首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
p53 is a unique DNA binding protein with two distinct DNA binding domains, the central domain for sequence-specific DNA binding and the C-terminal basic DNA binding domain (BD domain) for structure-specific DNA binding. In contrast to the apparent inhibitory effect of the BD domain on p53 binding to sequence-specific DNA in vitro, here we demonstrate that the BD domain enhances p53 binding to the endogenous p21(Waf1) promoter and mediates rapid transactivation of p21.(Waf1) This paradox is resolved by the observation that the BD domain is required for rapid binding to non-sequence-specific genomic DNA (NS-DNA) as evident from global chromatin immunoprecipitation analysis of p53 DNA binding in vivo. This finding provides the first in vivo evidence from a eukaryotic system to support binding to NS-DNA as an intermediate step in searching for specific sites as proposed by von Hippel and Berg. Furthermore, we speculate that binding to structure-specific DNA by the BD domain is a mechanism for p53 rapid binding to genomic DNA from its free state to facilitate the search for its target sites in the genome undergoing genotoxic stress.  相似文献   

5.
The tumour suppressor protein p53 plays a key role in the cell's decision to arrest the cell cycle or undergo apoptosis following a genotoxic insult. p53 is stabilized and activated after DNA damage, however the cascade of events signalling from DNA lesions to p53 stabilization and activation is still controversial. Poly (ADP-ribosylation) of different nuclear acceptors by PARP-1 is an early event when a single strand DNA lesion is produced. We present here evidences that interplay between PARP-1 and p53 is dependent on the type of damage induced to DNA. Primary mouse embryonic fibroblasts derived from parp-1 -/- mice exhibited decreased p53 accumulation and activation following gamma-irradiation compared to parp-1 proficient cells. On the other hand, treatment with the single alkylating agent 2'-methyl-2'-nitrose-urea (MNU), resulted in the rapid and sustained accumulation and activation of p53 in parp-1-deficient cells, while very little accumulation was observed in parp-1 +/+ cells. After IR, the turnover of the p53 inhibitory protein MDM-2 is perturbed and the level of phosphorylation of p53 at serine-15 is blunted in parp-1 -/- cells. PARP-1 is determinant in the cytotoxic response to alkylating agents but only partially contributes to radiation-induced cell killing, as determined by colony forming assay. Altogether, these results suggest that PARP-1 participates in the p53 response following irradiation, resides upstream of p53 and indirectly modulates the level of phosphorylation of key substrates in this pathway while treatment with MNU results in an enhanced p53-mediated response in parp-1-null cells.  相似文献   

6.
7.
A subset of DNA helicases, the RecQ family, has been found to be associated with the p53-mediated apoptotic pathway and is involved in maintaining genomic integrity. This family contains the BLM and WRN helicases, in which germline mutations are responsible for Bloom and Werner syndromes, respectively. TFIIH DNA helicases, XPB and XPD, are also components in this apoptotic pathway. We hypothesized that there may be some redundancy between helicases in their ability to complement the attenuated p53-mediated apoptotic levels seen in cells from individuals with diseases associated with these defective helicase genes. The attenuated apoptotic phenotype in Bloom syndrome cells was rescued not only by ectopic expression of BLM, but also by WRN or XPB, both 3' --> 5' helicases, but not expression of the 5' --> 3' helicase XPD. Overexpression of Sgs1, a WRN/BLM yeast homolog, corrected the reduction in BS cells only, which is consistent with Sgs1 being evolutionarily most homologous to BLM. A restoration of apoptotic levels in cells from WS, XPB or XPD patients was attained only by overexpression of the specific helicase. Our data suggest a limited redundancy in the pathways of these RecQ helicases in p53-induced apoptosis.  相似文献   

8.
DNA binding properties of murine p53   总被引:16,自引:0,他引:16  
K Steinmeyer  W Deppert 《Oncogene》1988,3(5):501-507
We analysed the in vitro binding of p53 from normal (3T3) and from chemically transformed (Meth A) Balb/c mouse cells to double-stranded (ds-) DNA and to single-stranded (ss-) DNA by DNA-cellulose chromatography. We confirm previous findings that p53 in cellular extracts exhibits ds-DNA-binding activity (Lane and Gannon, 1983). In addition, we demonstrate that such p53 also binds to ss-DNA. Analyses with immunopurified p53 protein provide evidence that this DNA-binding activity is intrinsic to p53. DNA binding of p53 could not be inhibited by a monoclonal antibody specific for the C-terminal region. An N-terminal deletion mutant of p53 (Rovinski et al., 1987) exhibited similar DNA-binding properties as wild-type p53, indicating that the N-terminus also is dispensable for DNA binding. We further show a close correlation between the DNA-binding activity of p53 from 3T3 cells and its association with nuclear substructures.  相似文献   

9.
10.
11.
12.
13.
14.
Tissue-specific regulation of Apaf-1 expression by p53   总被引:1,自引:0,他引:1  
Ho CK  Bush JA  Li G 《Oncology reports》2003,10(5):1139-1143
  相似文献   

15.
16.
17.
18.
19.
Liu X  Yue P  Khuri FR  Sun SY 《Cancer research》2004,64(15):5078-5083
  相似文献   

20.
Tang F  Liu G  He Z  Ma WY  Bode AM  Dong Z 《Molecular carcinogenesis》2006,45(11):861-870
Epidemiologic investigations demonstrated that arsenite exposure increases the risk of various human cancers, including skin, lung, bladder, and kidney cancers. However, oral administration of arsenite alone has failed to induce tumors in animal models, suggesting that arsenic may act to enhance mutagenicity induced by other carcinogens. Arsenite may function as a co-carcinogen, acting by inhibiting repair of carcinogen-induced DNA damage mediated by p53 and p21, a p53 target gene. To elucidate the interaction between arsenite and p53 tumor suppressor protein, we studied the effect of arsenite on ultraviolet B (UVB)-induced p53 phosphorylation, p53 DNA binding activity, and p53-induced target gene transactivation in the JB6 Cl41 mouse epidermal skin cell model. Our results indicated that arsenite suppressed UVB-induced p53 phosphorylation and p53 DNA binding activity. Arsenite also inhibited casein kinase 2 (CK2) activity and decreased p53-regulated p21 protein expression. These data suggest that the direct inhibition of p53 functional activation is one of the mechanisms through which arsenite interferes with p53 function, and thus may be a significant mechanism for the co-carcinogenic effects of arsenite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号