首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Human prostate cancer frequently metastasizes to bone, where it gives rise to osteoblastic bone metastases with an underlying osteoclastic component and subsequent bone pain. However, the importance of osteoclastogenesis in the development of prostate cancer bone lesions in humans is unclear. Osteoprotegerin/osteoclastogenesis inhibitory factor (OCIF) is a member of the tumor necrosis factor receptor family and a novel secreted protein, and it is a negative regulator of osteoclast differentiation, activation, and survival both in vitro and in vivo. In the present study we used a model in which human LNCaP prostate cancer cells that give rise to osteoblastic bone tumors were injected directly into the intramedullary space of human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice to investigate whether the new bone-resorption inhibitor osteoprotegerin/OCIF would inhibit the development of new bone tumors and the progression of established osteoblastic bone tumors. The mice were given consecutive daily s.c. injections of recombinant human OCIF (rhOCIF; 100 micro g/mouse/day) for 2 weeks starting either immediately or 2 weeks after injection of the LNCaP cells. In both protocols, rhOCIF markedly inhibited both the development of bone tumors and the progression of established bone tumor foci quantified by histological examination. Histomorphometrical analysis revealed that rhOCIF markedly reduced the number of osteoclasts and the size of the tumors at the bone sites, but that it had no effect on the local growth of s.c. LNCaP tumors or on LNCaP cell proliferation in culture. These findings demonstrate that osteoclasts play an important role in bone tumor by prostate cancer, and that rhOCIF decreases the LNCaP prostate cancer burden selectively in bone, suppresses the progression of established tumor lesions, and prevents the development of new lesions. These results suggest that inhibition of osteoclastic bone resorption may be an effective therapy for the treatment of prostate cancer that has colonized bone.  相似文献   

3.
Commonly used in vivo models of prostate cancer metastasis include syngeneic rodent cancers and xenografts of human cancer in immunodeficient mice. However, the occurrence of osseous metastases in these models is rare, and in xenograft models, species-specific factors may limit the ability of human cells to metastasize to rodent bones. We have modified the severe combined immunodeficient (SCID)-human model to test the ability of circulating human prostate cancer cells to home to macroscopic fragments of human bone and other organs previously implanted into SCID mice. We have also compared the growth of human prostate cancer cells in various human and mouse tissue microenvironments in vivo. Macroscopic fragments of human fetal bone, lung, or intestine (16-22 weeks gestation) or mouse bone were implanted s.c. into male CB.17 SCID mice. Four weeks later, human prostate cancer cells were injected either i.v. via the tail vein (circulating cell colonization assay) or directly into the implanted tissue fragments transdermally (end organ growth assay). Tumor growth was followed for 6 weeks by palpation and magnetic resonance imaging. After 6 weeks, tumors were enumerated in implanted human and mouse organ fragments and native mouse tissue. Tumors were characterized by histology, immunohistochemistry, and chromosomal analysis. After i.v. injection, circulating PC3 cells successfully colonized implanted human bone fragments in 5 of 19 mice. Tumors were easily followed by palpation and imaging and had an average volume of 258 mm3 at autopsy. Histological examination revealed osteolysis and a strong desmoplastic stromal response, which indicated intense stromal-epithelial interaction. Bone tumors were subcultured, and chromosomal analysis demonstrated that the tumors were derived from the parental prostate cancer cell line. Microscopic tumor colonies were also found in a few mouse lungs after i.v. injection of PC3, DU145, and LNCaP cells, however the volume of the lung nodules was less than 1 mm3 in all of the cases. No colonization of human lung or intestine implants, the mouse skeleton, or other mouse organs was detected, demonstrating a species- and tissue-specific colonization of human bone by PC3 cells. Direct injection of 10(4) prostate cancer cells into human bone implants resulted in large tumors in 75-100% of mice. PC3 and DU145 bone tumors were primarily osteolytic, whereas LNCaP bone tumors were both osteoblastic and osteolytic. PC3 and LNCaP bone tumors showed a desmoplastic stromal response, which indicated intense stromal-epithelial interaction. All three of the cell lines formed tumors in implanted human lung tissue; however, the tumors were all < or = 10 mm3 in volume and showed minimal stromal involvement. No tumors formed after either s.c. injection or injection of cells into implanted mouse bone demonstrating both species- and tissue-specific enhancement of growth of human prostate cancer cells by human bone. The severe combined immunodeficient-human model provides a useful system to study species-specific mechanisms involved in the homing of human prostate cancer cells to human bone and the growth of human prostate cancer cells in human bone.  相似文献   

