首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix metalloproteinases (MMPs) are endopeptidases that play pivotal roles in promoting tumor disease progression, including tumor angiogenesis. In many solid tumors, MMP expression could be attributed to tumor stromal cells and is partially regulated by tumor-stroma interactions via tumor cell-associated extracellular matrix metalloproteinase inducer (EMMPRIN). The role of EMMPRIN during tumor angiogenesis and growth was explored by modulating EMMPRIN expression and activity using recombinant DNA engineering and neutralizing antibodies. In human breast cancer cells, changes in EMMPRIN expression influenced vascular endothelial growth factor (VEGF) production at both RNA and protein levels. In coculture of tumor cells and fibroblasts mimicking tumor-stroma interactions, VEGF expression was induced in an EMMPRIN- and MMP-dependent fashion, and was further enhanced by overexpressing EMMPRIN. Conversely, VEGF expression was inhibited by suppressing EMMPRIN expression in tumor cells, by neutralizing EMMPRIN activity, or by inhibiting MMPs. In vivo, EMMPRIN overexpression stimulated tumor angiogenesis and growth; both were significantly inhibited by antisense suppression of EMMPRIN. Expression of both human and mouse VEGF and MMP, derived from tumor and host cells, respectively, was regulated by EMMPRIN. These results suggest a novel tumor angiogenesis mechanism in which tumor-associated EMMPRIN functionally mediates tumor-stroma interactions and directly contributes to tumor angiogenesis and growth by stimulating VEGF and MMP expression.  相似文献   

2.
结缔组织生长因子(CTGF)是肝素结合性生长因子,参与调节细胞增殖、分化、胚胎发育、伤口愈合、纤维化以及血管生成和细胞凋亡等重要生理病理过程,可能与肿瘤的发生、发展有关。CTGF有可能成为妇科肿瘤的分子标记物、治疗靶位并用于预测预后。  相似文献   

3.
Connective tissue growth factor (CTGF or CCN2) is a secreted protein that belongs to the CCN [cysteine‐rich CYR61/CTGF/nephroblastoma‐overexpressed gene] family. These proteins have been implicated in various biological processes, including stimulation of cell proliferation, migration, angiogenesis and tumorigenesis. In a previous study, we found that CTGF mRNA was elevated in primary gliomas, and a significant correlation existed between CTGF mRNA levels versus tumor grade, histology and patient survival. In this study, the role of CTGF in glioma tumorigenesis was explored. Forced expression of CTGF in glioblastoma multiforme (GBM) cells accelerated their growth in liquid culture and soft agar, stimulated cells migration in Boyden chamber assays and significantly increased their ability to form large, vascularized tumors in nude mice. CTGF induced the expression of the antiapoptotic proteins, Bcl‐xl, Survivin and Flip. Overexpression of CTGF caused the U343 GBM cells to survive for longer than 40 days in serum‐free medium and resist antitumor drugs including tumor necrosis factor (TNF), TNF‐related apoptosis‐inducing ligand, VELCADE (bortezomib, proteasome inhibitor) and temozolomide. Our data suggest that CTGF plays an important role in glioma progression, by supporting tumor cells survival and drug resistance.  相似文献   

4.
结缔组织生长因子与乳腺癌及其血管形成的关系   总被引:2,自引:0,他引:2  
结缔组织生长因子是即刻早期反应基因的家族成员之一,CCN家族中富含半胱氨酸的外分泌型多肽,是转化生长因子β1的下游效应子,参与了血管平滑肌细胞和内皮细胞的生长、迁移,在创伤修复中参与了血管生成,但在肿瘤及其血管形成过程中的作用机制至今未明。乳腺组织中含有丰富的纤维结缔组织基质,尤其在乳腺癌中结缔组织生长因子含量明显增高,故它很可能参与了乳腺癌的各种生物学全过程。  相似文献   

