data suggest that silencing of Col1a1 can suppress spermatogonia self-renewal and promote spermatogonia differentiation.  相似文献   

4.
We have reported that transgenic mice overexpressing human osteoblast stimulating factor-1 (osf1) under the control of the human osteocalcin promoter have a significantly higher bone mineral content and density than nontransgenic littermates. Consequently, bone mass loss due to estrogen deficiency was compensated for in ovariectomized female mice. Here, we show that in this transgenic line, the bone mass increase was evident in female, but not male, mice, as evaluated using the ash assay, double-emission X-ray analysis, and calcein double-labeling to determine the bone formation rate. To elucidate a possible influence on gene expression, we analyzed genomic structures of the inserted transgene and its flanking regions in mouse chromosomes. The results revealed that the transgene was integrated in the mouse repetitive sequences, 234-bp-long -satellite repeats, as inverted multiple (5 + 8) copies. Twelve copies at most seemed to be functional, but no direct evidence supporting female-specific mRNA synthesis of the transgene was obtained.  相似文献   

5.
We have recently shown that a 150‐bp Col10a1 distal promoter (?4296 to ?4147 bp) is sufficient to direct hypertrophic chondrocyte‐specific reporter (LacZ) expression in vivo. More recently, through detailed sequence analysis we identified two putative tandem‐repeat Runx2 binding sites within the 3′‐end of this 150‐bp region (TGTGGG‐TGTGGC, ?4187 to ?4176 bp). Candidate electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation, and transfection studies demonstrate that these putative Runx2 sites bind Runx2 and mediate upregulated Col10a1/reporter activity in vitro. Transgenic studies using the 5′‐sequence without Runx2 sites were not able to drive the cell‐specific LacZ reporter activity, suggesting the in vivo requirement of the Runx2 sites located in the 3′‐end in mediating Col10a1/reporter expression. Indeed, mutating the Runx2 sites in the context of the 150‐bp promoter abolishes its capacity to drive hypertrophic chondrocyte‐specific reporter expression in transgenic mice. We have also generated multiple transgenic mouse lines using only the 3′‐sequence containing the Runx2 sites to drive the LacZ gene. Interestingly, no hypertrophic chondrocyte‐specific blue staining was observed in these transgenic mice. Together, our data support that Runx2 directly interacts with murine Col10a1 cis‐enhancer. This interaction is required but not sufficient for cell‐specific Col10a1 promoter activity in vivo. Additional cooperative/repressive elements within the 5′‐ or 3′‐sequences of this 150‐bp promoter are needed to work with Runx2 together to mediate cell‐specific Col10a1 expression. Further delineation of these elements/factors has the potential to identify novel therapeutic targets for multiple skeletal disorders, including osteoarthritis, that show abnormal Col10a1 expression and altered chondrocyte maturation. © 2011 American Society for Bone and Mineral Research  相似文献   

6.
7.
During vertebrate skeletal development, osteoblasts produce a mineralized bone matrix by deposition of hydroxyapatite crystals in the extracellular matrix. Anoctamin6/Tmem16F (Ano6) belongs to a conserved family of transmembrane proteins with chloride channel properties. In addition, Ano6 has been linked to phosphatidylserine (PS) scrambling in the plasma membrane. During skeletogenesis, Ano6 mRNA is expressed in differentiating and mature osteoblasts. Deletion of Ano6 in mice results in reduced skeleton size and skeletal deformities. Molecular analysis revealed that chondrocyte and osteoblast differentiation are not disturbed. However, mutant mice display increased regions of nonmineralized, Ibsp‐expressing osteoblasts in the periosteum during embryonic development and increased areas of uncalcified osteoid postnatally. In primary Ano6?/? osteoblasts, mineralization is delayed, indicating a cell autonomous function of Ano6. Furthermore, we demonstrate that calcium‐dependent PS scrambling is impaired in osteoblasts. Our study is the first to our knowledge to reveal the requirement of Ano6 in PS scrambling in osteoblasts, supporting a function of PS exposure in the deposition of hydroxyapatite. © 2013 American Society for Bone and Mineral Research  相似文献   

8.
9.
Heme oxygenase-1 (HO-1) is a ubiquitous inducible stress-response enzyme that plays a central role in tissue homeostasis, in protection against oxidative stress, and in the pathogenesis of disease. Kim et al. report a novel transgenic mouse that lacks the endogenous HO-1 gene but contains the human HO-1 gene with all its regulatory elements. These transgenic animals overexpress HO-1 in basal conditions but maintain HO-1 inducibility, protecting the kidney against glycerol- and cisplatin-induced nephrotoxicity.  相似文献   

10.
目的分析一例I型成骨不全症(osteogenesis imperfecta,OI)患儿的临床特点,并研究患者及其家系的基因突变情况及致病性鉴定。方法详细询问病史,分析骨转换指标、骨密度、骨骼X线特点。采用高通量测序法,对患儿骨病检测包225个相关致病基因各外显子编码区域的序列变异情况进行检测分析,采用PCR结合Sanger测序的方法验证突变位点变异情况。结果骨标志物提示高转换水平,影像学提示骨量低下,四肢长骨纤细、骨皮质变薄,基因检测发现患儿COL1A1基因编码区杂合变异c.2911_2912insAG(p.G971Efs*138),经Mutation Taster预测显示为致病性突变。先证者母亲、父亲以及妹妹均未携带该突变基因。结论发现了OI患者COL1A1基因新的突变位点c.2911_2912insAG(p.G971Efs*138),丰富了中国人OI群体COL1A1基因致病突变谱。  相似文献   

