首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nerve growth factor (NGF) promotes survival and function of basal forebrain cholinergic neurons. We studied NGF and choline acetyltransferase (ChAT) activity after partial quisqualic acid induced lesions of the basal forebrain in 3 and 27 months-old rats, in order to investigate whether NGF-related regeneration is disturbed in old age. 2 weeks post lesion, ChAT activity decreased by 25 to 32% in adult and old rats. 3 months post lesion, the ChAT deficit receded in adult rats, but remained unchanged in old rats. 2 weeks post lesion, NGF levels were reduced by 36 to 44%, but there was no significant difference between adult and old rats. 3 months post lesion, we found increased NGF levels by 44% in the posterior cortex of adult rats. These results indicate that the compensatory NGF increase in the posterior cortex after partial cholinergic lesion of the basal forebrain is slightly impaired in old age.  相似文献   

3.
4.
The nerve growth factor protein (NGF) has been demonstrated to affect neuronal development and maintenance of the differentiated state in certain neurons of the peripheral and central nervous system (CNS) of mammals. In the CNS, NGF has sparing effects on cholinergic neurons of the rodent basal forebrain (BF) following lesions where it selectively induces choline acetyltransferase (ChAT). NGF also induces ChAT in the areas to which BF provides afferents. In aged rats, there is a reduction in the NGF-binding capacity of sympathetic ganglia. Here, we wish to report that there is a decrease in the NGF-binding capacity of the hippocampus and basal forebrain of aged (26-month-old) rats as compared to 4-month-old controls but no change in NGF binding in cerebellum. In all instances, equilibrium binding dissociation constants did not differ significantly. Treatment of rats with acetyl-L-carnitine, reported to improve cognitive performance of aged rats, ameliorates these age-related deficits.  相似文献   

5.
Nerve growth factor (NGF) is a neuronotrophic protein. Its effects on developing peripheral sensory and sympathetic neurons have been extensively characterized, but it is not clear whether NGF plays a role during the development of central nervous system neurons. To address this point, we examined the effect of NGF on the activity of neurotransmitter enzymes in several brain regions. Intracerebroventricular injections of highly purified mouse NGF had a marked effect on the activity of choline acetyltransferase (ChAT), a selective marker of cholinergic neurons. NGF elicited prominent increases in ChAT activity in the basal forebrain of neonatal rats, including the septum and a region which contains neurons of the nucleus basalis and substantia innominata. NGF also increased ChAT activity in the hippocampus and neocortex, terminal regions for the fibers of basal forebrain cholinergic neurons. In analogy with the response of developing peripheral neurons, the NGF effect was shown to be selective for basal forebrain cholinergic cells and to be dose-dependent. Furthermore, septal neurons closely resembled sympathetic neurons in the time course of their response to NGF. These observations suggest that endogenous NGF does play a role in the development of basal forebrain cholinergic neurons.  相似文献   

6.
Cholinergic basal forebrain neurons (CBFNs) retrogradely transport neurotrophins released in the hippocampus and cortex as part of a general response to injury in a process that is impaired in the aged rodent and can be spared by the exogenous addition of pharmacological doses of nerve growth factor (NGF). This observation suggests that components of stress response signal transduction pathways in the aged CNS can be exogenously activated. The extent and mechanism of the endogenous stimulation of NGF in response to injury can be mimicked via treatment with 192 IgG-saporin of rat CNS, an immunolesion model. Here we report on the use of a conditioning lesion paradigm to determine if repeated partial immunolesions have a conditioning effect on the immunolesion-induced increases in NGF protein or decreases in choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity.We report that chronic repeated immunolesions, as used here, were not as effective as a one time equivalent immunolesion in terms of induced NGF protein increases or decreasing ChAT and AChE activity in the hippocampus and cortex. Thus, chronic lesions resulting in cholinergic impairment typical of the aged CNS may differ from acute toxic models as a result of desensitization due to a conditioning effect of chronic subthreshold lesioning events in the CNS.  相似文献   

