首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflammation in allergic asthma is characterized by an influx of eosinophils and the presence of eosinophil products in the bronchial tissue. Orchestration of this inflammatory response is in part mediated by cytokines and chemoattractants, but final activation can require additional stimuli. IgA, the most abundant immunoglobulin at mucosal surfaces, is potentially a potent trigger for eosinophil activation. Previously, we have shown that binding IgA-coated targets is dependent on in vitro stimulation of cells with cytokines. Here, we demonstrate that eosinophils isolated from the blood of allergic asthmatic patients bind IgA beads independently of prior in vitro stimulation. Furthermore, we found that the proinflammatory cytokine, TNF-alpha, is a potent enhancer of IgA binding to eosinophils from allergic asthmatics, and it does not activate FcalphaR on eosinophils isolated from normal donors. The difference in IgA binding by FcalphaRs on normal and patient eosinophils might be explained by the activation of different signal transduction pathways. Studying intracellular signaling, we found an enhanced basal activity of phosphatidylinositol 3-kinase (PI3K) in eosinophils derived from allergic asthmatics. Moreover, inhibition of PI3K in these cells blocked the background and the TNF-alpha-induced IgA binding completely. In summary, these data demonstrate that the responsiveness of human eosinophils to TNF-alpha might be an important contribution for fine-tuning the allergic inflammatory reaction. Furthermore, the preactivation of PI3K results in a broader sensitivity to subsequent challenge with inflammatory cytokines.  相似文献   

2.
Eosinophilic leukocytes are the cellular hallmark of allergic inflammation. Apart from being potent eosinophils chemoattractants, the eotaxins CCL11, CCL24 and CCL26 are capable of activating eosinophils to generate reactive oxygen species, lipid mediators of inflammation and degranulation of toxic granule proteins. Due to their central role in eosinophil trafficking and activation, understanding the signal transduction mechanism of the eotaxin-induced eosinophil effector functions may provide an innovative therapeutic strategy for eosinophil-associated diseases. Thus, these investigations were conducted to delineate signal transduction mechanisms of CCL11, CCL24 and CCL26-induced eosinophil peroxidase (EPO) degranulation following pretreatment of cells with or without a specific inhibitor of MEK1/MEK2 (U0126), inhibitor of p38 MAP kinase (SB203580) or a specific inhibitor of PI 3-kinase (LY294002). Results have shown that CCR3-mediated eotaxin-induced eosinophilic degranulation was concentration-dependently reduced by specific inhibitors of ERK1/ERK2, p38 MAP kinase and PI 3-kinase. However, the rank order of U0126 with respect to inhibition of chemokine-induced degranulation was CCL11 = CCL24 > CCL26. Potentiation of eotaxin-induced EPO degranulation by IL-5 was also seen. These investigations have not only confirmed the reported co-operativity between IL-5 and the eotaxins but also showed that the eosinophil-degranulating capabilities of the eotaxin CCL11, CCL24 and CCL26 is a consequence of activation of ERK1/ERK2, p38 MAP kinase and PI 3-kinase. Thus, these signaling molecules may provide the biochemical basis for mechanism-based therapy of allergic inflammatory diseases.  相似文献   

3.
Eosinophilic leukocytes are the cellular hallmark of allergic inflammation. Apart from being potent eosinophils chemoattractants, the eotaxins CCL11, CCL24 and CCL26 are capable of activating eosinophils to generate reactive oxygen species, lipid mediators of inflammation and degranulation of toxic granule proteins. Due to their central role in eosinophil trafficking and activation, understanding the signal transduction mechanism of the eotaxin-induced eosinophil effector functions may provide an innovative therapeutic strategy for eosinophil-associated diseases. Thus, these investigations were conducted to delineate signal transduction mechanisms of CCL11, CCL24 and CCL26-induced eosinophil peroxidase (EPO) degranulation following pretreatment of cells with or without a specific inhibitor of MEK1/MEK2 (U0126), inhibitor of p38 MAP kinase (SB203580) or a specific inhibitor of PI 3-kinase (LY294002). Results have shown that CCR3-mediated eotaxin-induced eosinophilic degranulation was concentration-dependently reduced by specific inhibitors of ERK1/ERK2, p38 MAP kinase and PI 3-kinase. However, the rank order of U0126 with respect to inhibition of chemokine-induced degranulation was CCL11=CCL24>CCL26. Potentiation of eotaxin-induced EPO degranulation by IL-5 was also seen. These investigations have not only confirmed the reported co-operativity between IL-5 and the eotaxins but also showed that the eosinophil-degranulating capabilities of the eotaxin CCL11, CCL24 and CCL26 is a consequence of activation of ERK1/ERK2, p38 MAP kinase and PI 3-kinase. Thus, these signaling molecules may provide the biochemical basis for mechanism-based therapy of allergic inflammatory diseases.  相似文献   

