首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Minimal inhibitory and bactericidal concentrations (MICs, MBCs) of ten antibiotics with broad spectra against grampositive cocci were determined for 25 group G streptococci (GGS). Penicillin G, cefotaxime, and ampicillin were the most active bactericidal agents, with 100% of MBCs less than or equal to 0.6 micrograms/ml. Among the nonpenicillin, noncephalosporin agents, vancomycin had the lowest MBCs, with all strains killed by less than or equal to 2.5 micrograms/ml. Despite good in vitro activity against other streptococci, erythromycin, clindamycin, and chloramphenicol had disappointing bactericidal activity against GGS. Three strains were tolerant to erythromycin, while 15 strains were tolerant to clindamycin. Chloramphenicol was the least active inhibitory agent, with an MIC90 of 13.8 micrograms/ml; this agent was also the least active bactericidal agent against GGS. with no MBCs less than 2.5 micrograms/ml and 9 strains with MBCs greater than or equal to 20 micrograms/ml. There were no GGS strains tolerant to either penicillin G or vancomycin.  相似文献   

2.
One hundred isolates of Neisseria gonorrhoeae obtained from patients attending clinics in Johannesburg, South Africa, were tested by a broth dilution technique for their minimal inhibitory concentrations (MICs) of benzyl penicillin G, ampicillin, cefoxitin, cefuroxime, cefotaxime, ceftriaxone, ceftazidime, tetracycline, minocycline, doxycycline, spectinomycin, rosaramicin, chloramphenicol, and rosoxacin. None of the isolates tested produced beta-lactamase. The MICs of penicillin ranged from less than or equal to 0.007 to 0.5 micrograms/ml. The isolates were also very susceptible to rosaramicin (minimal concentration at which 50% of isolates were inhibited [MIC50] = 0.02 micrograms/ml) and to the new cephalosporins (cefotaxime MIC50 less than 0.007 micrograms/ml, ceftriaxone MIC50 less than 0.007 micrograms/ml, and ceftazidime MIC50 less than 0.007 micrograms/ml). By using regression analysis, good correlation was observed between the MICs of penicillin and those of the other agents, with the exception of ceftriaxone, spectinomycin, and rosaramicin. The MICs and the minimal bactericidal concentrations were within a log2 concentration of each other.  相似文献   

3.
We determined the bactericidal activity of ceftriaxone on 20 streptococci isolated from patients with infective endocarditis and that of penicillin G on 5 strains. The MICs of ceftriaxone were less than or equal to 2 micrograms/ml and the MBCs were low for 5 nontolerant strains (less than or equal to 2 micrograms/ml) and high for 15 tolerant strains (greater than or equal to 16 micrograms/ml). The maximal reduction of the viable bacterial counts after 24 h of exposure to antibiotic was achieved for a concentration of ceftriaxone of 4, 32 and 256 micrograms/ml, respectively for 5, 10 and 19 strains. The activity of penicillin G was similar.  相似文献   

