首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Embryonic meninges secrete the chemokine SDF‐1/CXCL12 as a chemotactic guide for migrating neural stem cells, but SDF‐1 is not known to directly regulate the functions of radial glia. Recently, the developing meninges have been shown to regulate radial glial function, yet the mechanisms and signals responsible for this phenomenon remain unclear. Moreover, as a nonmigratory cell type, radial glia do not conform to traditional models associated with chemokine signaling in the central nervous system. Using fluorescent transgenes, in vivo genetic manipulations and pharmacological techniques, we demonstrate that SDF‐1 derived from the meninges exerts a CXCR4‐dependent effect on radial glia. Deletion of CXCR4 expression by radial glia influences their morphology, mitosis, and progression through both oligodendroglial and astroglial lineages. Additionally, disruption of CXCR4 signaling in radial glia has a transient effect on the migration of oligodendrocyte progenitors. These data indicate that a specific chemokine signal derived from the meninges has multiple regulatory effects on radial glia. GLIA 2013;61:1288–1305  相似文献   

3.
4.
Id1, Id2, and Id3 mRNA are expressed mainly in the proliferating ependymal cell zone of the mouse brain during embryogenesis. In this study, the expression pattern and cell phenotypes of the Id family mRNA were examined in postnatal and adult rat brain. The expression of Id1 and Id3 mRNA in rat brain was observed in the cortex layer 1, corpus callosum, ventricular/ subventricular zone (VZ/ SVZ), and the CA1-4 layers of the hippocampus at postnatal day 1 (P1) through P14, whereby it declined at 2 months. In general, the developmental pattern of Id1 mRNA coincided with the pattern observed for Id3 mRNA. Similar to Id1 and Id3, Id2 mRNA was highly expressed in the corpus callosum, VZ/ SVZ, and the hippocampus. Examination of Id2 mRNA revealed high levels in the cortex and caudate putamen at P1 through P14, whereas a decline was observed in its expression in the adult cortex. In P5 rat cerebellum, all Id mRNA examined were found in the internal granular cell layers; however, at this time point, only Id2 mRNA expression was detected in the differentiating zone of the external granular cell layers, preferentially localizing to adult Purkinje cells. Furthermore, only Id2 mRNA expression in brain was observed in NF+ neurons at P5. Examination of S100α+ and GFAP+ astrocytes, revealed the presence of all three mRNAs, whereas the expression of Id2 and Id3 mRNA was absent in O4+ immature oligodendrocytes. These data suggest that the spatial and temporal kinetic patterns during development, as well as cellular specificity, of the Id gene family may play a critical role in neural precursor cell proliferation and cell divergence. GLIA 24:372–381, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Hamo L  Stohlman SA  Otto-Duessel M  Bergmann CC 《Glia》2007,55(11):1169-1177
The potential interplay of glial cells with T cells during viral induced inflammation was assessed by comparing major histocompatibility complex molecule upregulation and retention on astrocytes and microglia. Transgenic mice expressing green fluorescent protein under control of the astrocyte-specific glial fibrillary acidic protein promoter were infected with a neurotropic coronavirus to facilitate phenotypic characterization of astrocytes and microglia using flow cytometry. Astrocytes in the adult central nervous system up-regulated class I surface expression, albeit delayed compared with microglia. Class II was barely detectable on astrocytes, in contrast to potent up-regulation on microglia. Maximal MHC expression in both glial cell types correlated with IFN-gamma levels and lymphocyte accumulation. Despite a decline of IFN-gamma concomitant to virus clearance, MHC molecule expression on glia was sustained. These data demonstrate distinct regulation of both class I and class II expression by microglia and astrocytes in vivo following viral induced inflammation. Furthermore, prolonged MHC expression subsequent to viral clearance implies a potential for ongoing presentation.  相似文献   

6.
The major neuropathological correlate of cerebral palsy in premature infants is periventricular leukomalacia (PVL), a disorder of the immature cerebral white matter. Cerebral ischemia leading to excitotoxicity is thought to be important in the pathogenesis of this disorder, implying a critical role for glutamate transporters, the major determinants of extracellular glutamate concentration. Previously, we found that EAAT2 expression is limited primarily to premyelinating oligodendrocytes early in development and is rarely observed in astrocytes until >40 weeks. In this study, we analyzed the expression of EAAT2 in cerebral white matter from PVL and control cases. Western blot analysis suggested an up-regulation of EAAT2 in PVL compared with control cases. Single- and double-label immunocytochemistry showed a significantly higher percentage of EAAT2-immunopositive astrocytes in PVL (51.8% +/- 5.6%) compared with control white matter (21.4% +/- 5.6%; P = 0.004). Macrophages in the necrotic foci in PVL also expressed EAAT2. Premyelinating oligodendrocytes in both PVL and control cases expressed EAAT2, without qualitative difference in expression. The previously unrecognized up-regulation of EAAT2 in reactive astrocytes and its presence in macrophages in PVL reported here may reflect a response to either hypoxic-ischemic injury or inflammation.  相似文献   