5.
Gabexate mesilate (GM), a synthetic protease inhibitor, has an antiproteinase activity on various types of plasma serine proteases. However, its role on matrix metalloproteinases (MMPs) has not been identified. In this study, we investigated the effect of GM on MMPs and on the invasion and metastasis of human colon cancer cell lines and neoangiogenesis. The activities of MMPs secreted from these cells were significantly reduced by GM but unaffected by the serine protease inhibitor aprotinin. GM directly inhibited purified progelatinase A derived from T98G human glioblastoma cells. In vitro, GM significantly reduced the invasive ability of colon cancer cells but not cellular motility, whereas aprotinin affected neither. Liver metastatic ability and tumorigenic potential in nude mice were remarkably reduced on treatment with GM. Immunohistochemical analysis of GM-treated tumors in mice showed a marked increase in apoptosis and a significant reduction in tumor angiogenesis. Human umbilical vein endothelial cell proliferation, tube formation, and neoangiogenesis in the rabbit cornea and Matrigel implanted in mice were significantly inhibited by GM. These results suggest that GM is a novel inhibitor of MMPs and that it may inhibit the invasion and metastasis of human colon cancer cells by blocking MMPs and neoangiogenesis.  相似文献   

6.
7.
8.
To clarify the usefulness of matrix metallo-proteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as prognostic factors in advanced colorectal carcinoma, the immunohistochemical expressions of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1 and TIMP-2 were examined. Specimens were selected from 67 consecutive patients undergoing surgery for advanced colorectal carcinoma. The patterns of expression were compared with the prognoses of the patients. The patients with TIMP-2 expression in stroma adjacent to the tumor mass had better prognoses than those of the patients who had no TIMP-2 expression in normal stroma adjacent to the tumor (p<0.05), which probably acted as a block of cancer cell invasion. However, the expression of MMP-2, presumably acting as an antagonist to TIMP-2 was not related to the prognosis, and the MMP-1, MMP-2, MMP-3, MMP-9 and TIMP-1 expressions were not related to any clinicopathological factors examined.  相似文献   

9.
Although a considerable amount of effort has been placed on discovering the etiologies of cancer, the majority of the basic cancer research existing today has focused on understanding the molecular mechanism of tumor formation and metastasis. Metastatic spread of tumors continues to be a major obstacle to successful treatment of malignant tumors. Approximately 30% of those patients diagnosed with a solid tumor have a clinically detectable metastasis and for the remaining 70%, metastases are continually being formed throughout the life of the tumor. Even after the tumor is excised, the threat of death is attributable to the metastasis that may occur through the remaining tumor cells. In addition, treating the metastasis often proves futile since metastasis often vary in size, composition, and anatomical location. New treatments blocking the formation of metastasis will provide greater chances of survival for cancer patients. One family of enzymes that has been shown over the years to play a role in tumor progression is the matrix metalloproteinase (MMP) family. The main function of MMPs, also known as matrixins, is degradation of the extracellular matrix physiologic function involving MMPs include wound healing, bone resorption and mammary involution. MMPs, however, also contribute to pathological conditions including rheumatoid arthritis, coronary artery disease, and cancer. Tumor cells are believed to utilize the matrix degrading capability of these enzymes to spread to distant sites. In addition, MMPs also are thought to promote the growth of these tumor cells once they have metastasized. This review will discuss the role of MMPs and their inhibitors in tumor invasion, angiogenesis and metastasis with special emphasis on the gelatinases, MMP-2 and MMP-9.  相似文献   

10.
We measured the levels of the vascular endothelial growth factor (VEGF), matrix metalloproteinases type 2 and type 9 (MMP-2 and MMP-9) and tissue inhibitors of matrix metalloproteinase 1 and 2 (TIMP-1 and TIMP-2) in the plasma of patients with ovarian carcinoma (n=40), in other gynaecological pathologies (n=30) and in the plasma of healthy volunteers (n=26). MMP-2 and MMP-9 (pro and active forms) gelatinolytic activity was measured by zymography. Enzyme-linked immunosorbent assays (ELISA) were used to assay soluble VEGF and TIMPs. Preoperative plasma VEGF levels were significantly higher in patients with ovarian cancer than in healthy volunteers (P<0.0001) or patients with a benign gynaecological pathology (P<0.0001). The expression of pro-MMP-9 was higher in the plasma of ovarian cancer patients than in the plasma of women with non-malignant disease (P=0.01) or healthy women (P<0.0002). Pro-MMP-2 was detected in the plasma of ovarian cancer patients, but levels did not differ from those in non-malignant disease or healthy donor samples. Plasma TIMP-1 and TIMP-2 levels were significantly higher in patients with ovarian carcinomas than in healthy volunteers (P<0.0001 and P=0.006, respectively) or in the patients with a non-malignant pathology (P<0.0001 and P=0.002, respectively). Sub-group analysis showed that VEGF and pro-MMP-9 were higher in the plasma of patients with serous carcinomas than other histological types. Furthermore, plasma VEGF and pro-MMP-9 levels were higher in the plasma of cancer patients with thrombocytosis. Throughout the study, and in the univariate analysis, no correlation was found between the VEGF, MMP and TIMP levels. Only TIMP-1 was associated with a poor survival and mortality risk.  相似文献   