4.
New concepts in the pathogenesis of bronchial hyperresponsiveness and asthma   总被引:24,自引:0,他引:24  
Recent studies have suggested that inflammation may play an important role in the characteristic bronchial hyperresponsiveness and symptoms of chronic asthma. The mechanisms by which inflammatory cells, mediators, and nerves interact to produce the features of asthma are still uncertain, however. Although mast cells play an important role in the immediate response to allergen (and probably exercise), pharmacologic evidence argues against a critical role in the late response or bronchial hyperresponsiveness in which other cells, such as macrophages and eosinophils, may play a more important role. Many mediators have been implicated in asthma, but only PAF causes a prolonged increase in bronchial responsiveness. PAF attracts eosinophils into tissues and potently activates these cells, which may lead to epithelial damage, a key feature of asthmatic airways. PAF is also a potent inducer of microvascular leakage in airways, which may result in submucosal edema and plasma exudation into the airway lumen in the future. PAF antagonists will reveal whether PAF plays an important role in the eosinophilic inflammation of asthma. Neural mechanisms may also make an important contribution. Inflammatory mediators may influence neurotransmitter release from airway nerves, and neurotransmitters may be proinflammatory. Neural control is complex and cholinergic, adrenergic, and NANC mechanisms may contribute to bronchial hyperresponsiveness. Many neuropeptides, which may be the transmitters of NANC nerves, have been identified in airways. Neuropeptides in airway sensory nerves, such as substance P, have potent proinflammatory effects and, if these are released by an axon reflex, may amplify the inflammatory response in asthma. Since asthma may be chronic eosinophilic bronchitis, it is logical that the primary treatment should involve drugs that suppress this inflammatory response. At present, corticosteroids appear to be the most effective therapy; they have potent effects against eosinophils and macrophages (but not on mast cells) and reduce bronchial hyperresponsiveness and symptoms. By contrast, bronchodilators, such as beta-agonists, although they reduce symptoms, do not reduce the chronic inflammatory response or bronchial hyperresponsiveness and may mask the underlying inflammation. New therapies should be directed toward controlling eosinophil infiltration and activation in airways.  相似文献   

5.
6.
Although histologic features of airway remodeling have been well characterized in asthma, the immunologic and inflammatory mechanisms that drive progression of asthma to remodeling are still incompletely understood. Conceptually, airway remodeling may be a result of persistent inflammation and/or aberrant tissue repair mechanisms. It is likely that several immune and inflammatory cell types and mediators are involved in mediating airway remodeling. In addition, different features of airway remodeling are likely mediated by different inflammatory pathways. Several important candidate mediators of remodeling have been identified, including TGF-beta and T(H)2 cytokines (including IL-5 and IL-13), as well as vascular endothelial growth factor, a disintegrin and metalloproteinase 33, and matrix metalloproteinase 9. Mouse models of airway remodeling have provided important insight into potential mechanisms by which TGF-beta activation of the Smad-2/3 signaling pathway may contribute to airway remodeling. Human studies have demonstrated that anti-IL-5 reduces levels of airway eosinophils expressing TGF-beta, as well as levels of airway remodeling as assessed by bronchial biopsies. Further such studies confirming these observations, as well as alternate studies targeting additional individual cell types, cytokines, and mediators, are needed in human subjects with asthma to determine the role of candidate mediators of inflammation on the development and progression of airway remodeling.  相似文献   

7.
8.
Asthma: an inflammatory mediator soup   总被引:7,自引:0,他引:7  
Reversible or partially reversible airway obstruction, inflammation, and bronchial hyperresponsiveness to various stimuli are the defining characteristics of asthma. Airway obstruction in asthma is a compiex event that is due to bronchospasm, inflammation, and mucus formation. Inflammation has assumed a more central role in the pathogenesis of the disease, as it contributes not only to airflow obstruction, but also to bronchial hyperresponsiveness. The inciting trigger, or inhaled allergen, in asthma induces the activation of mast cells and macrophages with the subsequent release of several proinflammatory mediators, including leukotrienes, chemotactic factors, and cytokines. Antigen processed by macrophages is presented to undifferentiated T helper cells, inducing differentiation to the Th2 phenotype, with the subsequent release of IL-4 and IL-5, causing IgE synthesis and eosinophil infiltration, respectively. Macrophage-derived cytokines, such as IL-1, TNF-α, and IFN-γ, activate endothelial cells, upregulating the expression of adhesion molecules such as ICAM-1 and VCAM-1, which permit egression of leukocytes from the vasculature to the airway mucosa. Several inflammatory cells, such as eosinophils, mast cells, and macrophages, not only cause airway damage, but also synthesize cytokines that perpetuate the inflammatory process. This complex interplay of inflammatory cells and mediators causes the classic histopathophysiologic features in the airways of both symptomatic and asymptomatic individuals with asthma, emphasizing the importance of early recognition and antiinflammatory treatment.  相似文献   

