首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inflammatory response initiated after spinal cord injury (SCI) is characterized by the accumulation of macrophages at the impact site. Monocyte chemoattractant protein-1 (MCP-1) is a strong candidate for mediating chemotaxis of monocytes to the injured nervous system. To help in defining the role of MCP-1 in inflammation after SCI, we evaluated the time course of macrophage accumulation for 2 weeks following a midthoracic spinal cord contusion injury in mice lacking CCR2, a principal receptor for MCP-1. Mice with a deletion of CCR2 resulted in significantly reduced Mac-1 immunoreactivity restricted to the lesion epicenter at 7 days postinjury. The regions devoid of Mac-1 immunoreactivity corresponded to areas of reduced myelin degradation at this time. By 14 days postinjury, however, there were no differences in Mac-1 staining between CCR2 (+/+) and CCR2 (-/-) mice. Analyses of mRNA levels by RNase protection assay (RPA) revealed increases in MCP-1 as well as MCP-3 and MIP-2 mRNA at 1 day postinjury compared with 7 day postinjury. There were no differences in chemokine expression between CCR2-deficient mice and wild-type littermate controls. The CCR2-deficient mice also exhibited reduced expression of mRNA for chemokine receptors CCR1 and CCR5. Together, these results indicate that chemokines acting through CCR2 contribute to the early recruitment of monocytes to the lesion epicenter following SCI.  相似文献   

2.
CNS injury stimulates the expression of several proinflammatory cytokines and chemokines, some of which including MCP-1 (also known as CCL2), KC (CXCL1), and MIP-2 (CXCL2) act to recruit Gr-1+ leukocytes at lesion sites. While earlier studies have reported that neutrophils and monocytes/macrophages contribute to secondary tissue loss after spinal cord injury (SCI), recent work has shown that depletion of Gr-1+ leukocytes compromised tissue healing and worsened functional recovery. Here, we demonstrate that astrocytes distributed throughout the spinal cord initially contribute to early neuroinflammation by rapidly synthesizing MCP-1, KC, and MIP-2, from 3 up to 12 h post-SCI. Chemokine expression by astrocytes was followed by the infiltration of blood-derived immune cells, such as type I “inflammatory” monocytes and neutrophils, into the lesion site and nearby damaged areas. Interestingly, astrocytes from mice deficient in MyD88 signaling produced significantly less MCP-1 and MIP-2 and were unable to synthesize KC. Analysis of the contribution of MyD88-dependent receptors revealed that the astrocytic expression of MCP-1, KC, and MIP-2 was mediated by the IL-1 receptor (IL-1R1), and not by TLR2 or TLR4. Flow cytometry analysis of cells recovered from the spinal cord of MyD88- and IL-1R1-knockout mice confirmed the presence of significantly fewer type I “inflammatory” monocytes and the almost complete absence of neutrophils at 12 h and 4 days post-SCI. Together, these results indicate that MyD88/IL-1R1 signals regulate the entry of neutrophils and, to a lesser extent, type I “inflammatory” monocytes at sites of SCI.  相似文献   

3.
4.
Spinal cord injury (SCI) triggers a robust inflammatory response that contributes in part to the secondary degeneration of spared tissue. Here, we use flow cytometry to quantify the inflammatory response after SCI. Besides its objective evaluation, flow cytometry allows for levels of particular markers to be documented that further aid in the identification of cellular subsets. Analyses of blood from SCI mice for CD45 (common leukocyte antigen), CD11b (complement receptor-3), Gr-1 (neutrophil/monocyte marker), and CD3 (T-cell marker) revealed a marked increase in circulating neutrophils (CD45(high):Gr-1(high)) at 12 hr compared with controls. Monocyte density in blood increased at 24 hr, and in contrast, lymphocyte numbers were significantly decreased. Mirroring the early increase in neutrophils within the blood, flow analysis of the spinal cord lesion site revealed a significant (P < 0.01) and maintained increase in blood-derived leukocytes (CD45(high):CD11b(high)) from 12 to 96 hr compared with sham-injured and naive controls. Importantly, this technique clearly distinguishes blood-derived neutrophils (CD45:Gr-1(high):F4/80(negative)) and monocyte/macrophages (CD45(high)) from resident microglia (CD45(low)) and revealed that the majority of the blood-derived infiltrate were neutrophils. Our results highlight an assumed, but previously uncharacterized, marked and transient increase in leukocyte populations in blood early after SCI followed by the orchestrated invasion of neutrophils and monocytes into the injured cord. In contrast to mobilization of neutrophils, SCI induces lymphopenia that may contribute negatively to the overall outcome after spinal cord trauma.  相似文献   