11.
Connective tissue growth factor (CTGF/CCN2) belongs to the CCN family of matricellular proteins, comprising Cyr61, CTGF, NovH and WISP1-3. The CCN proteins contain an N-terminal signal peptide followed by four conserved domains sharing sequence similarities with the insulin-like growth factor binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a C-terminal growth factor cysteine knot domain. To investigate the role of CCN2 in breast cancer, we transfected MCF-7 cells with full-length CCN2, and with four mutant constructs in which one of the domains had been deleted. MCF-7 cells stably expressing full-length CCN2 demonstrated reduced cell proliferation, increased migration in Boyden chamber assays and promoted angiogenesis in chorioallantoic membrane assays compared to control cells. Deletion of the C-terminal cysteine knot domain, but not of any other domain-deleted mutants, abolished activities mediated by full-length CCN2. We have dissected the role of CCN2 in breast tumorigenesis on a structural basis.  相似文献   

12.
13.
We investigated the matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) proteins in transitional cell carcinoma (TCC) cell lines and surgical specimens of the bladder neoplasm. The expression level was correlated to the degree of cellular differentiation and invasiveness of bladder cancer. Panels of six TCC cell lines with different degrees of differentiation were tested with monoclonal antibodies (mAbs) to MMP-1, MMP-2, MMP-3, MMP-9a, MMP-9b, TIMP-1 and TIMP-2 by immunocytochemistry. Gelatin zymography was also conducted on the cell lines for MMP-2 and -9. In addition, immunohistochemistry with the mAbs to MMP and TIM molecules was performed on 30 TCC specimens. We found that TCC cell lines were stained positively for MMP-1 (6/6), weakly for MMP-9a (2/6), MMP9b (5/6) and TIMP-1 (3/6), and negatively for MMP-2 (3/6) and MMP-3 (3/6). Zymographic analysis of the cell lines showed a high level of MMP2 in the MGH-U4 cell line. In bladder cancer surgical specimens, all specimens were positive for MMP1 (30/30), 19 were positive for MMP-2 (63.3%), 21 positive for MMP-9a (70%) and 15 positive for MMP-9b (50%). The expression of MMP-2 was found to be positively correlated with higher-grade tumors (p=0.036) and the expression of MMP-9a and -9b was found to be positively correlated with tumor stage (p=0.012 and 0.023, respectively). However, the expression of MMP-1, MMP-3, TIMP-1 and TIMP-2 was not correlated with either tumor staging or grading. In conclusion, the expression of MMP-2 and -9 was correlated with high-grade or high-stage bladder tumors, respectively. However, this correlation was not observed with TCC cell lines in which high- and low-grade tumors are included. Immunohistochemical results on tumor lesions may have more clinical relevance, since in a given tumor microenvironment the interaction among tumor cells in situ and tumor-associated cells, such as neutrophils, macrophages, lymphocytes and endothelial cells, as well as environmental factors (hypoxia and pH), cytokines and growth factors released by these cells may be required for TCC to express selective MMPs and TIMPs. The selective expression of these molecules then regulates tumor progression.  相似文献   

14.
随着对基质金属蛋白酶(MMP)与基质金属蛋白酶组织抑制因子(TIMP)功能和作用机制研究的深入,近年来对MMP和TIMP与肿瘤发生发展的关系有了许多新的认识。MMP的功能远非仅限于降解细胞外基质(ECM)来促进肿瘤的侵袭与转移,而是广泛参与肿瘤发生发展的各个阶段和环节。  相似文献   

