首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the morphology of the NOS-like immunoreactive neurons and their synaptic connectivity in the rat retina by immunocytochemistry using antisera against nitric oxide synthase (NOS). In the present study, several types of amacrine cells were labeled with anti-NOS antisera. Type 1 cells had large somata located in the inner nuclear layer (INL) with long and sparsely branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). Somata of type 2 cells with smaller diameters were also located in the INL. Their fine processes branched mostly in stratum 3 of the IPL. A third population showing NOS-like immunoreactivity was a class of displaced amacrine cells in the ganglion cell layer (GCL). Their soma size was similar to that of the type 1 cells; however, their processes stratified mainly in strata 4 and 5 of the IPL. Labeled neurons were evenly distributed throughout the retina, and the mean densities were 57.0 +/- 9.7 cells/mm2 for the type 1 cells, 239.3 +/- 43.4 cells/mm2 for the type 2 cells and 121.2 +/- 27.5 cells/mm2 cells for the displaced amacrine cells. The synaptic connectivity of NOS-like immunoreactive amacrine cells was identified in the IPL by electron microscopy. NOS-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in all strata of the IPL. The most frequent postsynaptic targets of NOS-immunoreactive amacrine cells were other amacrine cell processes. Ganglion cell dendrites were also postsynaptic to NOS-like immunoreactive neurons in both sublaminae of the IPL. Synaptic outputs onto bipolar cells were observed in sublamina b of the IPL. In addition, a few synaptic contacts between labeled cell processes were observed. Our results suggest that NOS immunoreactive cells may be modulated by other amacrine cells and ON cone bipolar cells, and act preferentially on other amacrine cells.  相似文献   

2.
We have localized glycine-like immunoreactivity to provide new anatomical detail about glycinergic neurons in the turtle retina. A rabbit antiserum directed against a glycine/albumin conjugate was used with standard fluorescent and avidin-biotin labeling techniques. Some processes in the outer plexiform layer and many processes in the inner plexiform layer, numerous somata in the inner nuclear layer, and isolated somata in the ganglion cell layer were immunoreactive. The vast majority of labeled neurons were amacrine cells. One class of amacrine cells had well-labeled somata near the inner nuclear/inner plexiform layer border, which gave rise to thick primary processes that entered the inner plexiform layer and arborized near the border of strata 1 and 2 and in stratum 3. A second class of glycinergic neurons, consisting of putative interplexiform cells, was unique in that it gave rise to dendritic arborizations in both the outer plexiform layer and the inner plexiform layer. Some of the immunoreactive neurons in the ganglion cell layer were apparently displaced amacrine cells, while others were probably true ganglion cells because they gave rise to labeled axons, and many labeled axons were visible in the ganglion cell axon layer. These results suggested that glycine played an extensive role in the turtle retina, and that it was involved in many diverse synaptic interactions in both the outer plexiform layer and the inner plexiform layer.  相似文献   

3.
The ganglion cell layer of mammalian retina contains numerous amacrine cells. Many belong to one type, the cholinergic starburst cell, but the other types have not been systematically identified. Using a new method to target sparsely represented cell types, we filled about 200 amacrine neurons in the ganglion cell layer of the guinea pig visual streak and identified 11 types. Ten of these resemble types identified in other species with somas in the inner nuclear layer, but one type has not been previously reported. Most of the types and nearly all the injected cells (95%) arborized low in the synaptic layer where they would co-stratify with various classes of ON ganglion cell. The displaced somas (7% of all amacrine cells) thus represent a heterogeneous pool, which are relatively accessible for study of their interactions with ON ganglion cells.  相似文献   

4.
We investigated the synaptic connectivity of two populations of recoverin-labeled bipolar cells and GABAergic neurons in the inner plexiform layer (IPL) of the rat retina. Two types of cone bipolar cells, type 2 and type 8, were stained with anti-recoverin antibodies, and GABAergic neurons were stained with anti-glutamic acid decarboxylase (GAD) antibodies. Type 2 cone bipolar axons received synaptic input from amacrine cell processes in 177 cases; among these amacrine cell processes, 92 processes (52.0%) were GAD-like immunoreactive. A total of 159 amacrine cell processes, which are presynaptic to type 8 cone bipolar cells, were observed. Among these processes, 117 processes (73.6%) were GAD-like immunoreactive. The postsynaptic elements at the ribbon synapses of recoverin-labeled cone bipolar cells were observed in 482 processes. In both type 2 and type 8 cone bipolar cells, the major output was to amacrine cell processes. At the ribbon synapses of the type 2 cone bipolar cells, 224 of the postsynaptic profiles were amacrine cell processes, 97 processes (43.3%) were GAD-like immunoreactive. In type 8 cone bipolar cells, 45 processes (30.2%) of 149 amacrine cell processes were GAD-like immunoreactive. Our results provide morphological evidence that GABA is a major transmitter involved in the visual processing of type 2 and 8 cone bipolar cells and GABA may have a stronger influence on type 8 cone bipolar cells than type 2 cone bipolar cells in the IPL of the rat retina.  相似文献   

