首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The majority of patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes) have the A3243G point mutation. The much rarer T3271C mutation has been reported predominantly in Japanese subjects. Our objective was to better define the clinical phenotype and mutation load in patients with MELAS and the T3271C mutation in mitochondrial DNA. We present clinical and molecular genetic data in two pedigrees with the T3271C mutation. The age at onset was 8 years in one proband and 14 years in the other. Both patients had migrainelike headache, seizures, and strokelike episodes. Mutation loads were quantified in multiple tissues from the patients and from family members by polymerase chain reaction-restriction fragment length polymorphism analysis. The symptoms in both probands were typical of MELAS, and, contrary to previous reports, onset was early. Hearing loss was less common than in typical MELAS, and ragged red fibers were absent. The proportion of mutant genomes was consistently and markedly greater in DNA from urinary sediment than from blood. In the mother of one proband, mutant genomes were detected only in DNA from hair follicles and cheek mucosa The phenotype of patients with the T3271C mutation might not be as distinct as that of the A3243G mutation, as previously described. Our data also suggest that urine is a better source of DNA than blood for diagnosis and that multiple tissues should be studied in maternal relatives, especially when the mutation cannot be detected in blood.  相似文献   

3.
BACKGROUND: Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is a common syndrome of mitochondrial diseases caused primarily by a mutation from adenine to guanine at mitochondrial DNA 3243. However, the correlation between heteroplasmic mutations and clinical characteristics of hereditary MELAS syndrome is unclear. OBJECTIVE: To survey the clinical behaviors, biochemical outcomes, and imaging data in a patient with suspected MELAS syndrome by maternal inheritance, and to investigate the correlation with heteroplasmic mutations of hemocyte mitochondrial DNA. DESIGN, TIME AND SETTING: A case analysis based on hereditary family surgery was performed in the Enliang Hospital of Anshan, Taian County, and biochemical tests and gene diagnosis were erformed at the Department of Laboratory and Institute of Neurology, the First Affiliated Hospital of China Medical University, between March and September 2009. ARTICIPANTS: A 22-year-old female patient with MELAS syndrome was diagnosed in the First Affiliated Hospital of China Medical University in January, 2009. She had five males and seven females in her maternal family. METHODS: We obtained stroke and convulsion history in the patient and her family, as well as erforming routine blood tests, plasma lactic acid levels before and after movement, and magnetic resonance of the head. A mutation at m.3243A > G was verified using polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing, and quantitated using real-time polymerase chain reaction. MAIN OUTCOME MEASURES: Correlation of clinical behaviors and biochemical outcomes, as well as imaging data with heteroplasmic mutations in family members with typical and atypical MELAS syndrome. RESULTS: Some family members had typical symptoms of convulsion, stroke, and MELAS syndrome, as well as atypical symptoms of microsomia, movement intolerance, febrile, and migraine. Magnetic resonance of the head was consistent with typical imaging data of MELAS syndrome during attacks, and family members showed cerebellar atrophy. A heteroplasmic mutation of mitochondrial DNA 3243 occurred in all family members, although higher levels caused severe typical symptoms. The age of first-onset convulsion was negatively correlated with level of heteroplasmic mutation (r= -0.852, P< 0.05), but lactic acid was positively correlated with mutation levels (before movement, r= 0.945, P< 0.001; after movement, r= 0.945, P< 0.001). CONCLUSION: MELAS syndrome was diagnosed in this family by maternal inheritance, and the etiological factor was a mutation of mitochondrial A3243G. The level of heteroplasmic mutation correlated with anticipated convulsion and lactic acid levels.  相似文献   