4.
The in vitro activity of RP 59500, a semisynthetic pristinamycin, was compared with the activities of vancomycin, oxacillin, ampicillin, gentamicin, ciprofloxacin, and rifampin against five Staphylococcus species, five Streptococcus species, and four Enterococcus species. For staphylococci, MICs were 0.13 to 1 microgram/ml and the MICs for 90% of the strains tested (MIC90s) were 0.13 to 0.5 microgram/ml; there were no differences between oxacillin-susceptible and -resistant strains. For streptococci, MICs were 0.03 to 4 micrograms/ml and MIC90s were 0.25 to 2 micrograms/ml; viridans group streptococci were the least susceptible streptococci. For enterococci, MICs were 0.25 to 32 micrograms/ml and MIC90s were 2 to 4 micrograms/ml; Enterococcus faecalis was the least susceptible. Vancomycin was the only comparative drug with consistent activity against all species of gram-positive cocci. With RP 59500, raising the inoculum 100-fold, lowering the pH of cation-adjusted Mueller-Hinton broth to 5.5, or omitting cation supplementation had little effect on MICs, but 50% serum increased MICs 2 to 4 dilution steps. The differences between MBCs and MICs were greater for staphylococci and enterococci than for streptococci. Time-kill studies with 24 strains indicated that RP 59500 concentrations 2-, 4-, and 16-fold greater than the MICs usually killed bacteria of each species at similar rates; reductions in CFU per milliliter were less than those observed with oxacillin or vancomycin against staphylococci and less than those observed with ampicillin against enterococci. RP 59500 antagonized the bactericidal activities of oxacillin and gentamicin against Staphylococcus aureus ATCC 29213 and that of ampicillin against E. faecalis ATCC 29212. Against the latter, combination with gentamicin was indifferent. RP 59500 has a broad spectrum of in vitro activity against gram-positive cocci; combining it with other drugs is not advantageous.  相似文献   

5.
The inhibitory and bactericidal activities of clarithromycin were determined quantitatively against the intracellular populations of five Mycobacterium avium strains growing in monocyte-derived human macrophages. The MICs were 1.0 microgram/ml, and the MBCs ranged from 16.0 to 64.0 micrograms/ml; these values were similar to the MICs and MBCs found in broth cultures at pH 7.4 and were substantially lower than those found in broth cultures at pHs 6.8 and 5.0. Since the intracellular environment has a neutral or even an acidic pH, relatively low MICs and MBCs found in macrophage cultures can be associated with the fact that the drug concentrations in macrophages are substantially higher than those in the medium in which these cells are cultivated. Pretreatment of the macrophages 2 days prior to infection decreased the MICs twofold in comparison with results of experiments in which the drug was added to already infected macrophages.  相似文献   

6.
Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of penicillin, ampicillin, cefoxitin, and cefuroxime were determined for 103 beta-lactamase-negative Neisseria gonorrhoeae clinical isolates belonging to five different auxotypes. MBC determinations were base on killing 99.9% of the inoculum after 24 h of incubation. The MBC/MIC ratio was less than or equal to 8 for ampicillin, cefoxitin, and cefuroxime in all 103 strains. Two isolates which were very susceptible to penicillin (MIC, less than or equal to 0.015 micrograms/ml) had MBCs which were considerably greater than the MICs (MBC/MIC ratios, 32 and 64) for penicillin. A beta-lactamase-negative resistant subpopulation having the same auxotype as the total population was isolated from each of these two strains. Killing curve studies were in agreement with the existence of susceptible and resistant subpopulations, which may explain the high MBC/MIC ratios.  相似文献   

7.
We used a mouse model of pneumococcal pneumonia to assess the bactericidal effect of increasing doses of amoxicillin (AMX) against clinical strains with various susceptibilities to penicillin. Twelve strains that exhibited similar virulence in mice were selected. Three were penicillin susceptible (PS) (penicillin and AMX MICs = 0.01 to 0.03 microgram/ml), three were intermediately resistant (PIR) (penicillin and AMX MICs = 0.5 to 1 microgram/ml), and six were penicillin resistant (PR) (penicillin and AMX MICs = 1 to 8 micrograms/ml). Leukopenic Swiss mice were infected intratracheally with 10(7) CFU of each strain. Treatment was initiated 3 h after infection and consisted of a single subcutaneous injection of AMX at doses ranging from 2.5 to 10 mg/kg (PS strains), 5 to 100 (PIR strains), and 25 to 3,000 (PR strains). Bacterial killing kinetics were recorded in the lungs over 9 h. The maximal log CFU reduction (Emax) was observed 3 h postinjection. The relation between Emax and log10(dose/MIC) showed two populations. With seven strains (the three PS, the three PIR, and one of the six PR [MICs, penicillin/AMX = 4/1]) a good correlation was observed between Emax and log10(dose/MIC) (r = 0.772; P < 0.02). A bactericidal effect equal to 3.5 log10 CFU was observed at a log10(dose/MIC) = 2. At this ratio, with the five other PR strains, Emax varied from 0.4 to 1.6 log10 CFU. In brain heart infusion medium containing AMX at 50 times the relevant MIC, these five PR strains were tolerant in vitro. Treatment failure with AMX was found in vivo, with tolerant, highly resistant strains.  相似文献   