9.
目的: 探讨磷脂酰肌醇3激酶(PI3K)抑制剂wortmannin对哮喘大鼠支气管上皮细胞诱导型一氧化氮合酶(iNOS)表达的影响。方法: 24只成年哮喘大鼠随机分成对照组、哮喘组以及PI3K抑制剂wortmannin干预组。对支气管肺泡灌洗液(BALF)细胞总数及嗜酸性粒细胞进行计数,免疫组织化学检测大鼠支气管上皮细胞iNOS蛋白的表达,RT-PCR检测肺组织iNOS mRNA的表达,分光光度计检测肺组织PI3K活性、iNOS活性及NO含量。结果: 哮喘组大鼠BALF细胞总数计数及嗜酸性粒细胞分类均高于对照组;PI3K抑制剂wortmannin干预组BALF嗜酸性粒细胞计数及分类明显低于哮喘组,差异显著。哮喘组肺组织PI3K活性、iNOS活性及NO含量高于对照组,PI3K抑制剂wortmannin干预组肺组织PI3K活性、iNOS活性及NO含量低于哮喘组。哮喘组大鼠支气管上皮细胞iNOS蛋白及肺组织iNOS mRNA表达较对照组明显增强,但PI3K抑制剂wortmannin组iNOS蛋白及mRNA表达均明显弱于哮喘组。结论: PI3K可调节哮喘大鼠气道iNOS表达,影响哮喘气道炎症反应。  相似文献   

10.
Upregulation of inflammatory responses in the brain is associated with a number of neurodegenerative diseases. Microglia are activated in neurodegenerative diseases, producing pro-inflammatory mediators. Critically, lipopolysaccharide (LPS)-induced microglial activation causes dopaminergic neurodegeneration in vitro and in vivo. The signaling mechanisms triggered by LPS to stimulate the release of pro-inflammatory mediators in microglial cells are still incompletely understood. To further explore the mechanisms of LPS-mediated inflammatory response of microglial cells, we studied the role of phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathways known to be activated by toll-like receptor-4 signaling through LPS. In the current study, we report that the activation profile of LPS-induced pAkt activation preceded those of LPS-induced NF-κB activation, suggesting a role for PI3K/Akt in the pathway activation of NF-κB-dependent inflammatory responses of activated microglia. These results, providing the first evidence that PI3K dependent signaling is involved in the inflammatory responses of microglial cells following LPS stimulation, may be useful in preventing inflammatory based neurodegenerative processes.  相似文献   

11.
Cysteinyl leukotrienes (CysLTs), including LTC(4), LTD(4) and LTE(4), are potent biological mediators generated from arachidonic acid and are produced by inflammatory cells, including eosinophils. Classically, CysLTs have been recognized as powerful spasmogens for bronchial smooth muscle and thus have been implicated in the pathogenesis of asthma. There is increasing evidence that CysLTs also contribute to accumulation of eosinophils within asthmatic airways; CysLTs have been reported to be chemotactic for eosinophils both in vitro and in vivo. CysLTs are also able to enhance the survival of eosinophils. Moreover, LTD(4) augments eosinophil adhesion via beta(2) integrins to intercellular cell adhesion molecule (ICAM)-1, which is constitutively expressed on airway epithelium. Interaction with ICAM-1 enhances the effector functions of eosinophils including the release of specific granule proteins, initiation of the respiratory burst, and generation of additional CysLTs. Thus, CysLTs can augment both accumulation and activation of eosinophils, and may thereby contribute to the phenotypic changes observed in airway eosinophils. We also discuss the effect of CysLT receptor antagonists on airway inflammation in asthma.  相似文献   