4.
目的 报告6例mtDNA G13513A点突变引起的线粒体脑肌病患者的临床、影像学特点,总结mtDNA G13513A突变所致的线粒体病的临床表型.方法 对35例mtDNA常见突变(包括大片段缺失及A3243G、T3271C、A8344G、T8993G/C点突变)检查为阴性的线粒体脑肌病患者,用线粒体DNA全长测序和(或)聚合酶链反应-限制性片段长度多态法检测mtDNA G13513A点突变,分析阳性患者的临床特点,复习文献报道的mtDNA G13513A所致线粒体病的病例.结果 35例患者中有6例存在mtDNA G13513A突变.该6例患者均出现偏盲、轻偏瘫或偏身感觉障碍等卒中样发作表现,其中3例成人发病者以卒中样发作为主要症状,伴随癫痫、头痛、身材矮小、神经性耳聋等,头颅MRI显示以顶-枕-颢叶受累为主的大片病灶,符合成人型线粒体脑肌病伴高乳酸血症和卒中样发作(MELAS)的临床和影像学特点;3例青少年发病者除卒中样发作外,还有构音障碍、共济失调、眼外肌瘫痪等脑干受累的症状,MRI检查可见枕-颞叶大脑皮质非对称性病灶,以及双侧基底节和脑干的对称性病灶,符合青少年型MELAS-Leigh叠加综合征的临床和影像学特点.肌肉病理检查在5例患者发现不整红边纤维.经复习文献,发现mtDNA G13513A突变患者还存在婴幼儿型Leigh或Leigh样综合征表型.结论 mtDNA G13513A点突变是线粒体脑肌病较常见的致病性突变,主要导致Leigh综合征、MELAS-Leigh叠加综合征或MELAS综合征,其临床表型具有年龄依赖性.
Abstract:
Objective To report 6 Chinese patients with mitochondrial encephalomyopathy caused by mitochondrial DNA(mtDNA)G13513A mutation and discuss the mitochondrial phenotype associated with this mutation based on the data of our patient series as well as the reports by others.Methods Direct sequencing of polymerase chain reaction(PCR)products or PCR-RFLP analysis Was performed to screen mtDNA G13513A mutation in 35 cases with mitoehondrial encephalomyopathy.who carried no mtDNA common mutations(1arge 8eale deletion,A3243G,T3271 C,A8344G,or T8993G/C).The clinical features,MRI changes were retrospectively collected and analyzed.Published studies of all patients with mtDNA G13513A mutation were also reviewed.Results Six patients were identified carrying mtDNA G13513A mutation.All patients presented stroke-like episodes with hemianopsia.hemiparesis or hemiparesthesia.Three adult patients presented clinical and radiological features of adult-onset mitochondrial myopathy,encephalopathy,lactic acidosis,and stroke-like episodes(MELAS),including stroke-like episodes,epilepsy,headache,short stature,sensorineural deafness,multifocal lesions on parietal,occipital and temporal lobes on cranial MRI scans.Three iuvenile.onset patients presented the clinical and brain MRI features of MELAS-Leigh syndrome(LS)overlap syndrome.In addition to the stroke-like episodes,they also showed brain stem lesions with dysarthria,ataxia,and ophthalmopJegia. Brain MRI revealed asymmetrical lesions in the cortex of the oecipital and temporal lobes,as well as symmetrical lesions in the bilateral basal ganglia and brainstem.Muslce biopsy showed ragged redfibem in 5 patients.The infant-onset LS or Leigh-like syndrome with mtDNA G135 13A was described in the English literature.Conclusions mtDNA G13513A mutation is a common pathogenic mutmion for mitochondrial encephalomyopathy,which can result in Leigh syndrome,MELAS-LS overlap syndrome and adult MELAS.The onset of various phenotypes is relatively age-dependent.  相似文献   

5.
BACKGROUND: Tissues with high energy demands, such as the heart, are susceptible to the effects of mitochondrial DNA point mutations. OBJECTIVE: To investigate the frequency of Wolff-Parkinson-White (WPW) syndrome among a phenotypically and genotypically homogeneous cohort of patients with MELAS (mitochondrial encephalopathy, lactic acidosis, and strokelike episodes) and the A3243G mutation most commonly associated with MELAS syndrome. DESIGN: Survey. SETTING: The Pediatric Neuromuscular Disease Center at Columbia University. Patients Thirty patients with the A3243G mutation and MELAS syndrome enrolled in a clinical trial to assess the effect of dichloroacetate on neurologic symptoms. INTERVENTIONS: Medical histories and electrocardiograms were reviewed and DNA samples from fibroblasts, urine and cheek epithelial cells, leukocytes, and hair were analyzed to determine mitochondrial mutation abundance and estimate total mutation burden. RESULTS: Four of 30 patients (13%) had a clinical history of, or electrocardiographic findings consistent with, WPW syndrome. In 2 patients, WPW syndrome preceded MELAS syndrome by 15 and 21 years. The tissue burden of mutant mitochondria was similar in patients with (49.4%) and without (39.1%) WPW syndrome. CONCLUSIONS: The prevalence of WPW syndrome among patients with MELAS syndrome and the A3243G mutation appears much higher than in the normal population and may become manifest earlier than neurologic symptoms. Patients with WPW syndrome and neurologic abnormalities consistent with MELAS syndrome, such as seizures, deafness, short stature, and stroke, should be screened for the A3243G mutation. Moreover, patients with MELAS syndrome should be monitored for cardiac anomalies including cardiomyopathy and WPW syndrome.  相似文献   