5.
The accumulation of inflammatory cells in the lesion of a spinal cord injury (SCI) enhances secondary damage, resulting in further neurological impairment. High-dose methylprednisolone (MP) treatment is the only accepted treatment for inflammation secondary to human SCI but is minimally effective. Using a rat SCI model, we devised an anti-inflammatory treatment to block the infiltration of neutrophils and hematogenous monocyte/macrophages over the first 2 days postinjury by targeting the CD11dCD18 integrin. Anti-CD11d mAb administration following SCI effectively reduced neutrophil and macrophage infiltrate into lesions by 70% and 36%, respectively, over the first 72 h post-SCI. MP also reduced neutrophil and macrophage infiltrate by 60% and 28%, respectively, but by different mechanisms. The immunosuppression caused by anti-CD11d treatment was not sustained, as inflammatory cell numbers were not different from those observed in untreated SCI control animals at 7 days postinjury. In contrast, in MP-treated animals, the number of macrophages was still suppressed in the lesion while neutrophil numbers were significantly increased. These results suggest that anti-CD11d mAb treatment following SCI will minimize the destructive actions associated with early, uncontrolled leukocyte infiltration into the lesion while permitting the positive wound healing effects of macrophages at later time points.  相似文献   

6.
The acute inflammatory response that follows spinal cord injury (SCI) contributes to secondary injury that results in the expansion of the lesion and further loss of neurologic function. A cascade of receptor-mediated signaling events after SCI leads to activation of innate immune responses including the migration of microglia and active recruitment of circulating leukocytes. Because conventional techniques do not always distinguish macrophages derived from CNS-resident microglia from blood-derived monocytes, the role that each macrophage type performs cannot be assessed unambiguously in these processes. We demonstrate that, in the normal and spinal cord-injured lys-EGFP-ki transgenic mouse, enhanced green fluorescent protein (EGFP) is expressed only in mature hematopoietic granulomyelomonocytic cells and not in microglia. This allowed us to assess the temporal and spatial relationships between microglia-derived and hematogenous macrophages as well as neutrophils during a period of 6 weeks after clip compression SCI. Within the lesion, EGFP-positive monocyte-derived macrophages were found at the epicenter surrounded by EGFP-negative-activated microglia and microglia-derived macrophages. Neutrophils were not present when EGFP-positive monocyte-derived macrophages were depleted, indicating that neutrophil persistence in the lesion depended on the presence of these monocytes. Thus, these 2 distinct macrophage populations can be independently identified and tracked, thereby allowing their roles in acute and chronic stages of SCI-associated inflammation to be defined.  相似文献   