7.
In the central nervous system (CNS), the presence of nerve growth factor (NGF) and its receptor, NGFR, in cholinergic neurons has been demonstrated. In this study we report that, after exposure to stress, there was a reduction in total binding of NGF in the hippocampus and basal forebrain of 3.5-month-old rats without significant changes in the frontal cortex or cerebellum. Chronic treatment with acetyl-l-carnitine (ALCAR), that prevents some age-related impairments of CNS, for 1.5 months, decreased NGF binding in hippocampus and basal forebrain but abolished the stress-related reduction of NGF binding observed in the hippocampus of untreated rats.  相似文献   

8.
During aging there is a progressive loss of neuronal function in the basal forebrain that results in cognitive impairment and cholinergic deficits. While altered neurotrophin (NT)-mediated signal transduction may account for some age-associated deficits, there are differences in the extent of NT responsiveness among different laboratory rat strains. Here we measured nerve growth factor (NGF) protein levels and fragmented DNA in the CNS, and basal and NGF-stimulated activity levels of the hypothalamus-pituitary-adrenocortical axis (HPAA) in 3-, 18-, and 30-month-old Fischer-344/Brown Norway rats. Our results show that while there is no age-associated differences in NGF protein levels, in aged Fischer-344/Brown Norway rats, there are increases in levels of immunoreactive fragmented DNA in the CNS and in adrenocortical responses to the peripheral administration of NGF. These data contribute to the characterization of the Fischer-344/Brown Norway F1 hybrid rat and provide baseline values useful for future studies on aged CNS.  相似文献   

9.
Nerve growth factor (NGF) was injected intraventricularly into aged (24 months) rats with unilateral lesions of the lateral fimbria. The activity of choline acetyltransferase (ChAT) was determined in the septum and hippocampus from the normal unlesioned rats, lesioned and cytochrome c-treated rats (controls), and lesioned and NGF-treated rats at different times after the lesion. NGF-injection for 15 days after the lesion resulted in an increase of the ChAT activity in both the contralateral hippocampus and the entire septum, to about 130% of that in the normal animals, but resulted in a slight increase in the ipsilateral lesioned hippocampus, when compared to the activity in the ipsilateral side of the cytochrome c-treated controls. NGF-injection for 30 days after the lesion resulted in a 48% increase of the ChAT activity in the ipsilateral hippocampus as compared to cytochrome c-treated controls, but failed to result in a significant increase in the contralateral hippocampus. These findings indicate that atrophic cholinergic neurons in aged animals are similarly responsive to NGF treatment, like these in the young animals. Moreover, these findings suggest that the responses of basal forebrain cholinergic neurons to NGF treatment varies with time after the lesion and imply that the NGF administration can promote the collateral sprouting from spared cholinergic fibers after the lesion in the aged forebrain.  相似文献   

10.
Trophic factors such as nerve growth factor (NGF) are thought to support survival, differentiation and maintenance of neurons. Recent results indicate that NGF produced in cortical and hippocampal areas is required for the function of cholinergic neurons in the basal forebrain. With the use of enzyme immunoassay and RNA blot hybridization we studied the NGF protein and NGF mRNA, respectively, in regions of the brain innervated by basal forebrain cholinergic neurons in adult and aged rats. Levels of NGF protein were decreased by 40% in hippocampus of aged (28 months) Fischer 344 rats compared with adults (6 months), whereas no alterations were observed in cerebral cortex. Moreover, a reduction by 50% in the NGF mRNA was found in samples of the aged forebrain (cerebral cortex, hippocampus, basal forebrain and hypothalamus) compared to the adult. NGF deficiencies may thus account for the loss of cholinergic neurons in the basal forebrain generally found to accompany normal aging and resulting in altered cognitive functions.  相似文献   