11.
BACKGROUND: Oxidative stress has been suggested to play an important role in the pathogenesis of diabetic nephropathy. In the present study, the effects of thioredoxin1 (TRX1) overexpression, a small protein with antioxidant property, on the development of diabetic nephropathy in streptozotocin-induced diabetic animals were investigated using TRX1 transgenic mice (TRX1-Tg). METHODS: Eight-week-old male TRX1-Tg and wild-type mice littermates (WT) mice were treated either with streptozotocin (200 mg/kg) or vehicle alone. After 24 weeks of treatment, diabetic nephropathy and oxidative stress were assessed in these four groups of mice, by biochemical analyses of blood and urine, as well as by histological analyses of the kidneys. RESULTS: Haemoglobin A1c (HbA1c) levels of diabetic TRX1-Tg were not significantly different from those of the diabetic WT. Nevertheless, an augmented urinary albumin excretion observed in diabetic WT was significantly diminished in diabetic TRX1-Tg. Histological study revealed that pathological changes such as mesangial matrix expansion and tubular injury were significantly prevented in diabetic TRX1-Tg accompanied by a reduced tendency of expression of transforming growth factor-beta as compared with diabetic WT. In parallel, urinary excretion of 8-hydroxy-2'-deoxyguanosine and acrolein adduct and the immunostaining intensities of these markers in the kidney were significantly higher in diabetic WT compared with non-diabetic mice. The markers were significantly suppressed in diabetic TRX1-Tg, an indication of systemic and renal oxidative stress attenuation by TRX1 overexpression. CONCLUSION: These findings indicated the significant role of oxidative stress in the development of diabetic nephropathy and a potential inhibition of progression of nephropathy by TRX1.  相似文献   

12.
13.
Expression of a human renin genomic DNA clone extending 900 base pairs upstream and 400 base pairs downstream of the gene has been previously examined in adult transgenic mice. In adults, expression of human renin was evident in kidney, reproductive tissues, adrenal gland and lung. Previous studies of mouse and rat renin have demonstrated that kidney renin becomes evident at approximately 15 days of gestation and that expression is localized first to smooth muscle cells of the developing renal arterial tree and becomes progressively restricted to juxtaglomerular cells. As a prelude to performing cell specificity studies to elucidate the pattern of human renin gene expression in the developing kidney, 15.5 and 17.5 days of gestation fetuses and newborns were obtained for expression analysis. Tissues were pooled and expression was examined in kidney, liver, gastrointestinal (GI) tract, lung, heart and brain. The number of transgenic fetuses in each pool was determined by human renin-specific polymerase chain reaction of DNA purified from placenta or tail biopsies. Renal human renin expression was abundant at all three time points. Expression was also evident in the GI tract at 15.5 and 17.5 days of gestation. Interestingly, although no human renin mRNA was evident in lung at 15.5 or 17.5 days of gestation, extremely high levels of human renin mRNA were detected in the newborn lung. Expression of the human renin gene in these tissues was further confirmed by differential primer extension analysis which is capable of differentiating the closely related human and mouse renin messages. These transgenic mice should provide an interesting model to examine the expression and regulation of the human renin gene during kidney development.  相似文献   

14.
目的 通过双荧光素酶报告基因研究斑马鱼notch1a对pka的转录调控作用.方法 利用NCBI数据库获得斑马鱼notch1a基因序列,克隆notch1a基因的胞内段NICD(Notch intracellular domain),构建pCMV-N1aICD表达载体,利用蛋白质印迹法检测N1aICD蛋白的表达水平;利用加...  相似文献   

15.
BACKGROUND: Although endothelin I (ET-1) is a very potent vasoconstrictor, ET-1 transgenic (ET-1 tg) mice are not hypertensive. This might be due to higher bioavailability of nitric oxide (NO) in ET-1 tg, which counteracts the effect of vasoconstrictors. We hypothesized lower angiotensin II (Ang II) sensitivity of afferent arterioles in ET-1 tg. METHODS: Afferent arterioles were manually dissected and microperfused. Changes of the luminal diameter due to application of vasoactive substances were used for assessment of the reactivity of afferent arterioles. We investigated the effect of L-NAME, an unspecific NO synthase inhibitor, on basal tone, and the sensitivity of afferent arterioles to Ang II with and without pre-treatment with L-NAME. The renin-angiotensin-system was characterized by expression analysis of angiotensin-receptors and renin at the mRNA level. RESULTS: L-NAME reduced afferent arterioles diameters similarly in ET-1 tg and wild-types (WT). Ang II sensitivity determined by calculation of EC50 for Ang II was less in ET-1 tg compared with WT (P<0.05). Ang II reduced luminal diameters to a lesser extent in ET-1 tg compared to WT (P<0.05). After pre-treatment with L-NAME, Ang II sensitivity and maximum constriction of afferent arterioles were similar in ET-1 tg and WT. The expression of renin- and Ang II-receptor-mRNA in the kidney did not differ between either group. CONCLUSION: The loss of differences in the maximum constriction and Ang II sensitivity of afferent arterioles between ET-1 tg and WT in the absence of NO suggests pronounced NO effects in afferent arterioles of ET-1 tg. This might contribute to the maintenance of normal renal arteriolar tone in ET-1 tg mice.  相似文献   