8.
Time-kill studies were used to examine the in vitro activities of penicillin G, RP 59500, erythromycin, ciprofloxacin, sparfloxacin, and vancomycin against 10 pneumococci expressing various degrees of susceptibility to penicillin and erythromycin. RP 59500 MICs for all strains were 0.5 to 2.0 micrograms/ml, while erythromycin MICs were 0.008 to 0.06 microgram/ml for erythromycin-susceptible strains and 32.0 to 64.0 micrograms/ml for erythromycin-resistant strains. Strains were more susceptible to sparfloxacin (0.125 to 0.5 microgram/ml) than to ciprofloxacin (0.5 to 4.0 micrograms/ml), and all were inhibited by vancomycin at MICs of 0.25 to 0.5 microgram/ml. Time-kill studies showed that antibiotic concentrations greater than the MIC were bactericidal for each strain, with the following exceptions. Erythromycin was bactericidal for one penicillin-resistant strain at 6 h, with regrowth after 12 and 24 h. Three penicillin-susceptible strains were bacteriostatically inhibited by erythromycin at concentrations greater than or equal to the MIC by 6 h. One penicillin-susceptible strain (penicillin MIC, 0.06 microgram/ml) was bacteriostatically inhibited by penicillin G at 24 h at the MIC or at one-half the MIC; a bactericidal effect was found only with penicillin G at concentrations of > or = 0.25 microgram/ml. At 10 min after inoculation a 1- to 3-log10-unit reduction (90 to 99.9%) in the original inoculum was seen for 6 of 10 strains with RP 59500 at concentrations greater than or equal to the MIC. This effect was not found with any of the other compounds tested. A bactericidal effect was found at > or = 6 h with RP 59500 at concentrations of one-half to one-quarter the MIC in 7 of 10 strains, and a bacteriostatic effect was found in 3 or 10 strains, with regrowth at 24 h. One penicillin-resistant strain was examined by the time-kill methodology at 0, 1, 2, and 3 h. RP 59500 at a concentration equal to the MIC was bactericidal within 1 h, and at a concentration of one-half the MIC it was bactericidal within 3 h. This phenomenon was not seen with the other antimicrobial agents tested. Regrowth of strains at ciprofloxacin concentrations equal to the MIC or at a one-half to one-quarter the MIC was found. For sparfloxacin, three of the four penicillin-susceptible strains and two of four penicillin-resistant strains were bacteriostatically inhibited by 6 h. Bactericidal effects were found at 6, 12, and 24 h with both intermediate-resistant, one penicillin-susceptible, and two penicillin-resistant strains. Complete killing was observed with vancomycin at concentrations greater than MIC. Of the new compounds tested, RP 59500 and sparfloxacin show promise for the treatment of infections caused by penicillin-susceptible and -resistant pneumococci. The clinical significance of rapid killing by RP 59500 remains to be determined.  相似文献   