6.
Various mutations in the mitochondrial tRNALeu(UUR) gene give rise to a variety of neurological disorders. Among these, mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS syndrome) are frequently associated with a tRNALeu(UUR) mutation at nucleotide position 3243 of the mitochondrial DNA. A supplementary clinical feature seen in these patients is headache in early life. Recently, a tRNALeu(UUR) mutation at nucleotide position 3243 has been found in a patient presenting with cluster headache. This led us to examine the mitochondrial genomes of 22 patients presenting with cluster headache. None of the patients harboured the reported tRNALeu(UUR) mutation or any other length variations of the mtDNA. Cluster headache is most likely not causally associated with the A3243G mutation of the mitochondrial DNA.  相似文献   

7.
目的 调查1个疑似患有母系遗传性线粒体脑肌病伴高乳酸血症和脑卒中样发作(MELAS)综合征家系的临床表现、生物化学检测数据和影像学资料,并探索其与血细胞线粒体基因突变异质性水平的关联性.方法 收集先证者和11位其母系家系成员的一般情况、抽搐及脑卒中样发作等病史,检测家系成员的血常规和运动前后血浆乳酸水平等生化指标,并做头颅磁共振检查.用聚合酶链反应(PCR)-限制性内切酶片段长度多态和DNA测序法检测其成员是否存在线粒体基因组A3243G点突变,并用荧光实时定量PCR定量该突变的水平.结果 该家系部分成员存在抽搐、脑卒中样发作和高乳酸血症等MELAS综合征典型症状,以及身材矮小、运动不耐受和发热、偏头痛等非典型症状.发作期头颅磁共振成像符合MELAS综合征的典型特点,且普遍存在小脑萎缩.母系亲属均存在线粒体基因的A3243G位点点突变,突变异质性水平越高,症状越典型且严重.结论 该调查家系确诊母系遗传性MELAS综合征,其致病基因为线粒体A3243G点突变.外周血血细胞线粒体基因突变异质性水平与亲缘关系、抽搐早现性和血乳酸值等临床表型存在相关性.  相似文献   

8.
Clinical and genetic features in a MELAS child with a 3271T>C mutation   总被引:1,自引:0,他引:1  
A mitochondrial DNA 3271T>C point mutation was reported to be the second most common mutation (following the mutation 3243A>G) in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) in Japan. This mutation has rarely been reported in other countries. We present an 11-year-old Taiwanese girl with MELAS, who harbored the 3271T>C mutation and had manifested short stature, epilepsia partialis continua, and recurrent basal ganglia infarctions since age 6 years, and rapid intellectual regression, dysarthria, and unsteady gait since age 10 years. The proportion of 3271T>C mutant genomes in various tissues, including urinary sediments, hair follicles, blood leukocytes, and buccal mucosa cells from the patient and her mother, was analyzed by polymerase chain reaction-restriction fragment length polymorphism analysis and quantitative real-time polymerase chain reaction. The proportion of mutant load in the patient's muscles was near 100%. Except for muscle, the highest mutation load was detected in urinary sediments of the patient by both methods. This is the first report involving mutant load analysis with quantitative real-time polymerase chain reaction in the 3271T>C mutation. The results suggest that urinary sediments may be an alternative tissue of choice which can be obtained noninvasively in the diagnosis of mitochondrial DNA 3271T>C mutations.  相似文献   

9.
We describe a family with two cases of adult-onset mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Interestingly, the proband also had non-insulin dependent diabetes mellitus and hyperthyroidism. Endocrinological studies demonstrated a high titer of TSH receptor antibody in the proband and elevated levels in her maternal relatives. Analysis of mitochondrial DNA (mtDNA) showed an A-to-G transition at nucleotide position 3243 in the tRNALeu(UUR) gene (A3243G) in the three generations of the family. Furthermore, a previously described ~ 260 bp tandem duplication in the D-loop region of mtDNA was also found in the proband and her maternal relatives. To our knowledge, such kind of duplication has never before been reported in the MELAS syndrome. The proportions of mtDNA with the ~260 bp tandem duplication and A3243G point mutation were 12.5% and 82% in the muscle, respectively, and 1.6% and 35% in the blood cells, respectively, of the proband. We conclude that the hyperthyroidism in this MELAS patient may be related to the tandem duplication in the D-loop of mtDNA. This study further substantiates the importance of searching for additional genetic mutations in mitochondrial encephalomyopathic patients with new clinical phenotypes.  相似文献   