7.
The inflammatory response that ensues during the initial 48 to 72 h after spinal cord injury causes considerable secondary damage to neurons and glia. Infiltration of proinflammatory-activated neutrophils and monocytes/macrophages into the cord contributes to spinal cord injury-associated secondary damage. beta2 integrins play an essential role in leukocyte trafficking and activation and arbitrate cell-cell interactions during inflammation. The beta2 integrin, alphaDbeta2, is expressed on monocytes/macrophages and neutrophils and binds to vascular adhesion molecule-1 (VCAM-1). The increased expression of VCAM-1 during central nervous system (CNS) inflammation likely contributes to leukocyte extravasation into the CNS. Accordingly, blocking the interaction between alphaDbeta2 and VCAM-1 may attenuate the inflammatory response at the SCI site. We investigated whether the administration of monoclonal antibodies (mAbs) specific for the rat alphaD subunit would reduce the inflammatory response after a spinal cord transection injury in rats. At a 1 mg/kg dose two of three anti-alphaD mAbs caused a significant ( approximately 65%) reduction in the number of macrophages at the injury site and one anti-alphaD mAb led to a approximately 43% reduction in the number of neutrophils at the SCI site. Thus, our results support the concept that the alphaDbeta2 integrins play an important role in the trafficking of leukocytes to a site of central nervous system inflammation. This study also offers preliminary evidence that anti-alphaD mAbs can reduce the extravasation of macrophages and, to a lesser extent, neutrophils, to the SCI site.  相似文献   

8.
Traumatic spinal cord injury (SCI) triggers inflammatory reactions in which various types of cells and cytokines are involved. Several proinflammatory cytokines are up‐regulated after SCI and play crucial roles in determining the extent of secondary tissue damage. However, relatively little is known about antiinflammatory cytokines and their roles in spinal cord trauma. Recent studies have shown that an antiinflammatory cytokine, interleukin‐4 (IL‐4), is expressed and exerts various modulatory effects in CNS inflammation. We found in the present study that IL‐4 was highly expressed at 24 hr after contusive SCI in rats and declined thereafter, with concurrent up‐regulation of IL‐4 receptor subunit IL‐4α. The majority of IL‐4‐producing cells were myeloperoxidase‐positive neutrophils. Injection of neutralizing antibody against IL‐4 into the contused spinal cord did not significantly affect the expression levels of proinflammatory cytokines such as IL‐1β, IL‐6, and tumor necrosis factor‐α or other antiinflammatory cytokines such as IL‐10 and transforming growth factor‐β. Instead, attenuation of IL‐4 activity led to a marked increase in the extent of ED1‐positive macrophage activation along the rostrocaudal extent at 7 days after injury. The enhanced macrophage activation was preceded by an increase in the level of monocyte chemoattractant protein‐1 (MCP‐1/CCL2). Finally, IL‐4 neutralization resulted in more extensive cavitation at 4 weeks after injury. These results suggest that endogenous expression of antiinflammatory cytokine IL‐4 regulates the extent of acute macrophage activation and confines the ensuing secondary cavity formation after spinal cord trauma. © 2010 Wiley‐Liss, Inc  相似文献   

9.
Spinal cord injury (SCI) is followed by a secondary degenerative process that includes cell death. We have previously demonstrated that the chemokine CXCL10 is up-regulated following SCI and plays a critical role in T-lymphocyte recruitment to sites of injury and inhibition of angiogenesis; antibody-mediated functional blockade of CXCL10 reduced inflammation while enhancing angiogenesis. We hypothesized, based on these findings, that the injury environment established by anti-CXCL10 antibody treatment would support greater survival of neurons and enhance axon sprouting compared with the untreated, injured spinal cord. Here, we document gene array and histopathological data to support our hypothesis. Gene array analysis of treated and untreated tissue from spinal cord-injured animals revealed eight apoptosis-related genes with significant expression changes at 3 days postinjury. In support of these data, quantification of TUNEL-positive cells at 3 days postinjury indicated a 75% reduction in the number of dying cells in treated animals compared with untreated animals. Gene array analysis of treated and untreated tissue also revealed six central nervous system growth-related genes with significant expression changes in the brainstem at 14 days postinjury. In support of these data, quantification of anterograde-labeled corticospinal tract fibers indicated a 60-70% increase in axon sprouting caudal to the injury site in treated animals compared with untreated animals. These findings indicate that anti-CXCL10 antibody treatment provides an environment that reduces apoptosis and increases axon sprouting following injury to the adult spinal cord.  相似文献   