5.
Interactions between gamma-aminobutyric acid (GABA)- and catecholamine (CA)-containing cells in the rat retina was revealed by a double-labeling immunocytochemical technique using the antisera to GABA- and CA-synthesizing enzymes, such as tyrosine hydroxylase (TH) and phenylethanolamine-N-methyltransferase (PNMT). At the light microscopic level, GABA-, TH- and PMNT-immunoreactive (GABA-, TH- and PMNT-IR) amacrine cell bodies and their processes appeared in the inner nuclear layer and the inner plexiform layer, respectively. By electron microscopy observation, in the inner plexiform layer, GABA-, TH- or PMNT-IR amacrine cell processes were found making synaptic contacts with the axon terminals of immunonegative bipolar cells or with the processes of immunonegative amacrine cells. TH-IR amacrine cell processes formed synapse-like contacts with the GABA-IR amacrine cell perikarya and processes. In contrast, GABA-IR amacrine cell processes formed symmetric synaptic contacts onto the TH-IR as well as PNMT-IR amacrine cell processes. From these findings, it appears that the GABA- and CA-containing amacrine cells may interact with each other and play some important role in regulating the activities of bipolar cells and other unknown amacrine cells in the rat retina.  相似文献   

6.
We have characterized a distinctive type of bistratified amacrine cell in the rabbit retina at both the single cell and population levels. These cells correspond to the "fountain" amacrine cells recently identified by MacNeil and Masland (1998). The fountain cells can be distinguished in superfused retinal wholemounts labeled with nuclear dyes, thus enabling them to be targeted for intracellular injection with Neurobiotin. This revealed that the primary dendrites ascend steeply to sublamina b of the inner plexiform layer, where they form an irregular arbor at the border of strata 4 and 5. These dendrites then give rise to multiple varicose processes that descend obliquely to sublamina a, where they form a more extensive arbor in stratum 1. The fountain amacrine cells show strong homologous tracer coupling when injected with Neurobiotin, and this has enabled us to map their density distribution across the retina and to examine the dendritic relationships between neighboring cells. The fountain amacrine cells range in density from 90 to 360 cells/mm2 and they account for 1.5% of the amacrine cells in the rabbit retina. The thick tapering dendrites in sublamina b form highly territorial arbors that tile the retina with minimal overlap, whereas the thin varicose processes intermingle in sublamina a. The fountain cells are immunopositive for gamma-aminobutyric acid and immunonegative for glycine. We further propose that these cells are homologous to the substance P-immunoreactive (SP-IR) amacrine cells in the cat retina and that they may account for a subset of the SP-IR amacrine cells in the rabbit retina.  相似文献   

7.
Wright LL  Vaney DI 《Visual neuroscience》2000,17(1):1145R-1156R
We have characterized a distinctive type of bistratified amacrine cell in the rabbit retina at both the single cell and population levels. These cells correspond to the "fountain" amacrine cells recently identified by MacNeil and Masland (1998). The fountain cells can be distinguished in superfused retinal wholemounts labeled with nuclear dyes, thus enabling them to be targeted for intracellular injection with Neurobiotin. This revealed that the primary dendrites ascend steeply to sublamina b of the inner plexiform layer, where they form an irregular arbor at the border of strata 4 and 5. These dendrites then give rise to multiple varicose processes that descend obliquely to sublamina a, where they form a more extensive arbor in stratum 1. The fountain amacrine cells show strong homologous tracer coupling when injected with Neurobiotin, and this has enabled us to map their density distribution across the retina and to examine the dendritic relationships between neighboring cells. The fountain amacrine cells range in density from 90 to 360 cells/mm2 and they account for 1.5% of the amacrine cells in the rabbit retina. The thick tapering dendrites in sublamina b form highly territorial arbors that tile the retina with minimal overlap, whereas the thin varicose processes intermingle in sublamina a. The fountain cells are immunopositive for y-aminobutyric acid and immunonegative for glycine. We further propose that these cells are homologous to the substance P-immunoreactive (SP-IR) amacrine cells in the cat retina and that they may account for a subset of the SP-IR amacrine cells in the rabbit retina.  相似文献   