10.
We studied 22 subjects carrying the A3243G point mutation of human mitochondrial DNA (mtDNA). In 14 cases the clinical phenotype was characterized by mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), while 8 patients had chronic progressive external ophthalmoplegia (CPEO). The proportion of A3243G heteroplasmy in muscle was determined by two methods: densitometry on a diagnostic restriction-fragment length polymorphism and solid-phase mini-sequencing. We found a highly significant inverse correlation between the percentage of A3243G mutation and the specific activity of complex 1, the respiratory complex with the highest number of mtDNA-encoded subunits, suggesting a direct effect of the mutation on mtDNA translation. No correlation was observed between the percentage of mutated mtDNA and the presence or absence of specific clinical features, such as stroke, ophthalmoplegia and diabetes mellitus. However, in the MELAS group the percentage of mutated mtDNA molecules was strongly correlated with the age of onset, while no such correlation was found in the CPEO group, suggesting a different time-dependent evolution of the mutation in the two groups. Finally, in contrast with other mtDNA mutations associated with ragged-red fibres (RRF), in both MELAS3243 and CPE03243 we observed a high proportion of RRF that were positive to the histochemical reaction to cytochromec oxidase, a morphological feature that seems to be specific for the neuromuscular phenotypes associated with mutations affecting the tRNALeu(UUR) gene.  相似文献   

11.
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a syndrome associated with mitochondrial DNA mutations such as A3243G, the most common mutation. Ragged-red fibers and strongly succinate dehydrogenase-reactive blood vessels in the muscle are diagnostic pathologic features of MELAS. In general, the first typical attack of MELAS occurs in children at school age; it is rare for stroke-like episodes to occur in early infancy. This report describes a 4-month-old male harboring A3243G, whose phenotype at onset was consistent with that of MELAS in infancy. The patient was admitted because of disturbances of consciousness and ventilatory insufficiency. Remarkable lactic acidosis was observed. MRI revealed several bilateral lesions. Periodic lateralized epileptic discharges on the EEG suggested regional lesions. Biopsied muscle displayed scattered ragged-red fibers and succinate dehydrogenase-reactive blood vessels; over 90% of muscle mitochondrial DNA had A3243G. This case suggests that MELAS can develop in early infancy with its typical clinical presentation. The high percentage of A3243G may contribute to the early onset of the MELAS phenotype in this patient.  相似文献   

12.
Clinical features of A3243G mitochondrial tRNA mutation   总被引:2,自引:0,他引:2  
Mitochondrial cytopathy is a heterogeneous group of disorders with a wide range of clinical features. To evaluate the incidence and clinical heterogeneity of A3243G mitochondrial tRNA mutation in the Korean population, we evaluated patients who were clinically suggestive of having mitochondrial encephalomyopathy. Eighty-five patients were included in this study. All showed clinical features of mitochondrial encephalomyopathy and had three or more of the following clinical manifestations: (1) psychomotor regression, (2) hyperlacticacidemia, (3) recurrent stoke-like episodes, (4) idiopathic cardiomyopathy, (5) sensoryneural hearing loss, (6) diabetes mellitus, (7) myopathy, (8) renal disease and (9) relatives with known mitochondrial disease. The patients were clinically classified as MELAS, MERRF, Leigh syndrome, Kearns-Sayre syndrome, chronic progressive external ophthalmoplegia and uncertain. Of the 85 patients, 19 had the A3243G mutation (22.3%). Thirty-one patients showed typical clinical characteristics of MELAS. Fourteen of those 31 patients had A3243G mutation (45.1%). Four patients harboring A3243G mutations showed atypical and heterogeneous clinical features, unlike MELAS. This study revealed the frequent occurrence of A3243G mutation in Korean patients with mitochondrial disorders and their clinical features can be heterogeneous. It will be helpful to screen the presence of A3243G mutation for the genetic diagnosis of mitochondrial encephalomyopathy in Korea.  相似文献   