16.
STUDY DESIGN: Skeletal tissues of mice with an inactivated allele of the Col2a1 gene for Type II collagen ("heterozygous knockout") were studied. OBJECTIVE: To determine whether a heterozygous inactivation of the Col2a1 gene has a role in the etiology of spine disorders such as disc degeneration. SUMMARY OF BACKGROUND DATA: Mutations in the COL2A1, COL11A1, COL11A2, and COL9A2 genes have been linked to spine disorders. However, the mechanism by which genetic factors lead to disc degeneration still are largely unknown. METHODS: Spine tissues were studied using radiograph analyses; conventional, quantitative, and polarized light microscopy; immunohistochemistry for the major extracellular components, and in situ hybridization for procollagens alpha1(I) and alpha1(II). Voluntary running activity also was monitored in half of the mice. RESULTS: As the findings showed, 1-month-old heterozygous knockout mice had shorter limb bones, skulls, and spines, as well as thicker and more irregular vertebral endplates, which calcified earlier than in the control mice. They also had a lower concentration of glycosaminoglycans in the anulus fibrosus, in the endplates, and in the vertebral bone than the controls. These features in the heterozygous knockout mice were compensated by the age of 15 months. However, the long bones and skulls of the mature heterozygous mice remained shorter than those of the controls. Gene-deficient mice used the running wheel less. However, physical exercise did not induce any marked structural changes in the skeleton. CONCLUSION: Mice with heterozygous knockout of Col2a1 show subtle early skeletal manifestations that bear some resemblance to those of human spine disorders.  相似文献   

17.
18.
Proper healing of cutaneous wounds progresses through a series of overlapping phases. Nonhealing wounds are defective in one or more of these processes and represent a major clinical problem. A critical issue in developing treatments for chronic wounds is the paucity of animal models to study the mechanisms underlying the defects in healing. Here we show that deletion of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT) leads to impaired wounds in mice that have the characteristics of nonchronic and chronic ulcers. These wounds show: (1) excessive production of cytokines, in particular three chemokines (KC/CXCL8, MCP‐1/CCL2, IP‐10/CXCL10), that may be key to the abnormal initiation and resolution of inflammation; (2) defective basement membranes, explaining blood vessel leakage and disruption of dermal/epidermal interactions; and (3) granulation tissue that contains high levels of Coll III, whereas Coll I is virtually absent and does not form fibrils. We also see major differences between nonchronic and chronic wounds, with the latter populated by bacterial films and producing eotaxin, a chemokine that attracts leukocytes that combat multicellular organisms (which biofilms can be considered to be). This new mouse model captures many defects observed in impaired and chronic human wounds and provides a vehicle to address their underlying cell and molecular mechanisms.  相似文献   

19.
20.
Low‐energy fractures are frequent complications in type 1 diabetes mellitus patients (T1DM). Modifications of bone intrinsic composition might be a potential cause of fragility observed in diabetic subjects. Advanced glycation end products (AGEs) were found in numerous connective tissues from T1DM patients. However, whether AGEs are present at high levels in bone matrix from diabetic subjects is unknown. Moreover, whether elevated AGEs in the bone matrix impair mineralization has not been addressed in humans. The purposes of this study were 1) to determine whether bone matrix from fracturing and nonfracturing T1DM contained more AGEs than bone from healthy patients (CTL), and 2) to compare the degree of mineralization of bone and hardness between fracturing and nonfracturing T1DM versus CTL. We analyzed iliac crest bone biopsies from 5 fracturing T1DM patients, 5 nonfracturing T1DM patients, and 5 healthy subjects, all age‐ and sex‐matched. AGEs (pentosidine) in bone matrix was measured by high‐performance liquid chromatography separately in trabecular and cortical bone. The degree of mineralization of bone (DMB) was assessed by digitized microradiography, and mechanical properties by micro‐ and nanohardness tests. Trabecular bone from fracturing T1DM exhibited significantly higher levels of pentosidine than CTL (p = 0.04) and was more mineralized than nonfracturing T1DM (p = 0.04) and CTL (p = 0.04). Trabecular bone was not significantly different in pentosidine between nonfracturing T1DM and CTL. Cortical bone from nonfracturing T1DM was not significantly different from CTL. Positive correlations were found between HbA1c and pentosidine (r' = 0.79, p < 0.003) and between HbA1c and DMB (r' = 0.64, p < 0.02). Both modifications could lead to less flexible bone (reduced modulus of elasticity) and a tendency toward low‐energy fractures in T1DM patients. © 2015 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号