4.
At autopsy >or=80% of prostate cancers have established macrometastases in marrow containing bone. The mechanism(s) to explain this remarkable level of bone involvement remain to be elucidated. We examined the adhesive and invasive behavior of prostate cancer cells to osteoblastic and human bone marrow endothelial cells (HBME-1) in an attempt to explain the tropism of prostate cells for bone. We found an inverse relationship between adhesion and prostate cell tumorigenicity and metastatic potential. Relative cell adhesion of P69 between cell lines was 1.74-fold (95% confidence interval [CI] = 1.15-2.64) and 1.58-fold (95% CI = 0.94-2.68) greater at 1 hr and 2 hr, respectively, than LNCaP that was essentially equivalent to C4-2 cells when using an osteoblastic cell line, D1 as the substrate. Similar results were acquired when HBME-1 were used as substratum. There was a marked increase in adhesion of the poorly tumorigenic cell line P69 as compared to the cancer cells to HBME-1. P69 adhesion was 2.78-fold (95% CI = 1.87-4.84) and 2.0-fold (95% CI = 1.43-2.80) greater at 1 hr and 2 hr, respectively when compared to LNCaP or C4-2 cells. D1 cells, a bone homing osteoblastic precursor, behaved contrary to the metastatic, bone-colonizing C4-2 cell line and bound best to other bone cells but not as well as a non-homing fetal bone marrow-derived cell line, D2. Invasion of prostate cancer cells through HBME-1 lawns was examined at 8 hr and 16 hr. In contrast to the adhesion studies, the invasion of the more aggressive C4-2 cells was 3.46-fold (95% CI = 1.18-10.17) and 2.65-fold (95% CI = 1.26-5.56) greater at 8 hr and 16 hr, respectively than LNCaP cells. Similarly, LNCaP cell invasion was 1.73-fold (95% CI = 0.69-4.37) and 2.35-fold (95% CI = 1.41-3.93) greater at 8 hr and 16 hr, respectively than P69 cells at the invasion of HBME-1 monolayers. At 8 hr, C4-2 cells had 6.0-fold (95% CI = 2.63,13.65) higher invasive potential than P69 cells. Phage display biopanning of LNCaP cells versus C4-2 cells in vitro using 4 separate techniques repeatedly identified the same peptide in support of minimal cell surface changes associated with the ability of C4-2 cells to metastasize to bone. As integrins are vital to cell adhesion and migration, we examined the integrin subunit expression in the prostate cell lines. The expression of integrin subunits is much higher in the nontumorigenic cell line, P69, whereas the differences in integrin expression between LNCaP and C4-2 are negligible. Only alpha(2) and beta(5) integrin subunits increase from LNCaP to C4-2. Given that C4-2 cells spontaneously metastasize to bone in vivo and LNCaP cells do not, these studies imply that the ability of a metastatic prostate cancer cell to colonize the bone is not completely dependent upon the ability of the cancer cell to adhere to either osteoblastic cells or to the bone marrow endothelial cell lining. Therefore, the initial interaction between the bone endothelium or stroma and prostate cells is not accurately referred to as a tropic or homing response. The invasion assay results indicate that the invasive potential of the cell more accurately reflects the bone colonizing potential of a prostate cancer cell. It is likely that bidirectional paracrine interactions, subsequent to marrow adhesion, between prostate cancer cells and the bone microenvironment are what determine the successful colonization of the bone by prostate cancer cells. Further, functional changes in surface proteins that are involved in invasion are likely to occur without major changes in levels of cell surface protein expression. Functional integrin association, substratum usage and outside in signaling are more likely to predict metastatic behavior.  相似文献   