13.
OBJECTIVE: To determine whether there are common symptoms within different phenotypes of the mitochondrial DNA A3243G mutation. DESIGN: A series of 52 adults with mitochondrial encephalomyopathies and their symptomatic relatives were screened for the A3243G mutation using restriction enzyme analysis. In addition to clinical examination, patients with the mutation underwent audiometry. RESULTS: The A3243G mutation was identified in 16 patients (10 index patients and 6 symptomatic relatives). Six of these patients presented with strokelike episodes and met the classical criteria of MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes), and one had MELAS/MERRF (myoclonic epilepsy with ragged-red fibers) overlap syndrome. Two patients presented with strokelike episodes but did not meet the classical criteria of MELAS. Predominant features of the 8 other patients were myopathy with hearing loss and diabetes mellitus (n = 1), chronic progressive external ophthalmoplegia (n = 1), diabetes mellitus with hearing loss (n = 1), painful muscle stiffness with hearing loss (n = 1), cardiomyopathy (n = 1), diabetes mellitus (n = 1), and hearing loss (n = 2). In 11 of 16 patients, hearing impairment was obvious on clinical examination. Furthermore, all 5 patients with normal hearing on clinical examination showed subclinical hearing loss; in 4, hearing loss was more pronounced than age-related hearing impairment and in 1, hearing loss can be age related as well. CONCLUSIONS: A variety of phenotypes represent the variable multisystemic involvement of the A3243G mutation. Less than half of the patients presented with MELAS. Hearing impairment, the most common symptom, was clinically or subclinically relevant in 15 (94%) of 16 patients.  相似文献   

14.
OBJECTIVES: We investigated whether mutation of mitochondrial DNA (mtDNA) affects the copy number of the mitochondrial genome in patients with mitochondrial myopathy encephalopathy with lactic acidosis and stroke-like episodes (MELAS) and those with myoclonic epilepsy with ragged-red fiber (MERRF) syndromes. MATERIALS AND METHODS: Forty-eight Taiwanese patients with MELAS syndrome and 20 patients with MERRF syndrome were recruited in this study. RESULTS: In relation to controls, the copy numbers of mtDNA in leukocytes of patients with MELAS or MERRF syndrome were significantly higher at a young age but lower at an advanced age. In addition, MELAS patients harboring higher proportions of mtDNA with A3243G transition had lower mtDNA copy numbers. The MELAS or MERRF patients with multi-system disorders had lower mtDNA copy numbers in leukocytes. Furthermore, higher proportions of mtDNA with 4977 bp deletion were found in leukocytes of MERRF patients with multi-system involvement. CONCLUSION: In leukocytes, alteration in the copy number of mtDNA is related to the proportion of mtDNA with a point mutation or large-scale deletion, which may serve as a biomarker in the pathogenesis and disease progression of MELAS and MERRF syndromes.  相似文献   

15.
Mitochondrial DNA (mtDNA) disease is an important genetic cause of neurological disability. A variety of different clinical features are observed and one of the most common phenotypes is MELAS (Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes). The majority of patients with MELAS have the 3243A>G mtDNA mutation. The neuropathology is dominated by multifocal infarct-like lesions in the posterior cortex, thought to underlie the stroke-like episodes seen in patients. To investigate the relationship between mtDNA mutation load, mitochondrial dysfunction and neuropathological features in MELAS, we studied individual neurones from several brain regions of two individuals with the 3243A>G mutation using dual cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) histochemistry, and Polymerase Chain Reaction Restriction Fragment Lenght Polymorphism (PCR-RFLP) analysis. We found a low number of COX-deficient neurones in all brain regions. There appeared to be no correlation between the threshold level for the 3243A>G mutation to cause COX deficiency within single neurones and the degree of pathology in affected brain regions. The most severe COX deficiency associated with the highest proportion of mutated mtDNA was present in the walls of the leptomeningeal and cortical blood vessels in all brain regions. We conclude that vascular mitochondrial dysfunction is important in the pathogenesis of the stroke-like episodes in MELAS patients. As migraine is a commonly encountered feature in MELAS, we propose that coupling of the vascular mitochondrial dysfunction with cortical spreading depression (CSD) might underlie the selective distribution of ischaemic lesions in the posterior cortex in these patients.  相似文献   