10.
Monocyte chemoattractant protein-1 (MCP-1) is a member of the CC chemokine family responsible for the recruitment of T cells that have been found during inflammation of the spinal cord in experimental autoimmune encephalomyelitis (EAE) in Lewis rats immunized with myelin basic protein (MBP). Lewis rats injected with MBP also developed anterior uveitis (AU), which coincided with the onset of EAE. In the present studies, we examined the expression and distribution of MCP-1 in the eye and spinal cord during disease and compared it to the expression of Th1 cell type cytokines. Initially, MCP-1 expression was detected at the preclinical phase in the iris/ciliary body and lumbar spinal cord and increased during the course of EAE/AU. Mononuclear infiltrating cells and endothelial cells and astrocytes of the CNS could be identified as a source of MCP-1 by in situ hybridization. Kinetics of expression of Th1 characteristic cytokines such as IL-2 and IFNγ was in agreement with the expression of MCP-1 chemokine. Moreover, induction of the gene expression of MCP-1 seemed to occur earlier than that of MIP-2, and it correlated with increasing disease severity. MCP-1 seems to contribute to the initial recruitment of inflammatory cells into both the tissues of the eye and CNS over the course of disease. J. Neurosci. Res. 50:531–538, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The infiltration of monocytes into the lesioned site is a key event in the inflammatory response after spinal cord injury (SCI). We hypothesized that the molecular events governing the infiltration of monocytes into the injured cord involve cooperativity between the upregulation of the chemoattractant stromal cell-derived factor-1 (SDF-1)/CXCL12 in the injured cord and matrix metalloproteinase-9 (MMP-9/gelatinase B), expressed by infiltrating monocytes. SDF-1 and its receptor CXCR4 mRNAs were upregulated in the injured cord, while macrophages immunoexpressed CXCR4. When mice, transplanted with bone marrow cells from green fluorescent protein (GFP) transgenic mice, were subjected to SCI, GFP+ monocytes infiltrated the cord and displayed gelatinolytic activity. In vitro studies confirmed that SDF-1α, acting through CXCR4, expressed on bone marrow-derived macrophages, upregulated MMP-9 and stimulated MMP-9-dependent transmigration across endothelial cell monolayers by 2.6-fold. There was a reduction in F4/80+ macrophages in spinal cord-injured MMP-9 knock-out mice (by 36%) or wild-type mice, treated with the broad-spectrum MMP inhibitor GM6001 (by 30%). Mice were adoptively transferred with myeloid cells and treated with the MMP-9/-2 inhibitor SB-3CT, the CXCR4 antagonist AMD3100, or a combination of both drugs. While either drug resulted in a 28-30% reduction of infiltrated myeloid cells, the combined treatment resulted in a 45% reduction, suggesting that SDF-1 and MMP-9 function independently to promote the trafficking of myeloid cells into the injured cord. Collectively, these observations suggest a synergistic partnership between MMP-9 and SDF-1 in facilitating transmigration of monocytes into the injured spinal cord.  相似文献   

12.
The role of tumor necrosis factor-α (TNF-α) after spinal cord injury (SCI) is well characterized in the cord, but the impact of this inflammatory process on supraspinal levels is unknown. This study examines TNF-α mRNA and protein levels in the brains and spinal cords of mice after SCI. Mice received intraspinal injections of quisqualic acid (QUIS) to create an excitotoxic injury that is known to result in pain behaviors. An ELISA determined serum levels of TNF-α, whereas real-time PCR and Western blot analysis were used to determine mRNA and protein levels, respectively, at 3, 6, 12, 24, 48, 72 h, or 14 d postinjury. No difference existed in serum TNF-α levels between sham- and QUIS-injected animals. TNF-α mRNA in the cord was increased at 3, 6, 12, and 24 h in QUIS-injected animals relative to shams. TNF-α protein was elevated at 12 and 48 h postinjury. TNF-α mRNA levels in the brain were elevated at 12 and 24 h, with elevated protein levels at 6 h. Animals that developed pain behaviors had increased levels of TNF-α mRNA in the brain. Excitotoxic SCI results in altered TNF-α mRNA and protein levels in the cords and brains of mice within 6 h of injury. These changes likely contribute to the pathogenesis of injury within the cord. The role of TNF-α in the brain postinjury has not been defined but might contribute to the development of pain post-SCI.  相似文献   