8.
Synaptic inputs to physiologically defined turtle retinal ganglion cells.   总被引:1,自引:0,他引:1  
Two physiologically distinct, HRP-marked turtle retinal ganglion cells were examined for their morphology, GABAergic, glycinergic, and bipolar cell synaptic inputs, using electron-microscopic autoradiography and postembedding immunocytochemistry. One cell was a color-opponent, transient ON/OFF ganglion cell. Its center response to red was a sustained hyperpolarization, and its center response to green was a depolarization with increased spiking at onset. The HRP-injected cell most resembled G6, from previous Golgi-impregnation studies (Kolb, 1982; Kolb et al., 1988). It was a narrow-field bistratified cell, whose two broad dendritic strata peaked at approximately levels L20-25 (sublamina a) and L60 (sublamina b) of the inner plexiform layer. Bipolar cell synapses onto G6 were found evenly distributed between its distal and proximal dendritic strata, spanning L20-75. These inputs probably originated from several different bipolar cells, reflecting the complexity of the center response. GABAergic inputs were found onto both the distal and proximal strata, from near L20-L85. Only a few glycinergic inputs, confined to dendrites at L50-70, were observed. A second ganglion cell type that we physiologically characterized and HRP-injected had sustained ON-center, sustained OFF-surround responses. Two examples were studied; both were bistratified in sublamina b, near L60-70 and L85-100, with branches up to near L40. They resembled G10, from previous Golgi-impregnation studies (Kolb, 1982; Kolb et al., 1988). One cell was partially reconstructed to look at the distributions of GABAergic and glycinergic amacrine cell, and bipolar cell inputs. Although synapses from bipolar cells were equally divided between the two major dendritic strata of G10, the inputs to the distal stratum were close to the soma, and the inputs to the more proximal stratum were on the peripheral dendrites. This arrangement may reflect input from two distinct types of ON-bipolar cell. GABAergic and glycinergic inputs to G10 costratified to both strata and to the distal branches; but where glycinergic inputs were found distributed throughout the arbor, GABAergic inputs appeared to be confined to peripheral dendrites. We hypothesize on the neural elements involved and the circuitry that may underlie the physiologically recorded receptive fields of these two very different ganglion cell types in the turtle retina.  相似文献   

9.
G D Guiloff  H Kolb 《Vision research》1992,32(11):2023-2030
Light microscopic immunocytochemistry using anti-choline acetyltransferase (ChAT) was performed to stain putative cholinergic amacrine cells in turtle retina. ChAT-immunoreactive somata lie in the inner nuclear (INL) and ganglion cell (GCL) layers. Three types of amacrine cells were found according to the location of their somata and their dendritic stratification pattern in the inner plexiform layer (IPL). Type I amacrines lie in the row of cells closest to the INL/IPL limits and they branch along the s1/s2 border of the IPL. Type II amacrines are displaced to the GCL and they ramify along the s3/s4 border of the IPL. Type III amacrines lie in the middle of the INL, 2-3 rows away from the IPL limits and their dendrites appear to be bi- or tri-stratified in s1 and s3-s4 of the IPL. The turtle ChAT-IR amacrines are thus similar to the types described in chicken retina. A regular, non-random mosaic formed by stained type II amacrine cells was observed in the GCL. Their density in mid-central retina was 750 cells/mm2, tapering off to 393 cells/mm2 in peripheral retina. Our study indicates that a pair of cholinergic amacrine cell types in turtle retina is arranged in mirror-image symmetry contributing to sublamina "a" and sublamina "b" of the IPL, like in other vertebrate retinas.  相似文献   