16.
We studied a patient with a mitochondrial encephalomyopathy characterized by the presence of all the cardinal features of both myoclonic epilepsy and ragged-red fibers (MERRF) and mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) syndromes. Muscle biopsy showed ragged-red fibers (RRF). Some RRF were cytochrome c oxidase (COX)-negative, while some others stained positive for COX. Muscle biochemistry revealed defects of complexes I and IV of the respiratory chain. Both muscle and blood mitochondrial DNA from the patient showed the presence of the mutation at nucleotide position 3243 in the tRNALeu(UUR) gene and the absence of point mutations related to MERRF syndrome. The proportions of mutant mtDNA were 70% in muscle and 30% in blood. The mutation was absent in blood from all maternal relatives, in hair follicles from the mother, and in muscle from one sister of the proband. Therefore, there was no evidence of maternal inheritance. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome is a rare congenital disorder of mitochondrial DNA. Patients with this syndrome may present acute onset of sensorineural hearing loss, which is genetic in origin. An impression of the MELAS syndrome is favored because hearing loss is part of the syndrome for some patients with epilepsy. We report a 20-year-old man who suffered from acute onset of bilateral hearing loss with epilepsy and two stroke-like events which recovered without any sequela. Epilepsy with complex partial seizures was controlled by antiepileptic drugs. Brain magnetic resonance images showed high signal lesions in bilateral temporal lobes. Serum levels of pyruvate and lactate were elevated. Muscle biopsy showed ragged-red fibers and molecular genetic study showed a point mutation of the mitochondrial A3243G gene. Mitochondrial disease with the MELAS syndrome was diagnosed and then he was treated with Co-enzyme Q10 and carnitine. The symptoms recovered gradually.  相似文献   

18.
The mitochondrial transfer ribonucleic acid for leucine is encoded by nucleotides 3230-3304. A-to-G transition at nucleotide 3243 can cause maternally transmitted diabetes mellitus-deafness syndrome, and MELAS syndrome. MELAS syndrome is a rare disorder of mitochondrial energy production, and is an acronym for myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Cortical malformations are heterogeneous and result from abnormal cell proliferation/apoptosis, migration, and/or differentiation of neuroepithelial cells. They are an important and relatively common cause of intractable epilepsy and neurodevelopmental disorders. The association between these A3243G mutations and cortical malformation has never before been reported. Here a 14-year-old female with A3243G mutation and polymicrogyria is described and possible aetiologies of this association are discussed.  相似文献   

19.
线粒体脯肌病伴高乳酸血症及脑卒中样发作(MELAS)是在1984年前首次被提出的,该病主要是由线粒体基因组第3243号位点的腺嘌呤突变为鸟嘌呤(m.3243A〉G)所导致。MELAS主要的神经系统表现为抽搐、脑卒中样发作和脑病,还包括一些其他症状如身材矮小、认知功能障碍、偏头痛、痴呆、心肌病、心脏传导阻滞和糖尿病等。本文主要从分子生物学角度讨论MELAS病的病因、诊断方式以及治疗手段的研究进展,着重阐述了细胞色素C氧化酶(COX)失调假说在MELAS病的发病机制中的作用。虽然MELAS病的治疗方法仍然有限,但是现有的和潜在的治疗方式值得探讨。  相似文献   

20.
BackgroundEpileptic seizures in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) are heterogeneous with no pathognomonic features. We reviewed epilepsy characteristics and clinical outcome exclusively in a pediatric population.MethodsTwenty-two children and adolescents (13 males) with confirmed mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes due to mitochondrial DNA A3243G mutation and epilepsy were recruited. Clinical data including seizure semiology, treatment response, neuroimaging findings, and electroencephalography were analyzed. We also examined the effect of the age at seizure onset and initial symptoms on the clinical variables.ResultsSeizure semiology and electroencephalography abnormalities showed no syndrome-specific findings. Focal seizures occurred in 21 of 22 subjects (95.5%), whereas generalized seizures developed in seven of 22 subjects (31.8%). Twenty of 22 subjects (90.9%) achieved partial to complete reduction of clinical seizures for more than one year with a combination of more than two antiepileptic drugs. The subgroup with earlier seizure onset presented significantly earlier and showed significantly higher rates of drug-resistant epilepsy compared with the late onset group, although there were no significant differences in the initial symptoms. The subjects with severe epileptic conditions tended to have more severe clinical dysfunction and more severe organ involvement.ConclusionsBoth focal and generalized seizures occurred in patients with MELAS. Epilepsy in this population is drug resistant, but a certain degree of clinical seizure reduction was achievable with antiepileptic drugs, with more favorable outcomes than historically expected. Close observation and active epilepsy treatment of individuals with MELAS episodes and earlier seizure onset might improve the prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号