5.
Human prostate cancer has a high predisposition to metastasize to bone, resulting in the formation of osteoblastic metastases. The mechanism through which prostate cancer cells promote osteoblastic lesions is undefined. Vascular endothelial growth factor (VEGF) has been implicated as a mediator of osteoblast activity. In the present study, we examined if prostate cancer cells promote osteoblastic activity through VEGF. We found that LNCaP and C4-2B prostate cancer cell lines and primary tumor and metastatic prostate cancer tissues from patients expressed VEGF. Bone morphogenetic proteins (BMPs), which are normally present in the bone environment, induced VEGF protein and mRNA expression in C4-2B cells. Furthermore, BMP-7 activated the VEGF promoter. Noggin, a BMP inhibitor, diminished VEGF protein expression and promoter activity in C4-2B cells. Conditioned media (CM) from C4-2B cells induced pro-osteoblastic activity (increased alkaline phosphatase, osteocalcin, and mineralization) in osteoblast cells. Both noggin alone and anti-VEGF antibody alone diminished C4-2B CM-induced pro-osteoblastic activity. Transfection of C4-2B cells with VEGF partially rescued the C4-2B CM-induced pro-osteoblastic activity from noggin inhibition. These observations indicate that BMPs promote osteosclerosis through VEGF in prostate cancer metastases. These results suggest a novel function for VEGF in skeletal metastases. Specifically, VEGF promotes osteoblastic lesion formation at prostate cancer bone metastatic sites.  相似文献   

6.
Kitagawa Y  Dai J  Zhang J  Keller JM  Nor J  Yao Z  Keller ET 《Cancer research》2005,65(23):10921-10929
Prostate cancer frequently metastasizes to bone resulting in the formation of osteoblastic metastases through unknown mechanisms. Vascular endothelial growth factor (VEGF) has been shown recently to promote osteoblast activity. Accordingly, we tested if VEGF contributes to the ability of prostate cancer to induce osteoblast activity. PC-3, LNCaP, and C4-2B prostate cancer cell lines expressed both VEGF-165 and VEGF-189 mRNA isoforms and VEGF protein. Prostate cancer cells expressed the mRNA for VEGF receptor (VEGFR) neuropilin-1 but not the VEGFRs Flt-1 or KDR. In contrast, mouse pre-osteoblastic cells (MC3T3-E1) expressed Flt-1 and neuropilin-1 mRNA but not KDR. PTK787, a VEGFR tyrosine kinase inhibitor, inhibited the proliferation of human microvascular endothelial cells but not prostate cancer proliferation in vitro. C4-2B conditioned medium induced osteoblast differentiation as measured by production of alkaline phosphatase and osteocalcin and mineralization of MC3T3-E1. PTK787 blocked the C4-2B conditioned medium-induced osteoblastic activity. VEGF directly induced alkaline phosphatase and osteocalcin but not mineralization of MC3T3-E1. These results suggest that VEGF induces initial differentiation of osteoblasts but requires other factors, present in C4-2B, to induce mineralization. To determine if VEGF influences the ability of prostate cancer to develop osteoblastic lesions, we injected C4-2B cells into the tibia of mice and, after the tumors grew for 6 weeks, administered PTK787 for 4 weeks. PTK787 decreased both intratibial tumor burden and C4-2B-induced osteoblastic activity as measured by bone mineral density and serum osteocalcin. These results show that VEGF contributes to prostate cancer-induced osteoblastic activity in vivo.  相似文献   

7.
Prostate cancer produces painful osteoblastic bone metastases. Although prostate cancer cells produce numerous osteogenic factors, to date, none have been shown to mediate osteoblastic bone metastases in an in vivo model of prostate cancer. Wnts are a large family of proteins that promote bone growth. Wnt activity is antagonized by endogenous proteins including dickkopf-1 (DKK-1). We explored if prostate cancer cells mediate osteoblastic activity through Wnts using DKK-1 as a tool to modify Wnt activity. A variety of Wnt mRNAs were found to be expressed in prostate cancer cell lines and Wnt mRNA expression was increased in primary prostate cancer compared with nonneoplastic prostate tissue. In addition to expressing Wnts, PC-3 prostate cancer cells expressed the Wnt inhibitor DKK-1. To determine if DKK-1 masked Wnt-mediated osteoblastic activity in osteolytic PC-3 cells, the cells were stably transfected with DKK-1 short hairpin RNA. Decreasing DKK-1 enabled PC-3 cells to induce osteoblastic activity, including alkaline phosphatase production and mineralization, in murine bone marrow stromal cells indicating that DKK-1 blocked Wnt-mediated osteoblastic activity in PC-3 cells. Another prostate cancer cell line, C4-2B, induces mixed osteoblastic/osteolytic lesions. To determine if Wnts contribute to C4-2B's ability to induce mixed osteoblastic/osteolytic lesions, C4-2B cells were stably transfected with either empty vector or DKK-1 expression vector to block Wnt activity. The cells were then injected in the tibiae of mice and allowed to grow for 12 weeks. Blocking Wnt activity converted the C4-2B cells to a highly osteolytic tumor. Taken together, these data show that Wnts contribute to the mechanism through which prostate cancer induces osteoblastic activity.  相似文献   