10.
Wide-field cone bipolar cells with sparse dendritic branching and proposed connectivity to blue cones were first identified in rabbit and cat. In rabbit, these were subdivided into type a (wa) and type b (wb), with axonal branching in sublamina a, and sublamina b, respectively, of the inner plexiform layer (IPL). Recent studies in rabbit support the earlier hypothesis of exclusive blue/short wavelength cone connectivity for both types. The homologues of wb cells (but not wa cells) have been identified in other mammals. The axonal branching of wa cone bipolar cells is shown to co-stratify with the dendrites of the "fiducial," type a starburst amacrine cell, although a few branches extend into sublamina b. The axon terminal of wb cone bipolar cells is shown to be narrowly stratified in stratum 5alpha, deep to the dendrites of the type b starburst amacrine cell. Rabbit ganglion cells postsynaptic to wa cells are unknown, but may include class III.2a cells, similarly stratified in the IPL. The wb axon terminal is shown here to co-stratify with and to make close, likely synaptic, contacts with the dendrites of a recently described morphological subtype of class II ganglion cell in rabbit retina, IIb2. Recent morpho-physiological correlation indicates that class IIb2 cells correspond to the blue-ON-center-X or ON-brisk-sustained ganglion cells, defined physiologically in rabbit. In contrast, the wb cell in cat retina must innervate the physiologically identified blue-ON-center-sluggish-sustained ganglion cell. In monkey retina, the wb-like bipolar cells apparently innervate a small, partly bi-stratified ganglion cell. Mammals share a common pathway from short-wavelength-sensitive (S/blue) cone photoreceptors to ON-center ganglion cells in sublamina b of the IPL, in the form of wb or wb-like cone bipolar cells, but the type of ganglion cell innervated appears to be particular, and may serve different functional roles in different mammalian orders.  相似文献   

11.
Pang JJ  Gao F  Wu SM 《Vision research》2007,47(3):384-392
It has been widely accepted that ON and OFF channels in the visual system are segregated with little cross-communication, except for the mammalian rod bipolar cell-AII amacrine cell-ganglion cell pathway. Here, we show that in the tiger salamander retina the light responses of a subpopulation of ON-OFF ganglion cells are mediated by crossing the ON and OFF bipolar cell pathways. Although the majority of ON-OFF ganglion cells (type I cells) receive direct excitatory inputs from depolarizing and hyperpolarizing bipolar cells (DBCs and HBCs), about 5% (type II cells) receive indirect excitatory inputs from DBCs and 20% (type III cells) receive indirect excitatory inputs from HBCs. These indirect bipolar cell inputs are likely to be mediated by a subpopulation of amacrine cells that exhibit transient hyperpolarizing light responses (AC(H)s) and make GABAergic/glycinergic synapses on DBC or HBC axon terminals. GABA and glycine receptor antagonists enhanced the ON and OFF excitatory cation current (DeltaI(C)) in type I ganglion cells, but completely suppressed the ON DeltaI(C) mediated by DBCs in type II cells and the OFF DeltaI(C) mediated by HBCs in types III cells. Dendrites of type I cells ramify in both sublamina A and B, type II cells exclusively in sublamina A, and type III cells exclusively in sublamina B of the inner plexiform layer. These results demonstrate that indirect, amacrine cell-mediated bipolar cell-ganglion cell synaptic pathways exist in a non-mammalian retina, and that bidirectional cross-talk between ON and OFF channels is present in the vertebrate retina.  相似文献   

12.
The present study has examined the emergence of cholinergic stratification within the developing inner plexiform layer (IPL), and the effect of ablating the cholinergic amacrine cells on the formation of other stratifications within the IPL. The population of cholinergic amacrine cells in the ferret's retina was identified as early as the day of birth, but their processes did not form discrete strata until the end of the first postnatal week. As development proceeded over the next five postnatal weeks, so the positioning of the cholinergic strata shifted within the IPL toward the outer border, indicative of the greater ingrowth and elaboration of processes within the innermost parts of the IPL. To examine whether these cholinergic strata play an instructive role upon the development of other stratifications which form within the IPL, one-week-old ferrets were treated with L-glutamate in an attempt to ablate the population of cholinergic amacrine cells. Such treatment was shown to be successful, eliminating all of the cholinergic amacrine cells as well as the alpha retinal ganglion cells in the central retina. The remaining ganglion cell classes as well as a few other retinal cell types were partially reduced, while other cell types were not affected, and neither retinal histology nor areal growth was compromised in these ferrets. Despite this early loss of the cholinergic amacrine cells, which are eliminated within 24 h, other stratifications within the IPL formed normally, as they do following early elimination of the entire ganglion cell population. While these cholinergic amacrine cells are present well before other cell types have differentiated, apparently neither they, nor the ganglion cells, play a role in determining the depth of stratification for other retinal cell types.  相似文献   