15.
Ovarian cancer is the most common cause of death among women with gynecologic cancer. We examined molecular profiles of fibroblasts from normal ovary and high-grade serous ovarian tumors to identify novel therapeutic targets involved in tumor progression. We identified 2,300 genes that are significantly differentially expressed in tumor-associated fibroblasts. Fibroblast expression of one of these genes, connective tissue growth factor (CTGF), was confirmed by immunohistochemistry. CTGF protein expression in ovarian tumor fibroblasts significantly correlated with gene expression levels. CTGF is a secreted component of the tumor microenvironment and is being pursued as a therapeutic target in pancreatic cancer. We examined its effect in in vitro and ex vivo ovarian cancer models, and examined associations between CTGF expression and clinico-pathologic characteristics in patients. CTGF promotes migration and peritoneal adhesion of ovarian cancer cells. These effects are abrogated by FG-3019, a human monoclonal antibody against CTGF, currently under clinical investigation as a therapeutic agent. Immunohistochemical analyses of high-grade serous ovarian tumors reveal that the highest level of tumor stromal CTGF expression was correlated with the poorest prognosis. Our findings identify CTGF as a promoter of peritoneal adhesion, likely to mediate metastasis, and a potential therapeutic target in high-grade serous ovarian cancer. These results warrant further studies into the therapeutic efficacy of FG-3019 in high-grade serous ovarian cancer.  相似文献   

16.
Inhibitors of proteases prevent tumor-associated matrix degradation, affecting tumor growth, angiogenesis and metastasis. Our study was designed to investigate the effect of inhibition of matrix metalloproteinases (MMPs) on the growth of experimental hemangiomas, using the model of murine endothelioma eEnd.1 cells. In nude mice, these cells generate hemangiomas, consisting mostly of host-recruited endothelial cells, whose growth requires the activity of MMPs. In vitro, eEnd.1 cells produce factors that recruit endothelial cells and stimulate them to release MMPs. Over-expression of TIMP-2, following retrovirus-mediated gene transfer, decreased tumor growth in vivo. The infected clone CR1, which produces high levels of TIMP-2 (as assessed by Northern blot, ELISA and reverse zymography), formed slow-growing tumors that did not grow beyond 0.4 g, while clone 1H, which produces little TIMP-2, grew not dissimilarly to mock-infected cells and parental e.End.1 cells. Histologically, control tumors presented the features of cavernous hemangiomas, while CR1 tumors had a more solid pattern, showing foci of apoptotic cells. In vitro, TIMP-2 over-expression had no autocrine anti-proliferative effect on endothelioma cells but reduced their ability to recruit endothelial cells. CR1 cells lacked the capacity of mock-infected or parental eEnd.1 cells to stimulate endothelial cell motility and invasiveness. Antibodies against TIMP-2 restored the ability of CR1 to induce endothelial cell invasion. We conclude that, in this model, genetic increase of TIMP-2 inhibits tumor growth, apparently by affecting the recruitment and organization of host endothelial cells by the transformed cells.  相似文献   

17.
18.
Membrane-type (MT) 1 matrix metalloproteinase (MMP) is up-regulated in many tumor types and has been implicated in tumor progression and metastasis. MT1-MMP is critical for pericellular degradation of the extracellular matrix, thereby promoting tumor cell invasion and dissemination. To grow efficiently in vivo, tumor cells induce angiogenesis in both primary solid tumors and metastatic foci. The present study describes a functional link between the expression of MT1-MMP and vascular endothelial growth factor (VEGF) production in human glioma U251 xenografts in athymic mice. To investigate the effects of MT1-MMP on VEGF expression, U251 cells were stably transfected with MT1-MMP to generate the U-MT cell line overexpressing the enzyme. In vitro, the U-MT cells had an increased rate of proliferation and migration as well as the ability to activate the MMP-2 proenzyme and directionally remodel a three-dimensional collagen matrix. These findings suggested higher tumorigenicity of U-MT cells relative to the vector-control U-neo cells. In agreement with the in vitro data, U-MT xenografts in BALB/c nu/nu mice displayed markedly increased growth rates and elevated levels of angiogenesis. In contrast, U-neo cells formed small, minimally vascularized tumors. The elevated angiogenesis in U-MT xenografts was associated with an up-regulation of VEGF expression in tumor cells. In addition, U-MT cells in vitro secreted twice as much VEGF as the control cells. GM6001, a hydroxamate inhibitor of MMP activity, down-regulated the production of VEGF in U-MT cells to the levels observed in the U-neo control. Our results demonstrate that the enhanced tumorigenicity of glioma cells overexpressing MT1-MMP involves stimulation of angiogenesis through the up-regulation of VEGF production.  相似文献   

19.
Tumor invasion and metastasis formation are the hallmarks of malignant cancer. Metastatic spread of cancer cells is a result of a complex cascade of cellular events. This article discusses the matrix metalloproteinase family, the regulation of matrix metalloproteinase activity, and the functions of matrix metalloproteinases in tumor progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号