8.
Prostate adenocarcinoma is associated with the formation of osteoblastic metastases in bone. It has been hypothesized that osteoclastic bone resorption is a critical component before the development of these osteoblastic lesions in bone. This observation has led researchers to test agents that inhibit osteoclastic activity to prevent or halt the formation of metastatic prostate cancer lesions in bone. Bisphosphonates inhibit osteoclast activity, and previous studies showed that they have the ability to reduce the osteolytic bone resorption associated with multiple myeloma and breast cancer. The objective of this study was to evaluate the efficacy of zoledronate in limiting the formation and/or progression of osteoblastic lesions produced by the injection of known prostate cancer cells (LAPC-9 and PC-3 cells) into the tibia of SCID mice. The mice were treated with either 30- micro g or 150- micro g doses of zoledronate before tumor implantation (pretreatment group), or at weekly intervals after tumor implantation (weekly treatment group), or weekly starting one month after tumor implantation (delayed-treatment group). The zoledronate was very effective in limiting the formation of osteolytic lesions in PC-3 implanted tibias by inhibiting osteoclast activity. Radiographic and histological analysis at weekly intervals revealed that osteolytic lesions developed in the control tibias by 2 weeks, and there was complete destruction of the cortical bone in much of the proximal tibias by 4 weeks. In the treatment groups, there was minimal cortical destruction noted in the weekly treatment groups at both doses, whereas mild cortical erosion was evident in the pretreatment groups, with more cortical destruction noted in the 30- micro g group compared with the 150- micro g group. Tartrate-resistant acid phosphatase (TRAP) staining showed that zoledronate decreased osteoclastic numbers and that there was a dose-dependent response. In tibias implanted with the LAPC-9 cells, the zoledronate was not effective in halting the formation of the osteoblastic lesions. Radiographic and histological analysis revealed that osteoblastic lesions either had formed or were developing in 18 of 18 of the control tibias and 36 of 36 of the treated tibias at 8 weeks regardless of dose or treatment schedule. Furthermore, TRAP staining demonstrated that osteoblastic lesions had formed in the LAPC-9 tibias under conditions in which osteoclast numbers were significantly reduced. These results suggest that osteoclast activity may not be critical for the development of osteoblastic lesions associated with prostate tumor cells. Hence, bisphosphonates may not be ideal agents to prevent the formation of osteoblastic lesions associated with prostate cancer metastases to bone.  相似文献   

9.
Prostate cancer, the most prevalent cancer affecting men, frequently metastasizes to the axial skeleton where it produces osteoblastic lesions with growth rates often exceeding that of the primary tumor. To evaluate the role of tumor cell-host stromal interaction and stromal specific growth factors (GFs) in prostate cancer growth and progression, we coinoculated athymic mice with human prostate cancer cells (LNCaP) and various nontumorigenic fibroblasts s.c. LNCaP tumor formation was most consistently induced by human bone (MS) fibroblasts (62%), followed by embryonic rat urogenital sinus mesenchymal (rUGM) cells (31%) and Noble rat prostatic fibroblasts (17%), but not by NIH-3T3, normal rat kidney, or human lung CCD16 fibroblasts. Carcinomas formed preferentially in male hosts, demonstrating in vivo androgen sensitivity. The human prostate component of these tumors was confirmed with immunohistochemical staining for prostate-specific antigen (PSA), Northern analysis for PSA expression, and Southern analysis for human repetitive Alu sequences. Elevations in serum PSA paralleled the histomorphological and biochemical findings. LNCaP and fibroblast cell-conditioned media (CM) was used to determine whether autocrine and paracrine mitogenic pathways exist between LNCaP and fibroblast cells in vitro, and various defined GFs were tested to identify possible active factors. Mitogenic assays revealed a 200-300% bidirectional stimulation between LNCaP and bone or prostate fibroblast-derived CM. Lung, normal rat kidney, and 3T3 fibroblast CM were not mitogenic for LNCaP cells. Among the purified GFs tested basic fibroblast growth factor (bFGF) was the most potent mitogen, stimulating LNCaP growth 180% in a concentration-dependent manner. Transforming growth factor alpha and epidermal growth factor were both minimally mitogenic. Coinoculation of LNCaP cells with a slowly absorbed matrix (Gelfoam) absorbed with bFGF or dialyzed and concentrated rUGM or MS CM was also capable of inducing LNCaP tumor formation in vivo. These observations illustrate that fibroblasts differentially modulate prostate cancer growth through the release of paracrine-mediated GFs, possibly including bFGF, and that tumor-stromal cell interactions play an important role in prostate cancer growth and progression.  相似文献   