13.
E V Famiglietti 《Vision research》1983,23(11):1265-1279
The neural architecture of on and off pathways in mammalian retina is described, including the development of ideas leading to an understanding of the bisublaminar organization of the inner plexiform layer of the retina which supports these two pathways. The complexities of bipolar cell contributions are contrasted with the relative simplicity of ganglion cell organization with regard to bisublaminar architecture, and a key role is described for internuncial amacrine cells as specific targets for bipolar cells. Two very different kinds of amacrine cell are considered and compared, both of which mediate bipolar input to ganglion cells. These are the rod (type II) amacrine cell, and the more recently discovered "starburst" amacrine cell, which is apparently cholinergic in function. As different as the wide-field starburst amacrine cells are from the narrow-field rod amacrine cells, they share important features. Both are interposed between bipolar and ganglion cells, and both have segregated regions of presynaptic boutons. They differ, however, in that rod amacrines may perform more specific functions related to receptive field center organization, while the functional role of starburst amacrines may be unrelated to receptive field properties of ganglion cells. The mirror-symmetry of type a and type b (off and on) starburst amacrine cells is described together with their synaptic circuitry. In contrast to the rod amacrine cell the output of starburst amacrines is exclusively to ganglion cells. Others have proposed a dual function for acetylcholine (ACh) in the retina. A unifying hypothesis is briefly sketched here which relates the pharmacology of ACh and the dendritic stratification of starburst amacrine cells to the form and function of ganglion cells. It is proposed that the amount of generalized synaptic excitation received from ACh/starburst amacrine cells by a particular type of ganglion cell is largely a function of co-stratification of the ganglion cell's dendrites with the distal boutons of starburst amacrine cells.  相似文献   

14.
R Nelson  H Kolb 《Vision research》1983,23(10):1183-1195
After intracellular recording, bipolar cells of the cat retina have been stained with HRP and their contacts in the outer and inner plexiform layers examined by electron microscopy. Rod bipolars and cone bipolar cb6 make invaginating, ribbon related contacts with photoreceptors, hyperpolarize in response to light, and have axons terminating in layer b of the IPL. The axon terminal of cb2 ends in layer a of the IPL and its basal contacts with cones mediate hyperpolarizing light-responses. Cone bipolar cb5 is a center-depolarizing type with an axon ending in layer b but its cone contacts are at semi-invaginating basal junctions. Except for the amacrine-contacting rod bipolar cell, all cone bipolar types synapse with both amacrine and ganglion cells in the inner plexiform layer. In addition cb5 contacts AII amacrine cells with large gap junctions, and is physiologically rod dominated.  相似文献   

15.
Qin P  Pourcho RG 《Visual neuroscience》1999,16(6):1105-1114
AMPA-selective glutamate receptors play a major role in glutamatergic neurotransmission in the retina and are expressed in a variety of neuronal subpopulations. In the present study, immunocytochemical techniques were used to visualize the distribution of GluR2 and GluR4 subunits in the cat retina. Results were compared with previous localizations of GluR1 and GluR2/3. Staining for GluR2 was limited to a small number of amacrine and ganglion cells whereas GluR4 staining was present in A-type horizontal cells, many amacrine cells including type AII amacrine cells, and the majority of the cells in the ganglion cell layer. Analysis of synaptic relationships in the outer plexiform layer showed the GluR4 subunit to be concentrated at the contacts of cone photoreceptors with A-horizontal cells. In the inner plexiform layer, both GluR2 and GluR4 were postsynaptic to cone bipolar cells at dyad contacts although GluR2 staining was limited to one of the postsynaptic elements whereas GluR4 immunoreactivity was often seen in both postsynaptic elements. Unlike GluR2, GluR4 was also postsynaptic to rod bipolar cells where it could be visualized in processes of AII amacrine cells. The data indicate that GluR3 and GluR4 subunits are colocalized in a number of cell types including A-type horizontal cells, AII amacrine cells, and alpha ganglion cells, but whether they are combined in the same multimeric receptors remains to be determined.  相似文献   