11.
Nerve growth factor (NGF), a well-characterized target-derived growth factor, has been postulated to promote neuronal differentiation and survival of the basal forebrain cholinergic neurons. In the present paper, we demonstrate that a developmental change in NGF action occurs in postnatal rat basal forebrain cholinergic neurons in culture. Firstly, NGF acts as maturation factor by increasing choline acetyltransferase (ChAT) activity and acts later as a survival factor. In dissociated cell cultures of septal neurons from early postnatal (P1-4) rats, ChAT activities were increased by the addition of NGF. That is, ChAT activities in P1 septal cells cultured for 7 days was increased 4-fold in the presence of NGF at a concentration of 100 ng/ml. However, the number of the acetylcholinesterase (AChE)-positive neurons was not significantly different between these groups. In contrast, septal neurons from P8 to P14 rats showed different responses to NGF. Although the P14 septal neurons in culture for 7 days without NGF lost about half of the ChAT activity during a 7-day cultivation, cells cultured with NGF retained the activity at the initial level. The number of AChE-positive neurons counted in cultures with NGF was much greater than the number without NGF. These results suggest that, during the early postnatal days, the action of NGF on the septal cholinergic neurons in culture changes from induction of ChAT activity to the promotion of cholinergic neuronal cell survival. During this developmental period in vivo, septal neurons are terminating their projections to the hippocampal formation. Similar NGF-regulated changes in cholinergic neurons were observed in cultured postnatal neurons from vertical limb of diagonal band. An analogy has been pointed out between the neuronal death of the basal forebrain cholinergic neurons and a similar neuronal death in senile dementia, especially Alzheimer's type. The work reported here might present a possibility that NGF could play a role in preventing the loss of the basal forebrain cholinergic neurons in this disease.  相似文献   

12.
Recent studies suggest that women are at greater risk for Alzheimer's disease than men and that estrogen replacement can help to reduce the risk and severity of Alzheimer's-related dementia in postmenopausal women. We have hypothesized that the increased risk for Alzheimer's-related dementia is due, in part, to the loss of ovarian function in postmenopausal women and to the effects that decreased levels of ovarian hormones have on basal forebrain cholinergic function. In the present study, the effects of aging and ovariectomy on cholinergic neurons in the rat basal forebrain were examined to determine (1) whether aging differentially affects cholinergic neurons in the basal forebrain of males vs females, and (2) whether long-term loss of ovarian function produces deficits in basal forebrain cholinergic function beyond those associated with aging and sex. In part I of the study, gonadally intact male and female rats were sacrificed at 13, 19, and 25 months of age and the effects of aging on cholinergic neurons in the medial septum (MS) and nucleus basalis magnocellularis (NBM) were compared. In part II of the study, female rats were ovariectomized at 13 months of age and then sacrificed 3 and 6 months later along with gonadally intact, age-matched controls. Adjacent sections through the MS and NBM were processed for either immunocytochemical detection of choline acetyltransferase (ChAT) and p75NTR-like immunoreactivity or forin situhybridization detection and quantification of ChAT and trkA mRNA. Results from part I revealed no significant effects of age on the relative size or density of cholinergic neurons in the MS and NBM of gonadally intact animals. Likewise, no significant effects on the relative numbers of cholinergic neurons expressing p75NTR protein were detected. However, a significant decrease in trkA mRNA was detected in the MS of gonadally intact females, but not males, between 13 and 25 months of age. No significant effects of aging on ChAT mRNA were detected. Results from part II revealed significant decreases in both ChAT and trkA mRNA in the MS and NBM of female rats sacrificed 6 months, but not 3 months, following ovariectomy relative to age-matched, gonadally intact controls. Short-term estrogen replacement initiated 6 months following ovariectomy and administered for 3 days prior to sacrifice partially restored ChAT mRNA levels in the MS and trkA mRNA levels in the NBM. These findings suggest that ovarian hormones play a role in maintaining normal levels of ChAT and trkA expression in the MS and NBM. The fact that ChAT mRNA was decreased in the MS and NBM at 6 months following ovariectomy suggests that long-term loss of ovarian function produces a decrease in the functional status of basal forebrain cholinergic neurons projecting to the hippocampus and cortex. In addition, we hypothesize that the decreases in trkA mRNA detected both in the MS as a function of aging, and in the MS and NBM in response to ovariectomy, reflect decreases in the production of high affinity nerve growth factor (NGF) receptors, and a decrease in the responsiveness of the cholinergic neurons to endogenous NGF. This, in turn, may increase the susceptibility of the cholinergic neurons to the effects of aging and disease and thereby contribute to basal forebrain cholinergic decline. We conclude that long-term loss of ovarian function combined with aging has a negative impact on basal forebrain cholinergic neurons. These effects may contribute to the risk and severity of cognitive decline associated with aging and Alzheimer's disease in postmenopausal women.  相似文献   