12.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) transmits anti-apoptotic signals in eosinophils and is involved in tissue eosinophilia at the site of allergic inflammation. We determined whether phosphatidylinositol 3-kinase (PI 3-kinase) and mitogen-activated protein kinase (MAP kinase) are involved in anti-apoptotic signals of GM-CSF in eosinophils. GM-CSF phosphorylated Akt, a downstream component of PI 3-kinase, and MAP kinases (ERK1 and ERK2) at 10 min after stimulation in eosinophils. GM-CSF prevented eosinophil apoptosis and sustained its survival during the 5-day culture. However, neither two PI-3 kinase inhibitors, wortmannin and LY294002, nor MEK inhibitor PD98059 inhibited GM-CSF-induced survival of eosinophils, although wortmannin and PD98059 inhibited GM-CSF-induced Akt phosphorylation and MAP kinase activation in eosinophils, respectively. In contrast, JAK2 inhibitor AG-490 inhibited both GM-CSF-induced JAK2 phosphorylation and cell survival in eosinophils. These results indicate that activation of JAK2, but not activation of PI 3-kinase/Akt and MAP kinase pathways, is critical for anti-apoptotic signals of GM-CSF in human eosinophils. Our findings suggest that manipulation of JAK2 activation would be useful for the treatment of allergic disorders.  相似文献   

13.
Upregulation of inflammatory responses in the brain is associated with a number of neurodegenerative diseases. Microglia are activated in neurodegenerative diseases, producing pro-inflammatory mediators. Critically, lipopolysaccharide (LPS)-induced microglial activation causes dopaminergic neurodegeneration in vitro and in vivo. The signaling mechanisms triggered by LPS to stimulate the release of pro-inflammatory mediators in microglial cells are still incompletely understood. To further explore the mechanisms of LPS-mediated inflammatory response of microglial cells, we studied the role of phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathways known to be activated by toll-like receptor-4 signaling through LPS. In the current study, we report that the activation profile of LPS-induced pAkt activation preceded those of LPS-induced NF-κB activation, suggesting a role for PI3K/Akt in the pathway activation of NF-κB-dependent inflammatory responses of activated microglia. These results, providing the first evidence that PI3K dependent signaling is involved in the inflammatory responses of microglial cells following LPS stimulation, may be useful in preventing inflammatory based neurodegenerative processes.  相似文献   

14.
Mitogenic signaling pathways in airway smooth muscle   总被引:6,自引:0,他引:6  
Increased airway smooth muscle mass has been demonstrated in patients with asthma, bronchopulmonary dysplasia and most recently, cystic fibrosis. These observations emphasize the need for further knowledge of the events involved in airway smooth muscle mitogenesis and hypertrophy. Workers in the field have developed cell culture systems involving tracheal and bronchial myocytes from different species. An emergent body of literature indicates that mutual signal transduction pathways control airway smooth muscle cell cycle entry across species lines. This article reviews what is known about mitogen-activated signal transduction in airway myocytes. The extracellular signal regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI 3-kinase) pathways appear to be key positive regulators of airway smooth muscle mitogenesis; recent studies have also demonstrated specific roles for reactive oxygen and the JAK/STAT pathway. It is also possible that growth factor stimulation of airway smooth muscle concurrently elicits signaling through negative regulatory intermediates such as p38 mitogen-activated protein (MAP) kinase and protein kinase C (PKC) delta, conceivably as a defense against extreme growth.  相似文献   

15.
Ligand density modulates eosinophil signaling and migration   总被引:4,自引:0,他引:4  
Eosinophils are a major component of the inflammatory response in persistent airway inflammation in asthma. The factors that determine the retention of eosinophils in the airway remain poorly understood. Elevated levels of fibronectin have been observed in the airway of patients with asthma, and the levels correlate with eosinophil numbers. To determine if fibronectin density modulates eosinophil function, we investigated the effect of fibronectin and vascular cell adhesion molecule 1 (VCAM-1) density on eosinophil migration and signaling via the p38 and extracellular regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) signaling pathways. There was a dose-dependent inhibition of eosinophil spreading and migration on increasing concentrations of fibronectin but not VCAM-1. In addition, activation of p38 MAPK was inhibited at high fibronectin but not high VCAM-1 concentrations, and ERK activity was slightly reduced at high VCAM-1 and fibronectin concentrations. Together, the results demonstrate that fibronectin but not VCAM-1 inhibits eosinophil migration and signaling.  相似文献   

16.
Background: Mesenchymal stem cells (MSCs) came out to attract wide attention and had become one of the hotspots of most diseases’ research in decades. But at present, the mechanisms of how MSCs work on chronic asthma remain undefined. Our study aims at verifying whether MSCs play a role in preventing inflammation and airway remodeling via PI3K/AKT signaling pathway in the chronic asthma rats model. Methods: First, an ovalbumin (OVA)-induced asthma model was built. MSCs were administered to ovalbumin-induced asthma rats. The total cells in a bronchial alveolar lavage fluid (BALF) and inflammatory mediators in BALF and serum were measured. Histological examination of lung tissue was performed to estimate the pathological changes. Additionally, the expression of phosphorylated-Akt (p-Akt) in all groups was measured by western blot and immunohistochemistry (IHC). Results: Compared to normal control group, the degree of airway inflammation and airway remodeling was significantly increased in asthma group. On the contrary, they were obviously inhibited in MSCs transplantation group. Moreover, the expression of p-Akt was increased in lung tissues of asthmatic rats, and suppressed by MSCs transplantation. Conclusion: Our results demonstrated that MSCs transplantation could suppress lung inflammation and airway remodeling via PI3K/Akt signaling pathway in rat asthma model.  相似文献   