7.
Using structure based genome mining targeting vascular endothelial and platelet derived growth factor immunoglobulin (Ig) like folds, we have identified a sequence corresponding to a single transmembrane protein with two Ig domains, which we cloned from a human brain cDNA library. The cDNA is identical to hepatocyte cell adhesion molecule (hepaCAM), which was originally described as a tumor suppressor gene in liver. Here, we show that the protein is predominantly expressed in the mouse and human nervous system. In liver, the expression is very low in humans, and is not detected in mice. To identify the central nervous system (CNS) regions and cell types expressing the protein, we performed a LacZ reporter gene assay on heterozygous mice in which one copy of the gene encoding the novel protein had been replaced with beta-galactosidase. beta-galactosidase expression was prominent in white matter tracts of the CNS. Furthermore, expression was detected in ependymal cells of the brain ventricular zones and the central canal of the spinal cord. Double labeling experiments showed expression mainly in CNPase positive oligodendrocytes (OL). Since the protein is predominantly expressed in the CNS glial cells, we named the molecule glial cell adhesion molecule (GlialCAM). A potential role for GlialCAM in myelination was supported by its up-regulation during postnatal mouse brain development, where it was concomitantly expressed with myelin basic protein (MBP). In addition, in vitro, GlialCAM was observed in various developmental stages of OL and in astrocytes in processes and at cell contact sites. In A2B5 positive OL, GlialCAM colocalizes with GAP43 in OL growth cone like structures. Overall, the data presented here indicate a potential function for GlialCAM in glial cell biology.  相似文献   

8.
9.
NG2 cells represent precursors of oligodendrocytes under physiological conditions; however, following cerebral ischemia they play an important role in glial scar formation. Here, we compared the expression profiles of oligodendroglial lineage cells, after focal cerebral ischemia (FCI) and in Alzheimer's‐like pathology using transgenic mice, which enables genetic fate‐mapping of Cspg4‐positive NG2 cells and their progeny, based on the expression of red fluorescent protein tdTomato. tdTomato‐positive cells possessed the expression profile of NG2 cells and oligodendrocytes; however, based on the expression of cell type‐specific genes, we were able to distinguish between them. To shed light on the changes in the expression patterns caused by FCI, we employed self‐organizing Kohonen maps, enabling the division of NG2 cells and oligodendrocytes into subpopulations based on similarities in the expression profiles of individual cells. We identified three subpopulations of NG2 cells emerging after FCI: proliferative; astrocyte‐like and oligodendrocyte‐like NG2 cells; such phenotypes were further confirmed by immunohistochemistry. Oligodendrocytes themselves formed four subpopulations, which reflected the process of oligodendrocytes maturation. Finally, we used 5‐ethynyl‐2′ deoxyuridine (EdU) labeling to reveal that NG2 cells can differentiate directly into reactive astrocytes without preceding proliferation. In contrast, in Alzheimer's‐like pathology we failed to identify these subpopulations. Collectively, here we identified several yet unknown differences between the expression profiles of NG2 cells and oligodendrocytes, and characterized specific genes contributing to oligodendrocyte maturation and phenotypical changes of NG2 cells after FCI. Moreover, our results suggest that, unlike in Alzheimer's‐like pathology, NG2 cells acquire a multipotent phenotype following FCI.  相似文献   

10.
During the postnatal development, astrocytic cells in the neocortex progressively lose their neural stem cell (NSC) potential, whereas this peculiar attribute is preserved in the adult subventricular zone (SVZ). To understand this fundamental difference, many reports suggest that adult subventricular GFAP-expressing cells might be maintained in immature developmental stage. Here, we show that S100B, a marker of glial cells, is absent from GFAP-expressing cells of the SVZ and that its onset of expression characterizes a terminal maturation stage of cortical astrocytic cells. Nevertheless, when cultured in vitro, SVZ astrocytic cells developed as S100B expressing cells, as do cortical astrocytic cells, suggesting that SVZ microenvironment represses S100B expression. Using transgenic s100b-EGFP cells, we then demonstrated that S100B expression coincides with the loss of neurosphere forming abilities of GFAP expressing cells. By doing grafting experiments with cells derived from beta-actin-GFP mice, we next found that S100B expression in astrocytic cells is repressed in the SVZ, but not in the striatal parenchyma. Furthermore, we showed that treatment with epidermal growth factor represses S100B expression in GFAP-expressing cells in vitro as well as in vivo. Altogether, our results indicate that the S100B expression defines a late developmental stage after which GFAP-expressing cells lose their NSC potential and suggest that S100B expression is repressed by adult SVZ microenvironment.  相似文献   