16.
Previous studies have shown that indoleamine-accumulating cells (IACs) in the rabbit retina consist of two main cell types: S1 and S2 amacrine cells (Vaney, 1986; Sandell & Masland, 1986). Both cell types are wide-field GABA amacrine cells that make reciprocal synaptic contacts with rod bipolar cell terminals (Ehinger & Holmgren, 1979; Strettoi et al., 1990). We have examined the coupling pattern of S1 and S2 amacrine cells after the intracellular injection of Neurobiotin. Our results may be summarized as follows: (1) S1 amacrine cells were extensively coupled and their dendrites formed a network similar to but less dense than the matrix stained with an antibody to serotonin. (2) Morphological observations and cluster analysis, based on a scattergram, showed that the vast majority of coupled cells were S1 amacrine cells, accounting for approximately half of the total IACs. The rest of the uncoupled IACs were S2 amacrine cells. (3) Sometimes, two adjacent varicosities, one from an injected S1 and one from a coupled S1, contacted a single rod bipolar terminal. (4) S2 amacrine cells were also coupled but much less than the S1s. (5) Rarely, crossover coupling between S1 and S2 amacrine cells was observed. These results suggest that the extensive coupling between S1 amacrine cells, combined with a larger dendritic field, may contribute a wide-field component to the inhibitory surround of the rod pathway. By comparison, the smaller, weakly coupled S2 amacrine cells may provide a local component.  相似文献   

17.
The distribution patterns of GABA immunoreactive (+) and immunonegative (-) amacrine cell synapses and profiles in the inner plexiform layer (IPL) were analyzed in three macaque monkey retinas using postembedding electron-microscopic (EM) immunogold cytochemistry. Synapses and profiles were counted at 5% intervals throughout the IPL depth in three EM montages (total area = 6509 microns 2), with 0% depth at the inner nuclear layer/IPL border. Nearly 70% of all amacrine synapses were GABA+, and they contacted all major classes of neurons that arborize in the IPL: bipolars (45%), ganglion cells (25%), and GABA+ (20%) and GABA- (10%) amacrines. A major relationship was seen between GABA+ amacrine processes and bipolar terminals: 76% of all amacrine-to-bipolar synapses were GABA+, and 82% of bipolar output dyads contained at least one GABA+ amacrine. GABA+ amacrine profiles (N = 2455) were concentrated in three wide bands at IPL depths of 0-25%, 40-60%, and 75-100%, corresponding to the dense bands seen with light-microscopic immunocytochemistry. In contrast, GABA+ amacrine synapses (N = 1081) were distributed evenly throughout the IPL depth, rather than being confined to the three dense bands. GABA- amacrine synapses (N = 516) were concentrated at 40% and 60% depths. Each category of amacrine output synapses had a characteristic pattern of stratification in the IPL. GABA+ amacrine-to-bipolar synapses occurred throughout the IPL but were most frequent at 20% and 80% IPL depths, where the dendrites of midget cone bipolars arborize (Polyak, 1941). In contrast, GABA+ amacrine-to-ganglion cell synapses were concentrated at 30% and 70% IPL depths, near the dendritic arborizations of parasol ganglion cells (Watanabe & Rodieck, 1989). GABA+ synapses onto bipolars and amacrines were also concentrated at the level of rod bipolar terminals. GABA+ amacrines must play significant but different roles in ON and OFF midget and parasol pathways as well as the rod pathway.  相似文献   

18.
In order to elucidate the role of putative indoleaminergic amacrine cells in visual processing, we have employed pharmacological agents specific for the two classes of serotonin receptor, 5-HT2 and 5-HT1, which have been identified in both the retina and brain. Perfusion of the rabbit retina with 5-HT2 selective antagonists decreases the ON-excitation of all classes of ganglion cell as well as the spontaneous activity of these cells. The effect on OFF-responses depends on the cell type: OFF-excitation of center-surround brisk and sluggish cells is increased or not affected by these drugs, but OFF excitation of ON/OFF direction selective cells is reduced. No disruption of the trigger features of direction selective or orientation selective cells was discovered, suggesting that indoleaminergic amacrine cells do not play a role in the generation of the complex properties of these cells. 5-HT1 receptors are heterogeneous and classified as a, b, or c subtypes. Since no selective antagonists are available for these sites, we have employed specific agonists. The most specific of these are for the 5-HT1A receptor. Perfusion with these agonists had physiological effects similar to those with perfusion of 5-HT2 antagonists. Thus, we have suggested that these two classes of serotonin receptors mediate opponent processes in the neural pathway. Since indoleaminergic cells make reciprocal synaptic connections with rod bipolar cell terminals, which are depolarizing in the rabbit retina, we hypothesize that 5-HT2 receptors facilitate the synaptic transmission from the depolarizing rod bipolar cell thus facilitating ON-excitation in the retinal network while 5-HT1A receptors mediate an inhibitory process. Similar self-opponent processing appears to take place in the hypothalamic and hippocampal serotonergic systems as well as in the dopaminergic retinal system. Thus, it is likely that this organization is a general feature of monoamine signal transmission in the central nervous system.  相似文献   