9.
We have reevaluated the antibiotic susceptibilities of group A beta-hemolytic streptococci in view of recent reports of a high prevalence of erythromycin resistance in Japan and of an increase in penicillin treatment failures in the United States. A total of 474 isolates recovered during a 2- to 3-month period in 1980 were tested. All were susceptible by microtiter broth dilution to a penicillin concentration of less than or equal to 0.03 micrograms/ml (minimal inhibitory concentration), and 473 were killed by less than or equal to 0.06 micrograms/ml (minimal inhibitory concentration). Erythromycin minimal inhibitory concentrations showed a bimodal distribution: 95% were less than or equal to 0.06 micrograms/ml, and 5% were greater than or equal to 1 microgram/ml. Of the minimal bactericidal concentrations, 21% were greater than or equal to 1 microgram/ml and 3% were greater than or equal to 16 micrograms/ml. Group A beta-hemolytic streptococci remain susceptible to the inhibitory and bactericidal actions of penicillin, thus providing no in vitro explanation for the bacteriological relapses reported in some clinical studies. Unlike the Japanese experience, only 5% of our isolates were resistant to erythromycin (minimal inhibitory concentration, greater than or equal to 1 microgram/ml); however, 22% were tolerant (ratio of minimal inhibitory/bactericidal concentrations, greater than or equal to 32).  相似文献   

10.
The MICs of the macrolide clarithromycin for 31 clinical isolates of Mycobacterium kansasii were determined by three different methods. The methods employed were the proportion resistance method on 7H10 agar, the radiometric (BACTEC) method, and the T100 method of datum analysis. All methods gave similar results. The MICs were in a narrow range from 0.16 to 0.50 microgram/ml, with the MICs for 90% of isolates tested of 0.50 microgram/ml for the agar dilution and radiometric methods and 0.37 microgram/ml for the T100 method. The MBCs were determined for nine representative isolates by the radiometric broth method. The MBCs were equal to the MICs for four isolates, and the MBCs were twofold higher than the MICs for five isolates. Killing of 99.9% of the bacterial population was achieved at a clarithromycin concentration of 2.0 micrograms/ml for all nine isolates tested.  相似文献   

11.
Broth MICs and time-kill studies were used to test the activity of RP 59500 (quinupristin-dalfopristin), RPR 106972, pyostacine (RP 7293), erythromycin, clarithromycin, and cefotaxime for four penicillin-susceptible (MICs of 0.008 to 0.03 microgram/ml), two penicillin-intermediate (MIC of 0.25 microgram/ml), and four penicillin-resistant (MIC of 2.0 to 4.0 micrograms/ml) strains of pneumococci: 6 of 10 strains were resistant to macrolides (MICs of > or = 0.5 microgram/ml). MICs of RP 59500 (0.5 to 1.0 microgram/ml), RPR 106972 (0.125 to 0.25 microgram/ml), and pyostacine (0.125 to 0.25 microgram/ml) did not alter with the strain's penicillin or macrolide susceptibility status. Three penicillin-susceptible strains and one penicillin-intermediate strain were susceptible to macrolides (MICs of < or = 0.25 microgram/ml); the macrolide MICs for the remaining strains were > or = 4.0 micrograms/ml. Cefotaxime MICs rose with those of penicillin G, but all strains were inhibited at MICs of < or = 2.0 micrograms/ml. RP 59500 was bactericidal for all strains after 24 h at 2 x MIC and yielded 90% killing of all strains at 6 h at 2 x MIC; at 8 x MIC, RP 59500 showed 90% killing of six strains within 10 min (approximately 0.2 h). In comparison, RPR 106972 was bactericidal for 9 of 10 strains at 2 x MIC after 24 h and yielded 90% killing of all strains at 2 x MIC after 6 h; 90% killing of six strains was found at 8 x MIC at 0.2 h. Results for pyostacine were similar to those of RPR 106972. Erythromycin and clarithromycin were bactericidal for three of four macrolide-susceptible strains after 24 h at 4 x MIC. Clarithromycin yielded 90% killing of three strains at 8 x MIC after 12 h. Cefotaxime was bactericidal for all strains after 24 h at 4 x MIC, yielding 90% killing of all strains after 6 h at 4 x MIC. All three streptogramins yielded rapid killing of penicillin- and erythromycin-susceptible and -resistant pneumococci and were the only compounds which killed significant numbers of strains at 0.2 h.  相似文献   