11.
Proliferation of astrocytes plays an essential role during ontogeny and in the adult brain, where it occurs following trauma and in inflammation and neurodegenerative diseases as well as in normal, healthy mammals. The cellular mechanisms underlying glial proliferation remain poorly understood. As dopamine is known to modulate proliferation in different cell populations, we investigated the effects of dopamine on the proliferation of striatal astrocytes in vitro. We found that dopamine reduced proliferation. As proliferation involves, among other things, a change in cell volume, which normally comes with water movement across the membrane, water channels might represent a molecular target of the dopamine effect. Therefore we studied the effect of dopamine on aquaporin 4 (AQP4) expression, the main aquaporin subtype expressed in glial cells, and observed a down‐regulation of the AQP4‐M23 isoform. This down‐regulation was the cause of the dopamine‐induced decrease in proliferation as knockdown of AQP4 using siRNA techniques mimicked the effects of dopamine on proliferation. Furthermore, stimulation of glial proliferation by basic fibroblast growth factor was also abolished by knocking down AQP4. In addition, blocking of AQP4 with 10 μm tetraethylammonium inhibited osmotically induced cell swelling and stimulation of glial cell proliferation by basic fibroblast growth factor. These results demonstrate a clear‐cut involvement of AQP4 in the regulation of proliferation and implicate that modulation of AQP4 could be used therapeutically in the treatment of neurodegenerative diseases as well as in the regulation of reactive astrogliosis by preventing or reducing the glia scar formation, thus improving regeneration following ischemia or other trauma.  相似文献   

12.
Inflammatory cascades induced by spinal cord injuries (SCI) are localized in the white matter, a recognized neural stem‐ and progenitor‐cell (NSPC) niche of the adult spinal cord. Chemokines, as integrators of these processes, might also be important determinants of this NSPC niche. CCL3/CCR1, CCL2/CCR2, and SDF‐1α/CXCR4 were analyzed in the ventrolateral white matter after force defined thoracic SCI: Immunoreactivity (IR) density levels were measured 2 d, 7 d, 14 d, and 42 d on cervical (C 5), thoracic (T 5), and lumbar (L 5) levels. On day post operation (DPO) 42, chemokine inductions were further evaluated by real‐time RT‐PCR and Western blot analyses. Cellular phenotypes were confirmed by double labeling with markers for major cell types and NSPCs (nestin, Musashi‐1, NG2, 3CB2, BLBP). Mitotic profiles were investigated in parallel by BrdU labeling. After lesion, chemokines were induced in the ventrolateral white matter on IR‐, mRNA‐, and protein‐level. IR was generally more pronounced after severe lesions, with soaring increases of CCL2/CCR2 and continuous elevations of CCL3/CCR1. SDF‐1α and CXCR4 IR induction was focused on thoracic levels. Chemokines/‐receptors were co‐expressed with astroglial, oligodendroglial markers, nestin, 3CB2 and BLBP by cells morphologically resembling radial glia on DPO 7 to DPO 42, and NG2 or Musashi‐1 on DPO 2 and 7. In the white matter BrdU positive cells were significantly elevated after lesion compared with sham controls on all investigated time points peaking in the early time course on thoracic level: Here, chemokines were co‐expressed by subsets of BrdU‐labeled cells. These findings suggest an important role of chemokines/‐receptors in the subpial white matter NSPC niche after SCI. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Affymetrix GeneChip technology and quantitative real-time PCR (Q-PCR) were used to examine changes in gene expression in the adult murine substantia nigra pars compacta (SNc) following lentiviral glial cell line-derived neurotrophic factor (GDNF) delivery in adult striatum. We identified several genes that were upregulated after GDNF treatment. Among these, the gene encoding the transmembrane protein Delta-like 1 homologue (Dlk1) was upregulated with a greater than 4-fold increase in mRNA encoding this protein. Immunohistochemistry with a Dlk1-specific antibody confirmed the observed upregulation with increased positive staining of cell bodies in the SNc and fibers in the striatum. Analysis of the developmental regulation of Dlk1 in the murine ventral midbrain showed that the upregulation of Dlk1 mRNA correlated with the generation of tyrosine hydroxylase (TH)-positive neurons. Furthermore, Dlk1 expression was analyzed in MesC2.10 cells, which are derived from embryonic human mesencephalon and capable of undergoing differentiation into dopaminergic neurons. We detected upregulation of Dlk1 mRNA and protein under conditions where MesC2.10 cells differentiate into a dopaminergic phenotype (41.7+/-7.1% Dlk1+ cells). In contrast, control cultures subjected to default differentiation into non-dopaminergic neurons only expressed very few (3.7+/-1.3%) Dlk1-immunopositive cells. The expression of Dlk1 in MesC2.10 cells was specifically upregulated by the addition of GDNF. Thus, our data suggest that Dlk1 expression precedes the appearance of TH in mesencephalic cells and that levels of Dlk1 are regulated by GDNF.  相似文献   