13.
Lesions of basal forebrain cholinergic neurons projecting to cerebral cortex and hippocampus have recently been exploited as animal models for some of the neurochemical and behavioral deficits of Alzheimer's disease. We have observed that electrolytic lesions of cholinergic basal forebrain nuclei can lead to morphological plasticity in adult mouse cortex. In the present study, the acute and chronic sequelae of basal forebrain electrolytic lesion on cortical synaptic chemistry have been examined. In addition to choline acetyltransferase (ChAT) activity, levels of norepinephrine and of serotonin were reduced within a week after the lesion. Recovery of ChAT activity and of serotonin levels began within a month after the lesion. Serotonin type 2 receptor binding exhibited an acute reduction after the lesion in ipsilateral cortex, followed later by a chronic bilateral decrease. No significant changes in beta-adrenergic receptors were apparent at any time after the lesion despite a permanent and bilateral reduction of norepinephrine levels after the lesion. The potential significance of these results for cortical plasticity regulation and Alzheimer's disease is discussed.  相似文献   

14.
In previous experiments examining the stimulatory effect of intracerebroventricular (icv) NGF treatment on basal forebrain choline acetyltransferase (ChAT) activity, many of the rats treated with the maximally effective dose of NGF appeared gaunt compared to the vehicle-treated control animals. The present experiments determined that icv infusion of NGF at a dose of 1.2 micrograms/day causes a significant reduction in food consumption during the entire period of treatment compared to untreated and vehicle-treated animals. Male rats infused with NGF lost an average of about 30 g of body wt during the first week after the start of infusion and did not gain appreciable weight during the second week of NGF treatment. The hypophagic effect of NGF is dose-dependent, centrally mediated, and reversible. There is no correlation between the stimulatory effect of NGF on basal forebrain ChAT and the inhibitory effect of NGF on weight gain. A therapeutic dose of NGF for Alzheimer's patients comparable to the rat dose for maximally stimulating central cholinergic neurons would approach 1 mg/day. If such therapy is applied, the potential exits for induction of hypophagia as a side effect of the NGF administration.  相似文献   

15.
Nerve growth factor (NGF) has recently been implicated as a trophic agent in the survival and maintenance of basal forebrain cholinergic neurons. To test the hypothesis that NGF may play a role in the age-related degeneration of basal forebrain neurons and decline of cerebral cholinergic function, we have used a monoclonal antibody to the NGF receptor, 192 IgG, to immunocytochemically visualize and compare rat basal forebrain neurons responsive to NGF in aged (30 months) and young adult (10 months) rats. In a subpopulation of aged rats, NGF receptor-immunoreactive cells in the basal forebrain appear vacoulated and shrunken, and the neuropil staining is markedly reduced. While no substantial decline in cell density is apparent in Nissl-stained sections, the number of NGF receptor-positive cell profiles within the vertical limb of diagonal band nuclei is reduced by an average of 32% in aged rats. Marked reduction in the expression of NGF receptors in aged rats may signify loss of capacity of the basal forebrain neurons to bind and transport NGF from their terminals in the hippocampus and cortex, subsequent decrease in NGF delivered to the cell bodies, and eventual cellular dysfunction and death of neurons in aging.  相似文献   