13.
The role of tumor necrosis factor-α (TNF-α) after spinal cord injury (SCI) is well characterized in the cord, but the impact of this inflammatory process on supraspinal levels is unknown. This study examines TNF-α mRNA and protein levels in the brains and spinal cords of mice after SCI. Mice received intraspinal injections of quisqualic acid (QUIS) to create an excitotoxic injury that is known to result in pain behaviors. An ELISA determined serum levels of TNF-α, whereas real-time PCR and Western blot analysis were used to determine mRNA and protein levels, respectively, at 3, 6, 12, 24, 48, 72 h, or 14 d postinjury. No difference existed in serum TNF-α levels between sham- and QUIS-injected animals. TNF-α mRNA in the cord was increased at 3, 6, 12, and 24 h in QUIS-injected animals relative to shams. TNF-α protein was elevated at 12 and 48 h postinjury. TNF-α mRNA levels in the brain were elevated at 12 and 24 h, with elevated protein levels at 6 h. Animals that developed pain behaviors had increased levels of TNF-α mRNA in the brain. Excitotoxic SCI results in altered TNF-α mRNA and protein levels in the cords and brains of mice within 6 h of injury. These changes likely contribute to the pathogenesis of injury within the cord. The role of TNF-α in the brain postinjury has not been defined but might contribute to the development of pain post-SCI.  相似文献   

14.
Following injury to the peripheral nervous system, circulating monocytes/macrophages are recruited to the damaged tissue, where they play vital roles during both nerve degeneration and subsequent regeneration. Monocyte chemoattractant protein-1 (MCP-1), a member of the C-C or β-chemokine family, is a powerful leukocyte recruitment/activation factor that is relatively specific for monocytes/macrophages. Because these are the predominant leukocyte type recruited by injured nerve, we hypothesized that up-regulation of MCP-1 expression is involved in recruitment of these cells. Indeed, assay of steady-state levels of MCP-1 mRNA in rat sciatic nerve during tellurium-induced primary demyelination indicated up-regulation of this chemokine with a peak after 3 days of tellurium exposure, preceding the peak of accumulation of phagocytic macrophages (assayed as lysozyme mRNA levels) by 6 days. Increasing levels of MCP-1 mRNA expression, induced by increasing levels of tellurium exposure, resulted in corresponding increases in subsequent recruitment of macrophages. In situ hybridization suggested that MCP-1 mRNA was localized in Schwann cells. No expression of MIP-2, which is a C-X-C or α-chemokine that is specific for recruitment of neutrophils, was detected, consistent with the lack of recruitment of significant numbers of these cells. In addition, we also investigated the response seen following nerve transection (axonal degeneration and secondary demyelination with no subsequent regeneration) and nerve crush (degeneration followed by regeneration). In these latter two nerve injury models, there was also a marked, early up-regulation of MCP-1 mRNA, with a time course that is compatible with a role for this chemokine in macrophage recruitment. We conclude that MCP-1 is involved in recruiting monocytes/macrophages to injured peripheral nerve and that the specificity of leukocyte types recruited results from specificity of chemokine production. J. Neurosci. Res. 53:260–267, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Chemokines direct the recruitment of leukocytes to inflammatory sites and may also participate in the regulation of cytokine production by naive T helper cells. Chemokine production by blood monocytes was investigated by intracytoplasmic staining in interferon-beta (IFN-beta)-treated multiple sclerosis (MS) patients, untreated MS patients, and healthy controls. Under unstimulated conditions, no differences in the production of interleukin-8 (IL-8), IFN-inducible protein 10 (IP-10), monokine induced by interferon-gamma (Mig), monocyte chemoattractant protein-1 (MCP-1), and monocyte chemoattractant protein-3 (MCP-3) were seen between untreated MS patients and controls. Chemokine production by monocytes following T cell activation was decreased in MS patients taking IFN-beta compared to controls and untreated MS patients. Unlike other chemokines, macrophage inflammatory protein-1alpha (MIP-1alpha) production by monocytes was significantly decreased in untreated MS patients compared to controls, and IFN-beta treatment increased MIP-1alpha expression to the level seen in controls. In vitro addition of IFN-beta1b to peripheral blood mononuclear cells (PBMC) cultures tended to decrease the production of IL-8, IP-10, Mig, MCP-1, and MCP-3, but not of MIP-1alpha. These findings suggest that IFN-beta treatment may have a differential affect on chemokine production by monocytes. Longitudinal studies must be done to confirm these observations.  相似文献   