14.
The lack of markers for astrocytes, particularly gray matter astrocytes, significantly hinders research into their development and physiological properties. We previously reported that fibroblast growth factor receptor 3 (Fgfr3) is expressed by radial precursors in the ventricular zone of the embryonic neural tube and subsequently by differentiated astrocytes in gray and white matter. Here, we describe an Fgfr3‐iCreERT2 phage artificial chromosome transgenic mouse line that allows efficient tamoxifen‐induced Cre recombination in Fgfr3‐expressing cells, including radial glial cells in the embryonic neural tube and both fibrous and protoplasmic astrocytes in the mature central nervous system. This mouse strain will therefore be useful for studies of normal astrocyte biology and their responses to CNS injury or disease. In addition, Fgfr3‐iCreERT2 drives Cre recombination in all neurosphere‐forming stem cells in the adult spinal cord and at least 90% of those in the adult forebrain subventricular zone. We made use of this to show that there is continuous accumulation of all major interneuron subtypes in the olfactory bulb (OB) from postnatal day 50 (P50) until at least P230 (∼8 months of age). It therefore seems likely that adult‐born interneurons integrate into existing circuitry and perform long‐term functions in the adult OB. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
The neural cell adhesion molecule (NCAM) is involved in development of the nervous system, in brain plasticity associated with learning and memory, and in neuronal regeneration. NCAM regulates these processes by influencing cell adhesion, cell migration, and neurite outgrowth. NCAM activates intracellular signaling upon homophilic NCAM binding, and this is a prerequisite for NCAM-stimulated neurite outgrowth. NCAM is synthesized in three main membrane-bound isoforms, NCAM-120, NCAM-140, and NCAM-180. Soluble forms of NCAM in blood and cerebrospinal fluid have also been found, although the functional significance of these forms remains unclear. In this report, we demonstrate that NCAM can be released from primary hippocampal neurons in culture. The release was enhanced by application of ATP and inhibited by the metalloproteinase inhibitor BB-3103. ATP also induced metalloproteinase-dependent release of all three major NCAM isoforms from NCAM-transfected fibroblastoid L-cells. In this model system, the extracellular ATP-binding site of NCAM was shown not to be necessary for ATP-induced NCAM release. Furthermore, inhibition of serine, cysteine, and aspartic proteinases could not prevent ATP-induced down-regulation of NCAM in L-cells, suggesting that NCAM is cleaved directly by a metalloproteinase. Aggregation of hippocampal neurons in culture was increased in the presence of the metalloproteinase inhibitor GM 6001, consistent with a metalloproteinase-dependent shedding of NCAM occurring in these cells. Moreover, NCAM-dependent neurite outgrowth was significantly reduced by application of GM 6001. Taken together, these results suggest that membrane-bound NCAM can be cleaved extracellularly by a metalloproteinase and that metalloproteinase-dependent shedding of NCAM regulates NCAM-mediated neurite outgrowth.  相似文献   