16.
NGF, a trophic polypeptide, is necessary for the normal development and survival of certain populations of neurons in the CNS and PNS. In the CNS, cholinergic neurons of the basal forebrain magnocellular complex (BFMC) are prominent targets of NGF. During rat development, NGF increases the activity of ChAT in these neurons. In adult rats with experimental injury of axons in the fimbria-fornix, NGF prevents degenerative changes in axotomized cholinergic BFMC neurons in the medial septal nucleus (MSN). Because the amino acid sequences of NGF and its receptor (NGF-R) are highly conserved across species, we hypothesized that mouse NGF would also prevent degeneration of cholinergic BFMC neurons in nonhuman primates. Therefore, the present study was designed to test whether fimbria-fornix lesions result in retrograde degenerative changes in basal forebrain cholinergic neurons in macaques, whether these changes are prevented by mouse NGF, and whether the protective effect of NGF is selective for cholinergic neurons of the basal forebrain. Following unilateral complete transection of the fornix, animals were allowed to survive for 2 weeks, during which time half of the subjects received intraventricular NGF in vehicle and the other half received vehicle alone. In animals receiving vehicle alone, there was a 55% reduction in the number of ChAT-immunoreactive cell bodies within the MSN ipsilateral to the lesion; loss of immunoreactive somata was more severe in caudal planes of the MSN. Remaining immunoreactive neurons appeared smaller than those in control, unoperated animals. In Nissl stains, there was no apparent loss of basophilic profiles in the MSN, but cells showed reduced size and intensity of basophilia. Treatment with NGF almost completely prevented reductions in the number and size of cholinergic neurons and had a significant general effect in preventing atrophy in basophilic magnocellular neurons of the MSN, though some basophilic neurons in the MSN did not appear to respond to NGF. Adjacent 7-microns-thick sections stained with ChAT and NGF-R immunocytochemistry revealed that these markers are strictly colocalized in individual neurons in the MSN in controls and in both groups of experimental animals. Thus, mouse NGF profoundly influences the process of axotomy-induced retrograde degeneration in cholinergic BFMC neurons in primates. The in vivo effectiveness of mouse NGF on primate BFMC neurons suggests that mouse or human recombinant NGF may be useful in ameliorating the ACh-dependent, age-associated memory impairments that occur in nonhuman primates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
A monoclonal antibody to the rat nerve growth factor (NGF) receptor, 192 IgG, accumulates bilaterally and specifically in cholinergic basal forebrain (CBF) cells following intraventricular injection. An immunotoxin composed of 192 IgG linked to saporin (192 IgG-saporin) has been shown to destroy cholinergic neurons in the basal forebrain. We sought to determine if intraventricular 192 IgG-saporin affected choline acetyltransferase (ChAT) enzyme activity in the CBF terminal projection fields. ChAT assays from 192 IgG-saporin-treated animals showed significant time-dependent decreases in ChAT activity in the neocortex, olfactory bulb and hippocampus, compared to PBS- or OKT1-saporin-injected controls. ChAT and tyrosine hydroxylase activity in the striatum was always unchanged by 192 IgG-saporin. ChAT immunohistochemistry was confirmative of major cell loss in the CBF, while other cholinergic nuclei appeared unremarkable. The data provide further evidence of the selectivity of 192 IgG-saporin in abolishing cholinergic, NGF receptor-positive CNS neurons.  相似文献   