16.
Transforming growth factor-beta1 (TGFbeta1) is a cytokine/growth factor found within the pathological central nervous system. TGFbeta1 has been shown to inhibit the release of cytotoxic molecules from microglia and macrophages, decrease astrocyte proliferation, and promote neuron survival. Because of the relevance of these actions to spinal cord injury, we examined TGFbeta1 and its receptors betaRI and betaRII mRNA levels and localization within the contused rat spinal cord using in situ hybridization. At the lesion site, TGFbeta1 mRNA peaked at 7 days postinjury and declined thereafter. Temporal and spatial localization of the betaRI and betaRII receptor mRNA closely mimicked that for TGFbeta1 in the epicenter. TGFbeta1, betaRI, and betaRII mRNAs also were elevated rostral and caudal to the injury, especially in regions known to contain activated microglia and degenerating axon profiles. Immunohistochemical staining of nearby sections confirmed that the highest levels of TGFbeta1 and receptor mRNA corresponded to regions filled with activated microglia and macrophages. The similar expression pattern of TGFbeta1, betaRI, and betaRII mRNA within the injured spinal cord suggests a local site of action. Since TGFbeta1 can act as an immunosuppressant as well as a stimulant for growth factors and neurite sprouting, it likely plays an important role, both temporally and spatially, in orchestrating postinjury events within the spinal cord.  相似文献   

17.
Traumatic spinal cord injury (SCI) affects the activation, migration, and function of microglia, neutrophils and monocyte/macrophages. Because these myeloid cells can positively and negatively affect survival of neurons and glia, they are among the most commonly studied immune cells. However, the mechanisms that regulate myeloid cell activation and recruitment after SCI have not been adequately defined. In general, the dynamics and composition of myeloid cell recruitment to the injured spinal cord are consistent between mammalian species; only the onset, duration, and magnitude of the response vary. Emerging data, mostly from rat and mouse SCI models, indicate that resident and recruited myeloid cells are derived from multiple sources, including the yolk sac during development and the bone marrow and spleen in adulthood. After SCI, a complex array of chemokines and cytokines regulate myelopoiesis and intraspinal trafficking of myeloid cells. As these cells accumulate in the injured spinal cord, the collective actions of diverse cues in the lesion environment help to create an inflammatory response marked by tremendous phenotypic and functional heterogeneity. Indeed, it is difficult to attribute specific reparative or injurious functions to one or more myeloid cells because of convergence of cell function and difficulties in using specific molecular markers to distinguish between subsets of myeloid cell populations. Here we review each of these concepts and include a discussion of future challenges that will need to be overcome to develop newer and improved immune modulatory therapies for the injured brain or spinal cord.  相似文献   