12.
Ampicillin, daptomycin, and vancomycin, alone and in combination with gentamicin, were examined for bactericidal effects on ampicillin-resistant Enterococcus faecium using broth dilution minimum inhibitory concentrations (MICs) and time-kill studies. We tested 12 ampicillin-resistant isolates and demonstrated the following MICs and MBCs, respectively: ampicillin, greater than or equal to 32 micrograms/ml and greater than 256 micrograms/ml; daptomycin, less than or equal to 4 micrograms/ml and less than or equal to 16 micrograms/ml; and vancomycin, less than or equal to 4 micrograms/ml and greater than 64 micrograms/ml. Time-kill studies demonstrated that daptomycin alone had marked activity against the ampicillin-resistant E. faecium and that the addition of gentamicin resulted in synergistic killing. In addition, ampicillin and vancomycin were not bactericidal for the ampicillin-resistant isolates without the addition of gentamicin. The present study supports the consideration of daptomycin alone or in combination with an aminoglycoside as an alternative therapy for ampicillin-resistant enterococci, although additional clinical experience is now necessary.  相似文献   

13.
The activities of ampicillin, ampicillin-sulbactam, amoxicillin, amoxicillin-clavulanic acid, ticarcillin, ticarcillin-clavulanic acid, piperacillin, piperacillin-tazobactam, aztreonam, and aztreonam-clavulanic against Stenotrophomonas maltophilia strains for which the MICs of penicillins and commercially available beta-lactam-beta-lactamase inhibitor combinations were higher than the breakpoints usually recommended for Pseudomonas aeruginosa in commercially available broth microdilution methods were tested by the agar diffusion, agar dilution, and broth microdilution methods. Time-kill curve studies were performed when discrepancies between these methods were observed. The MICs obtained by the commercially available broth microdilution method, the agar dilution method, and the broth microdilution method were almost identical. Twenty-five percent of the strains tested showed inhibition diameters of > or =15 mm for ticarcillin-clavulanic acid, and 43.7% of the strains tested showed inhibition diameters of > or =18 mm for piperacillin-tazobactam by the agar diffusion method. The time-kill curves for these strains confirmed the results obtained by dilution methods. Aztreonam-clavulanic acid (2:1) at concentrations of < or =16 microg/ml inhibited all of these strains (MIC range, 1 to 16 microg/ml). The time-kill curves confirmed this activity. The addition of piperacillin to this combination did not modify the MICs. The combination aztreonam-clavulanic acid-ticarcillin was two- to fourfold more active than aztreonam-clavulanic acid alone. We studied the inhibitory and bactericidal activities of the two most active combinations (aztreonam-clavulanic acid and aztreonam-clavulanic acid-ticarcillin) against the standard inoculum and 10 and 50 times the standard inoculum. Inoculum modifications did not modify the MICs. Both combinations showed good bactericidal activity against the standard inoculum. With 10 times the standard inoculum, minimum bactericidal concentration (MBC) results were heterogeneous (for 55% of the strains, MBCs were between the MIC and 4-fold the MIC, and for 45% of the strains MBCs were between 8- and >32-fold the MIC). With 50 times the standard inoculum, MBCs were at least 32-fold the MICs for all the strains tested.  相似文献   

14.
Seventy-four strains of Streptococcus bovis and 35 strains of enterococci (Streptococcus faecalis and its varieties, Streptococcus faecium and Streptococcus durans), most of which were isolated from patients with endocarditis, were tested for their susceptibility to penicillin, ampicillin, erythromycin, cephalothin, vancomycin, methicillin, tetracycline, chloramphenicol, kanamycin, streptomycin, and gentamicin. Minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) were determined by a microtiter broth dilution technique. All of these organisms are group D streptococci, but the S. bovis strains are not enterococci. On the basis of both MIC and MBC, the S. bovis strains were much more susceptibile in general to antibiotics then were the enterococcal strains. For the S. bovis strains, the lowest MICs were obtained with penicillin, ampicillin, and erythromycin, and the lowest MBCs with penicillin and ampicillin. Although these antibiotics were also the most active against the enterococci, the MICs and MBCs were much higher than obtained with the S. bovis strains. Gentamicin was the most active aminoglycoside. On the basis of in vitro susceptibility results, the S. bovis strains resemble the viridans streptococci rather than enterococci.  相似文献   