10.
Bone is the most common site of metastasis in prostate cancer (PC), and to generate an animal model to investigate the basis of the unique organ tropism of PC cells for bone, we engrafted humanized non-obese diabetic/severe combined immunodeficient (NOD/SCID-hu) mice with human adult bone (HAB) and lung (HAL). Human PC cell lines LNCaP (1 x 10(7)) and PC-3 (5 x 10(6)) were injected into male NOD/SCID-hu mice via the lateral tail vein at 3-4 weeks after implantation. At 8 weeks after the injection, LNCaP and PC-3 cells had metastasized specifically to HAB in 35 and 65%, respectively, of the mice. The tumors formed by LNCaP appeared to be the osteoblastic type, whereas the PC-3 tumors consisted of osteolytic lesions without any surrounding osteogenic response. A feature of experimental metastasis of PC in NOD/SCID-hu mice was its specificity for HAB tissue. Human PC cells had no or very low metastatic potential in regard to implanted HAL, mouse bone, or native mouse bone. These findings indicate that metastasis of PC cells to HAB is both species and tissue specific. The availability of this small animal model could provide a useful tool for identifying and analyzing important features of the human PC metastatic process that cannot be addressed in conventional metastasis models.  相似文献   

11.
Zheng JY  Chen D  Chan J  Yu D  Ko E  Pang S 《Cancer gene therapy》2003,10(10):764-770
We have constructed a prostate-specific lentiviral vector based on the promoter of the prostate-specific antigen (PSA). The PSA promoter-based lentiviral vector has been used to deliver the diphtheria toxin A (DTA) gene into prostate cancer cells, and has shown promising tissue-specific eradication of prostate cancer cells in cell culture. To evaluate the efficacy of eradicating human prostate cancer cells in vivo, we used human LNCaP prostate xenografts in nude mice as an animal model and found that with a single injection of the DTA lentiviral vector into LNCaP prostate tumors, approximately 75% of the tumors (from three experiments; conducted 9/11, 11/15 and 3/4) in the animals were completely eradicated. The DTA vector has also shown the ability to cause tumor regression in recurrent prostate tumors. Intravenous injection of the DTA lentiviral vector into nude mice elicited no pathogenic effects, suggesting that this prostate tissue-specific vector is safe for eradicating prostate cancer cells in vivo.  相似文献   

12.
Previous studies revealed that prostate-specific antigen (PSA) is present in > 30% of human breast tumor cytosols. Survival analysis showed that patients with PSA-producing tumors have a reduced risk for relapse, suggesting PSA to be an independent favorable prognostic marker for a large subset of breast cancer patients. The present investigation established an in vivo model for the induction of PSA in human breast cancer tumors growing as xenografts in severe combined immunodeficient (SCID) mice. The human mammary cancer cell-line T47D was grown i.m. in female mice. When the tumor and leg diameter reached 10 mm, the mice were stimulated daily with norgestrel for either 5 or 7 days to produce PSA, and sacrificed on day 8. The prostate cancer cell-line LNCaP was grown in male mice and functioned as a positive control for PSA production. After T47D and LNCaP mice were sacrificed, a highly sensitive immunofluorometric assay was used to analyze the PSA concentration in the tumor, muscle, liver, and kidney cytosols. Norgestrel-stimulated T47D mice showed significantly more PSA in the tumors compared to tumors of the control mice. However, PSA levels in tumors of the stimulated mice were significantly lower than those in the LNCaP xenografts. No PSA levels above background were present in the blood and normal tissue of the norgestrel-stimulated or control T47D xenografts. This mouse model will be a valuable tool for investigating and screening new therapies for a subgroup of breast cancer patients who have significant PSA concentrations in their tumors.  相似文献   