18.
Tripathi R  McTigue DM 《Glia》2007,55(7):698-711
Oligodendrocyte (OL) loss and axon demyelination occur after spinal cord injury (SCI). OLs may be replaced, however, by proliferating NG2+ progenitor cells. Indeed, new OLs have been noted in ventral white matter after SCI. Since tissue adjacent to lesion cavities is exposed to different mediators compared with outlying spared tissue, the authors used a rat SCI model to compare NG2 cell proliferation and OL genesis adjacent to lesion cavities with that in spared tissue closer to meninges. NG2 cells proliferated throughout the first week postinjury and accumulated along lesion borders, especially within gray matter. By 3 days postinjury (dpi), new OLs were detected throughout the cross-sections; between 4 and 7 dpi, however, oligogenesis was restricted to lesion borders. New OLs derived from cells proliferating during 1-7 dpi increased dramatically by 14 dpi; most were located along lesion borders and in spared gray matter. Oligogenesis continued along lesion borders during the second week postinjury. Overall OL numbers were reduced at 3 dpi in spared tissue, but rebounded to normal levels by 14 dpi. Surprisingly, lesion borders maintained normal OL numbers at 3 dpi, which then rose to exceed preinjury levels at 7 and 14 dpi. These results indicate that oligogenesis is protracted after SCI and leads to increased OL numbers. Most new OLs are formed in regions of greatest NG2 cell proliferation. Thus, the adult spinal cord spontaneously develops a dynamic gliogenic zone along lesion borders.  相似文献   

19.
Following traumatic injury of the spinal cord, cells adjacent to the lesion are subject to ischemic cell death as a result of vascular disruption and secondary inflammatory responses. Proteases such as calcium-activated neutral proteinase (calpain) have been implicated in axon and myelin destruction following injury since they degrade structural proteins in the axon-myelin unit. To examine the role of calpain in cell death following spinal cord injury (SCI), calpain activity and translational expression were evaluated using Western blotting techniques. Calpain activity (as measured by specific substrate degradation) was significantly increased in and around the lesion site as early as 4 hr following injury with continued elevation at 48 hr compared to sham controls. Likewise, calpain expression was significantly increased in both the lesion site and penumbra at 4 and 48 hr after injury. Using double immunofluorescent labeling for calpain and cell-specific markers, this increase in calpain expression was found to be due in part to activated glial/inflammatory cells such as astrocytes, microglia, and infiltrating macrophages in these areas. Thus, since calpain degrades many myelin and axonal structural proteins, the increased activity and expression of this enzyme may be responsible for destruction of myelinated axons adjacent to the lesion site following SCI.  相似文献   

20.
Many therapies that have been developed for acute spinal cord injury (SCI) either influence or are influenced by posttraumatic inflammation. Many such therapies have reportedly produced promising neurologic benefits in animal models of SCI, but demonstrating convincing efficacy in human clinical trials has remained elusive. This discrepancy may be related in part to differences in the inflammatory response to SCI between human patients and the widely studied rodent models. Our objectives were, therefore, to establish the time course of inflammatory cytokine release in the spinal cord of rats after a thoracic contusion, to determine whether the cytokine release was injury dependent, and to correlate these findings with those that we have recently reported for the cerebrospinal fluid (CSF) of human SCI patients. After rodent SCI, GRO (the rat equivalent of IL-8), IL-6, IL-1α, IL-1β, IL-13, MCP-1, MIP1α, RANTES, and TNFα were elevated within the spinal cord, whereas IL-12p70 was decreased. In human SCI, IL-6, IL-8, and MCP-1 were also elevated within the cerebrospinal fluid but at later times than those observed in the rodent spinal cord. IL-6, IL-8, and MCP-1 were released in an injury-dependent manner in both the rodent model of SCI and the human condition. In this regard, similar patterns of expression were observed for a number of inflammatory cytokines after SCI in rodent spinal cords and in human CSF. Such proteins may therefore have potential utility as biomarkers and surrogate outcome measures for evaluating biological response to therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号