15.
The in vitro susceptibility of 113 strains of Neisseria gonorrhoeae to spectinomycin was determined by the broth dilution method and was compared with their susceptibility to penicillin and ampicillin. All strains demonstrated a susceptibility to spectinomycin in a range between 2.5 and 20 mug/ml; 96% of these strains were susceptible in a range from 5 to 10 mug/ml. The same strains were susceptible to ampicillin at concentrations between 0.06 and 0.5 mug/ml and to penicillin between 0.02 and 1.25 units/ml. For the majority of strains, the minimal inhibitory and bactercidal concentrations were identical; however, with more than 10% of the strains, the minimal inhibitory concentration was lower than the minimal bactericidal concentration.  相似文献   

16.
MIC and time-kill methods were used to test the activities of DU-6859a, ciprofloxacin, levofloxacin, sparfloxacin, cefotaxime, imipenem, and vancomycin against nine penicillin-susceptible, -intermediate, and -resistant pneumococci. The MIC of penicillin for penicillin-susceptible strains was 0.016 micrograms/ml, those for intermediate strains were 0.25 to 1.0 microgram/ml, and those for resistant strains were 2.0 to 4.0 micrograms/ml. Of the four quinolones tested, DU-6859a had the lowest MIC (0.064 micrograms/ml), followed by sparfloxacin (0.25 to 0.5 micrograms/ml) and levofloxacin and ciprofloxacin (both 1.0 to 4.0 micrograms/ml). Vancomycin inhibited all strains at MICs of 0.25 to 0.5 micrograms/ml. The MICs of imipenem and cefotaxime for penicillin-susceptible, -intermediate, and -resistant strains were 0.004 to 0.008, 0.008 to 0.032, and 0.25 micrograms/ml and 0.016, 0.125 to 0.5, and 2.0 micrograms/ml, respectively. DU-6859a was bactericidal at eight times the MICs (0.5 micrograms/ml) for seven of the nine strains after 4 h and bactericidal for all nine strains after 6 h at eight times the MICs and after 12 h at two times the MICs. By comparison, sparfloxacin, the next most active quinolone, was uniformly bactericidal at two times the MICs only after 24 h, with little activity after 2 h. Levofloxacin and ciprofloxacin were bactericidal against all strains after 12 h at eight times the MICs and against all strains at 24 h at four times the MICs. Imipenem was bactericidal against all strains, at concentrations exceeding the MICs, after 24 h. Cefotaxime was also uniformly bactericidal only after 24 h of incubation at two times the MICs. Vancomycin, despite having uniformly low MICs for all strains irrespective of their penicillin susceptibility, was uniformly bactericidal only at two times the MICs after 24 h.  相似文献   