13.
Summary Fibroblasts are important contributors to both benign and malignant growth of prostate epithelial cells in vivo. In the human prostate cancer model that we have established, we can grow human LNCaP tumors reproducibly in athymic mice by coinoculating the animals with human LNCaP epithelial cells puls fibroblasts derived from either the prostate or bone; human lung, normal rat kidney, and embryonic mouse fibroblasts were inactive. We have delivered conditioned medium isolated from competent fibroblasts directly to sites where the tumor cells were injected and found that the conditioned medium alone confers tumorigenicity. Further studies of the mechanism of fibroblast-epithelial interaction have indicated that close metabolic cooperation between fibroblast and epithelial cells, involving the production of growth factors by the epithelial cells and the production of extracellular matrices and growth factors by the fibroblasts (assayed in vitro), is important in promoting prostate tumor growth in vivo.We have also investigated the possible in vivo interaction between extracellular matrix proteins such as laminin, collagens, heparan sulfate proteoglycans and Matrigel and prostate epithelial cells. Selective extracellular-matrix components were found to confer tumorigenicity to the prostate epithelial cells. Moreover, extracellular-matrix components were observed to induce cancer cell differentiation and alter permanently the morphology, gene expression and tumorigenic potential of the cancer epithelial cells.  相似文献   

14.
Prostate cancer preferentially metastasizes to bone, resulting in high mortality. Strategies to inhibit prostate cancer metastasis include targeting both tumor-induced osteoblastic lesions and underlying osteoclastic activities. We and others have previously shown that blocking receptor activator of nuclear factor-kappaB ligand (RANKL) partially blocks tumor establishment and progression in bone in murine models. However, levels of RANKL in the cell lines used in these studies were very low, suggesting that soluble factors other than RANKL may mediate the cancer-induced osteoclast activity. To identify these factors, a human cytokine antibody array was used to measure cytokine expression in conditioned medium collected from primary prostate epithelial cells (PrEC), prostate cancer LNCaP and its derivative C4-2B, and PC3 cells. All prostate cancer cells produced high amounts of monocyte chemotactic protein-1 (MCP-1) compared with PrEC cells. Furthermore, levels of interleukin (IL)-6, IL-8, GROalpha, ENA-78, and CXCL-16 were higher in PC3 than LNCaP. These results were confirmed by ELISA. Finally, human bone marrow mononuclear cells (HBMC) were cultured with PC3 conditioned medium. Although both recombinant human MCP-1 and IL-8 directly stimulated HBMC differentiation into osteoclast-like cells, IL-8, but not MCP-1, induced bone resorption on dentin slices with 21 days of culture in the absence of RANKL. However, the conditioned medium-induced bone resorption was inhibited by MCP-1 neutralizing antibody and was further synergistically inhibited with IL-8 antibody, indicating that MCP-1, in addition to IL-8, mediates tumor-induced osteoclastogenesis and bone resorption. MCP-1 may promote preosteoclast cell fusion, forming multinucleated tartrate-resistant acid phosphatase-positive osteoclast-like cells. This study may provide novel therapeutic targets for treatment of prostate cancer skeletal metastasis.  相似文献   

15.
Bone is the key metastatic site for prostate cancer. Endothelin 1 (ET-1) produced abundantly by prostate cancer cells binds to its receptor present on bone marrow stromal cells and favors osteoblastic response during bone metastases of prostate cancer. This suggests that interrupting ET-1 interaction with its endothelin A (ET(A)) receptor could be useful for inhibiting prostate cancer bone metastasis and, as such, may enhance the therapeutic activity of docetaxel (Taxotere), the most commonly used drug for the treatment of metastatic prostate cancer. Therefore, the goal of our study was to obtain preclinical data supporting our hypothesis that the combined use of ET(A) receptor antagonist (ABT-627; Atrasentan) with Taxotere will be superior in inducing apoptosis in vitro and inhibiting tumor growth in vivo in a SCID-hu model of experimental bone metastasis induced by C4-2b prostate cancer cells. In vitro studies were done on a panel of prostate cancer cell lines to understand the molecular basis of combination therapy, and we found that the combination was more effective in the inhibition of cell viability and induction of apoptosis in LNCaP and C4-2b cells (androgen receptor positive) but not in PC-3 cells. These results were correlated with inactivation of Akt/nuclear factor-kappaB and its target genes. For in vivo studies, the therapeutic regimen was initiated when the tumor began showing signs of growth and treatment was continued for 5 weeks. Tumor volume and serum prostate-specific antigen were used as terminal index to evaluate the therapeutic advantage of combination therapy relative to a single regimen and untreated control. At termination, we found a 90% reduction in tumor volume by combination treatment relative to the untreated control group. Most importantly, the antitumor activity was associated with the down-regulation of molecular markers in tumor tissues that were similar to those observed in vitro.  相似文献   