16.
Nrf2 plays a pivotal role in antioxidant response and anti‐inflammation after traumatic brain injury (TBI), and its deletion aggravates TBI‐induced brain damage. Previous studies have demonstrated that Nrf2 is activated post TBI, but dynamic changes in expression and cell type‐specific characteristics remain unclear. In this study, the Feeney weight‐drop contusion model was conducted to mimic TBI, and the ipsilateral cerebral cortex was collected at 1, 3, 7 and 14 days post TBI (dpi). Nrf2 protein levels were observed by western blot. Cell type‐specific localization of Nrf2 after TBI was detected at different time intervals by double immunofluorescence staining. NeuN, GFAP, IBA1 and NG2 were used as cell type‐specific markers to neurons, astrocytes, microglia and NG2 glia, respectively. After TBI, Nrf2 protein levels peaked at 1 dpi. Robust transient Nrf2 accumulation was co‐localized with neurons, which was predominant at 1 dpi. Continuous weak Nrf2 expression was detected in activated astrocytes, and the number of double positive cells peaked at 7 dpi. Inducible widespread immunostaining of Nrf2 was observed in the nucleus of the microglia, and the number of Nrf2+ microglia peaked at 7 dpi. In addition, we also explored colocalization of Nrf2 in NG2 glia, in which the percentage of Nrf2+ in NG2 glia reached a climax at 3 dpi. This study reveals that the accumulation of endogenous Nrf2 might mediate different pathophysical roles in neurons and glias after TBI, the cell‐type specific and time‐dependent expression provide insights to explain the roles of Nrf2 in different neural cells.  相似文献   

17.
Regulation of miRNA expression during neural cell specification   总被引:1,自引:0,他引:1  
MicroRNA (miRNA) are a newly recognized class of small, noncoding RNA molecules that participate in the developmental control of gene expression. We have studied the regulation of a set of highly expressed neural miRNA during mouse brain development. Temporal control is a characteristic of miRNA regulation in C. elegans and Drosophila, and is also prominent in the embryonic brain. We observed significant differences in the onset and magnitude of induction for individual miRNAs. Comparing expression in cultures of embryonic neurons and astrocytes we found marked lineage specificity for each of the miRNA in our study. Two of the most highly expressed miRNA in adult brain were preferentially expressed in neurons (mir-124, mir-128). In contrast, mir-23, a miRNA previously implicated in neural specification, was restricted to astrocytes. mir-26 and mir-29 were more strongly expressed in astrocytes than neurons, others were more evenly distributed (mir-9, mir-125). Lineage specificity was further explored using reporter constructs for two miRNA of particular interest (mir-125 and mir-128). miRNA-mediated suppression of both reporters was observed after transfection of the reporters into neurons but not astrocytes. miRNA were strongly induced during neural differentiation of embryonic stem cells, suggesting the validity of the stem cell model for studying miRNA regulation in neural development.  相似文献   

18.
The tuba1a gene encodes a neural-specific α-tubulin isoform whose expression is restricted to the developing and regenerating nervous system. By using zebrafish as a model system for studying CNS regeneration, we recently showed that retinal injury induces tuba1a gene expression in Müller glia that reentered the cell cycle. However, because of the transient nature of tuba1a gene expression during development and regeneration, it was not possible to trace the lineage of the tuba1a-expressing cells with a reporter directly under the control of the tuba1a promoter. To overcome this limitation, we generated tuba1a:CreER(T2) and β-actin2:loxP-mCherrry-loxP-GFP double transgenic fish that allowed us to label tuba1a-expressing cells conditionally and permanently via ligand-induced recombination. During development, recombination revealed transient tuba1a expression in not only neural progenitors but also cells that contribute to skeletal muscle, heart, and intestine. In the adult, recombination revealed tuba1a expression in brain, olfactory neurons, and sensory cells of the lateral line, but not in the retina. After retinal injury, recombination showed tuba1a expression in Müller glia that had reentered the cell cycle, and lineage tracing indicated that these cells are responsible for regenerating retinal neurons and glia. These results suggest that tuba1a-expressing progenitors contribute to multiple cell lineages during development and that tuba1a-expressing Müller glia are retinal progenitors in the adult.  相似文献   

19.
20.
Glial cells form part of the neural stem cell niche and express a wide variety of ion channels; however, the contribution of these channels to nervous system development is poorly understood. We explored the function of the Drosophila ClC-a chloride channel, since its mammalian ortholog CLCN2 is expressed in glial cells, and defective channel function results in leukodystrophies, which in humans are accompanied by cognitive impairment. We found that ClC-a was expressed in the niche in cortex glia, which are closely associated with neurogenic tissues. Characterization of loss-of-function ClC-a mutants revealed that these animals had smaller brains and widespread wiring defects. We showed that ClC-a is required in cortex glia for neurogenesis in neuroepithelia and neuroblasts, and identified defects in a neuroblast lineage that generates guidepost glial cells essential for photoreceptor axon guidance. We propose that glia-mediated ionic homeostasis could nonautonomously affect neurogenesis, and consequently, the correct assembly of neural circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号