17.
Antimicrobial susceptibility of Capnocytophaga.   总被引:7,自引:6,他引:7       下载免费PDF全文
Capnocytophaga (Bacteroides ochraceus, Center for Disease Control biogroup DF-1) is associated with sepsis in granulocytopenic patients and is isolated in large numbers from the affected periodontal pockets in patients with juvenile periodontosis. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of 17 antimicrobial agents for 13 strains of Capnocytophaga organisms were determined. In addition, the ratio of the MBC to the MIC for each antimicrobial agent was determined for each strain. At concentrations of 1 microgram/ml or less, penicillin, ampicillin, carbenicillin, erythromycin, and clindamycin killed 90% of the strains. At concentrations of 3.12 microgram/ml or less, tetracycline, metronidazole, cefoxitin, and chloramphenicol killed 90% of the strains. None of the aminoglycosides tested demonstrated antibacterial activity at 50 microgram/ml. Penicillin, ampicillin, carbenicillin, and cefoxitin exhibited MBC/MIC ratios of 4 or less with all strains. Erythromycin, tetracycline, and metronidazole exhibited MBC/MIC ratios of 4 or less for 12 of 13 strains. The MICs of cephalothin and cefazolin for 90% of the strains were 25 and 50 microgram/ml, respectively. The MBC/MIC ratios for these drugs were 4 or less for 12 of 13 and 7 of 13 strains, respectively. The MIC of cefamandole for 90% of the strains was 3.12 microgram/ml; however, only nine strains had an MBC/MIC ratio of 4 or less.  相似文献   

18.
A broth microdilution method was used to measure the minimal inhibitory concentrations (MICs) of the antibiotics most often recommended for treatment of listeriosis. The MICs of ampicillin, penicillin, erythromycin, and tetracycline for 175 strains of Listeria monocytogenes were below the approximate MIC breakpoint for susceptible strains as recommended by the National Committee on Clinical Laboratory Standards. Inhibition diameters for 125 strains were measured by the standardized disk method (National Committee on Clinical Laboratory Standards) and compared with the appropriate MIC values. By both methods, strains were susceptible to the above four antibiotics, except for three strains, which were intermediate in susceptibility to penicillin by the disk method. Since the minimal bactericidal concentrations for ampicillin and penicillin significantly exceeded the MICs for these antibiotics, 45 strains were evaluated with ampicillin (5 mug/ml) and gentamicin (1 mug/ml) to compare the synergistic bactericidal effect of the two used in combination and singly. An increased kill of 100-fold was observed with the antibiotics combined in 19 strains after 4 to 6 h and in 40 strains after 24 h. A comparison of results with microdilution in Trypticase soy broth and agar dilution in Mueller-Hinton agar revealed that MICs for gentamicin, kanamycin, and streptomycin were strongly influenced by the media used. The MICs were consistently lower in Mueller-Hinton agar.  相似文献   

19.
The efficacies of 21 chemotherapeutic agents for controlling bacterial kidney disease were evaluated. The bactericidal and/or bacteriostatic effects of these drugs were tested against 11 Renibacterium salmoninarum strains with different origins. The most effective compounds displaying both bacteriostatic and bactericidal activity for all the isolates were tetracycline and erythromycin, with MICs ranging from less than 0.62 to 10.95 micrograms/ml for tetracycline and from less than 0.62 to 5.47 micrograms/ml for erythromycin. Whereas tetracycline showed identical MICs and MBCs, erythromycin showed bactericidal effects at concentrations of 5.47 to 21.87 micrograms/ml. Similarly, cefazolin and tiamulin proved to be very effective bactericidal compounds against the majority of R. salmoninarum isolates, with MBCs for 90% of the strains tested of 21.87 and 10.95 micrograms/ml, respectively. Neither nitrofuranes, quinolones, nor sulfonamides showed inhibitory effects on the growth of the strains.  相似文献   

20.
Controversy exists as to the in vitro and in vivo activities of trimethoprim-sulfamethoxazole (TMP-SMX) against enterococci. In this study, we investigated the in vitro activity of TMP-SMX in the type of Mueller-Hinton broth previously reported to give the lowest MICs and MBCs with enterococci. In all instances, MICs were less than or equal to 0.5 microgram/ml. The majority of tests showed MBCs of greater than 32 micrograms/ml, although there was some effect from varying the inoculum and the length of incubation after subculturing. Minor differences were noted when tests were repeated and between the results from microdilution and macrodilution tests and those obtained by the time-kill method. These results, as well as other reports, suggest that TMP-SMX should not be considered a reliable bactericidal agent against enterococci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号