18.
Previous studies have demonstrated that the viability of developing cholinergic basal forebrain neurons is dependent upon the integrity of neurotrophin-secreting target cells. In the present study, we examined whether infusions of nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) could prevent the loss of cholinergic septal/diagonal band neurons following excitotoxic lesions of their target neurons within the hippocampus. Postnatal Day 10 rat pups received unilateral intrahippocampal injections of ibotenic acid. Rats then received intracerebroventricular (icv) injections of nerve growth factor (30 μg/injection), brain-derived neurotrophic factor (60 μg/injection), or saline immediately following the lesion and continuing every third day for 27 days. Both saline- and BDNF-treated rats displayed a significant loss of septal/diagonal band neurons expressing the protein and mRNA for choline acetyltransferase (ChAT) and p75 low-affinity nerve growth factor receptor ipsilateral to the lesion. The magnitude of this loss was significantly attenuated in BDNF-treated rats. Many remaining neurons were atrophic with stunted dendritic processes. In contrast, NGF treatment completely rescued these cells and prevented the shrinkage of remaining cholinergic septal neurons. In addition, both NGF and BDNF induced a sprouting of cholinergic processes within the residual hippocampal remnant ipsilateral to the infusions. The present study demonstrates that icv injections of NGF, and to a lesser extent BDNF, prevent the loss of developing basal forebrain neurons which occurs following removal of normal target cells. Diffusion studies revealed relatively poor penetration of BDNF into brain parenchyma. Thus, it remains to be determined whether the failure of BDNF to provide optimal trophic support for these cells is biological or due to restricted bioavailability of this trophic factor.  相似文献   

19.
Intracerebroventricular (ICV) injection of streptozotocin (STZ) has been reported to impair cerebral glucose utilization and energy metabolism (Nitsch and Hoyer: Neurosci Lett, 128:199-202, 1991) and also to prejudice passive avoidance learning in adult rats (Mayer et al.: Brain Res 532:95-100, 1990). It is well established that the forebrain cholinergic system, whose integrity is essential for learning and memory functions, depends on the target-derived retrograde messenger nerve growth factor (NGF). Therefore, we measured NGF and choline acetyltransferase (ChAT) activity levels in the forebrain cholinergic system in adult rats that had received a single injection of either STZ or artificial cerebrospinal fluid into the left ventricle 1 or 3 weeks prior to sacrifice. One week after ICV STZ treatment, NGF content was significantly decreased (-32%) in the septal region, where NGF-responsive cell bodies are located and NGF exerts its neurotrophic action after retrograde transport from NGF-producing targets. In contrast, NGF levels in the cortex and hippocampus, which are target regions for the basal forebrain cholinergic neurons, and in the brainstem and cerebellum were increased (+12% to +47%) within 3 weeks after ICV STZ treatment. The alterations in NGF levels were not related to changes in ChAT activity that decreased in the hippocampus by only 15%. This might be due to masking effects exerted by compensatory NGF-mediated stimulation of ChAT activity in remaining functional neurons. It is suggested that impaired behavior which has been observed after STZ-induced impairment of cerebral glucose and energy metabolism may be at least partially related to a diminished capacity of central NGF-responsive neurons to bind and/or transport NGF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Nerve growth factor (NGF) plays a crucial role in synaptic plasticity during brain development and adulthood by activating a dual receptor system composed of TrkA and p75 (p75NTR) receptors. Exogenous NGF modulates the expression of both receptors. Little is known about the ability of endogenous NGF to regulate the expression of these receptors in basal forebrain cholinergic terminals. The ability of glucocorticoids to increase NGF expression in the hippocampus prompted us to investigate whether the synthetic glucocorticoid dexamethasone (DEX) increases TrkA and p75NTR expression in NGF-target cholinergic neurons in developing rats. We first examined the effect of DEX on NGF mRNA by in situ hybridization. DEX given systemically (0.5 mg/kg, sc) for 1 week to 7-day-old rats elicited an increase in NGF mRNA levels in the dentate gyrus of the hippocampus and superficial layers II and III of the cerebral cortex. Immunohistochemical analysis of p75NTR and TrkA levels revealed a dramatic increase in p75NTR immunoreactivity (IR) in both basal forebrain and hippocampus and TrkA IR in the hippocampus. Interestingly, in DEX-treated rats more axonal terminals were immunopositive for p75NTR in the hippocampus and cortex, suggesting an increase in p75NTR IR in cell bodies as well as in terminals. Our data indicate that the endogenously produced NGF elicits biological changes similar to those of the exogenously delivered NGF. We suggest that glucocorticoids might regulate and coordinate cholinergic neuronal maturation by increasing the biosynthesis of NGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号