17.
BACKGROUND: Seasonal allergic rhinitis could predispose to the development of chronic bronchial inflammation as observed in asthma. However, direct links between nasal inflammation, bronchial inflammation and airway responsiveness in patients with seasonal allergic rhinitis and without asthma are not fully understood. The aim of this study was to analyse the changes induced by allergic nasal challenge outside the pollen season in airway responsiveness and bronchial inflammation of patients with seasonal allergic rhinitis. METHODS: Nine patients were evaluated after either grass pollens or placebo nasal challenge in a randomized cross-over double-blinded trial. Nasal parameters were recorded hourly and airway responsiveness was assessed by methacholine challenge. Cytological examinations and cytokine measurements were performed in nasal lavage and induced sputum. Eosinophil activation was investigated by eosinophil-cationic protein expression and secretion. RESULTS: Airway responsiveness was increased after allergic nasal challenge. Total eosinophils and eosinophils expressing eosinophil-cationic protein were increased in induced sputum after allergic nasal challenge. Both eosinophil number and eosinophil-cationic protein concentration in induced sputum were correlated to methacholine responsiveness. CONCLUSIONS: These results suggest that eosinophils participate to the bronchial inflammation in patients with seasonal allergic rhinitis following allergic nasal challenge outside the pollen season and might explain changes in airway responsiveness.  相似文献   

18.
One characteristic feature of bronchial asthma is an allergic inflammation of the airways involving eosinophil activation. Since adhesion molecules, cytokines, and chemokines play a critical role in eosinophil infiltration into the tissues, it is of paramount importance to utilize these inflammation-related factors as clinical parameters to assess the status of asthma. For this reason, we measured the level of RANTES and soluble ICAM-1 in patients with asthma. The concentration of plasma RANTES was significantly elevated in asthmatic patients as compared with normal subjects. Patients with asthma attacks exhibited higher RANTES levels than those in remission. sICAM-1 concentration was also higher in serum and sputum in patients with asthma than in healthy subjects. In order to detect eosinophil activation directly, we studied intracellular EG2 expression in eosinophils using whole-blood flow-cytometric analysis. The number of EG2-positive eosinophils was significantly greater in patients with attacks than in asymptomatic subjects. We measured the temperature of expiratory flow and temperature flux as an alternative approach to assess airway inflammation. This study was based on a concept that inflammation would produce heat resulting in the higher temperature. The coefficient of temperature flux was significantly greater in asthmatic patients than in normal controls. Therefore, these new tests may be useful for the evaluation and treatment of allergic inflammation in asthma.  相似文献   

19.
In summary, these observations suggest a model for asthma which is summarized in Table III. Initially, mast cells and possibly other bronchial cells, e.g., alveolar macrophages, are activated either in an IgE-dependent or, in intrinsic asthma, in an IgE-independent fashion. These cells release two sets of mediators which may be either preformed or newly synthesized. One set of mediators is responsible for the immediate bronchospastic response. This bronchospasm is transient, readily reversible, and not associated with either airway inflammation or bronchial hyperreactivity. The second set of mediators, however, promote chemotaxis and activation of neutrophils and eosinophils. The subsequent bronchial inflammation causes damage and desquamation of the respiratory epithelium. The increased exposure of irritant receptors results in hyperreactive airways. In addition, these inflammatory cells induce mast cell degranulation and recurrent bronchospasm. Thus, after the initial exposure to allergen, a vicious cycle of inflammation, hyperreactivity and recurrent mast cell degranulation develops, ultimately leading to the pathological picture of chronic asthma.  相似文献   

20.
目的:探讨大气颗粒物(PM)急性暴露下C57BL/6小鼠肺脏的病理改变和气道上皮细胞炎症介质白细胞介素6(IL-6)和白细胞介素8(IL-8)分泌的分子机制.方法:选取雄性C57BL/6小鼠随机分为空白对照组和PM实验组,每组10只:PM实验组连续2 d经气管滴注PM悬浮液,建立PM短期暴露的小鼠模型;空白对照组连续2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号