19.
Synaptic organization of GABAergic amacrine cells in the salamander retina   总被引:1,自引:0,他引:1  
The synaptic organization of GABA-immunoreactive (GABA-IR) amacrine cells in the inner plexiform layer (IPL) of salamander retina was studied with the use of postembedding immuno-electron microscopy. A total of 457 GABA-IR amacrine synapses, with identified postsynaptic elements, were analyzed on photomontages of electron micrographs covering 3,618 microm2 of the IPL. GABA-IR amacrine synapses were distributed throughout the IPL, with a small peak at the proximal margin of sublamina a. The majority of the output targets (81%) were GABA(-) neurons. Most of the contacts were simple synapses with one postsynaptic element identified as a process of an amacrine cell (55%), bipolar cell (19%) or ganglion cell (26%), and serial synapses were very rare. Of the 89 postsynaptic bipolar terminals, 63% participated in a reciprocal feedback synapse with the same presynaptic GABA-IR amacrine profile. There appeared to be no preference between GABA-IR amacrine contacts with rod- or cone-dominated bipolar cells (9.1% vs. 8.9%) or in the total number of amacrine synapses in sublaminas a and b (52% vs. 47%). The preponderance of amacrine cell input to bipolar cells in the OFF layer was derived from GABA-IR cells. These findings provide ultrastructural support to the existing physiological studies regarding the functional roles of the GABAergic amacrine cells in this species. Our results have added to the data base demonstrating that, in contrast to mammals, GABA-IR amacrine cells in amphibians and other nonmammals contact other amacrine cells more frequently, suggesting greater involvement of GABAergic amacrine cells in modulating lateral inhibitory pathways.  相似文献   

20.
The type 1 polyaxonal (PA1) cell is a distinct type of axon-bearing amacrine cell whose soma commonly occupies an interstitial position in the inner plexiform layer; the proximal branches of the sparse dendritic tree produce 1-4 axon-like processes, which form an extensive axonal arbor that is concentric with the smaller dendritic tree (Dacey, 1989; Famiglietti, 1992a,b). In this study, intracellular injections of Neurobiotin have revealed the complete dendritic and axonal morphology of the PA1 cells in the rabbit retina, as well as labeling the local array of PA1 cells through homologous tracer coupling. The dendritic-field area of the PA1 cells increased from a minimum of 0.15 mm2 (0.44-mm equivalent diameter) on the visual streak to a maximum of 0.67 mm2 (0.92-mm diameter) in the far periphery; the axonal-field area also showed a 3-fold variation across the retina, ranging from 3.1 mm2 (2.0-mm diameter) to 10.2 mm2 (3.6-mm diameter). The increase in dendritic- and axonal-field size was accompanied by a reduction in cell density, from 60 cells/mm2 in the visual streak to 20 cells/mm2 in the far periphery, so that the PA1 cells showed a 12 times overlap of their dendritic fields across the retina and a 200-300 times overlap of their axonal fields. Consequently, the axonal plexus was much denser than the dendritic plexus, with each square millimeter of retina containing approximately 100 mm of dendrites and approximately 1000 mm of axonal processes. The strong homologous tracer coupling revealed that approximately 45% of the PA1 somata were located in the inner nuclear layer, approximately 50% in the inner plexiform layer, and approximately 5% in the ganglion cell layer. In addition, the Neurobiotin-injected PA1 cells sometimes showed clear heterologous tracer coupling to a regular array of small ganglion cells, which were present at half the density of the PA1 cells. The PA1 cells were also shown to contain elevated levels of gamma-aminobutyric acid (GABA), like other axon-bearing amacrine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号