16.
Osteoprotegerin in prostate cancer bone metastasis   总被引:5,自引:0,他引:5  
Osteoprotegerin (OPG), a critical regulator of osteoclastogenesis, is expressed by prostate cancer cells, and OPG levels are increased in patients with prostate cancer bone metastases. The objective of this study was to investigate the effects of OPG overexpression on prostate cancer cells and prostate cancer/bone cell interactions in vitro and in vivo. OPG-transfected C4-2 cells expressed 8.0 ng OPG per mL per 10(6) cells, whereas no OPG was detected in the media of C4-2 cells transfected with a control plasmid. OPG overexpressed by C4-2 cells protected these cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis and decreased osteoclast formation. Subcutaneous OPG-C4-2 and pcDNA-C4-2 tumors exhibited similar growth and take-rate characteristics. However, when grown in bone, tumor volume was decreased in OPG-C4-2 versus pcDNA-C4-2 (P=0.0017). OPG expressed by C4-2 cells caused increases in bone mineral density (P=0.0074) and percentage of trabecular bone volume (P=0.007), and decreases in numbers of osteoblasts and osteoclasts when compared with intratibial pcDNA-C4-2 tumors (P=0.003 and P=0.019, respectively). In summary, our data show that increased expression of OPG in C4-2 cells does not directly affect proliferation of prostate cancer cells but indirectly decreases growth of C4-2 tumors in the bone environment. Our data also show that OPG expressed by C4-2 cells inhibits bone lysis associated with C4-2 bone metastasis, which results in net increases in bone volume. We therefore hypothesize that OPG expressed in prostate cancer patient bone metastases may be at least partially responsible for the osteoblastic character of most prostate cancer bone lesions.  相似文献   

17.
Most patients that present in the clinic with prostate cancer have either localized or recurrent postradiotherapy therapy tumors that may be amenable to injectable treatments using slow-release cytotoxic drugs. The objective of this preclinical study was to design an injectable polymeric paste formulation of paclitaxel for intratumoral injection into nonmetastatic human prostate tumors grown s.c. in mice. Paclitaxel was dissolved (10% w/w) in a blend of a biodegradable triblock copolymer of a random copolymer of D,L-lactide and epsilon-caprolactone (PLC) with poly(ethyleneglycol) [PEG; PLC-PEG-PLC] blended with methoxypoly(ethylene glycol) in a 40:60 ratio. Human prostate LNCaP tumors grown s.c. in castrated athymic male mice were injected with 100 microl of this paste at room temperature. Changes in tumor progression were assessed using both serum prostate-specific antigen (PSA) levels and tumor size. Paclitaxel inhibited LNCaP cell growth in vitro in a concentration-dependent fashion with an IC50 of 1 nM. Apoptosis was documented using DNA fragmentation analysis. The paste formulation solidified over a period of 1 h both in vivo and in aqueous media at 37 degrees C as the methoxypoly(ethylene glycol) component partitioned out of the insoluble PLC-PEG-PLC/paclitaxel matrix. The semisolid implant released drug at a rate of about 100 microg/day in vitro. In control mice treated with paste without paclitaxel, serum PSA levels increased from 2-8 ng/ml (mean, 4.3+/-2 ng/ml) to 60-292 ng/ml (mean, 181+/-88 ng/ml), and tumor volume increased from 30 to 1000 mm3. In mice treated with a single 100-microl injection 3 weeks after castration (early-phase treatment group), tumors decreased in volume from a mean of 43+/-19 mm3 to nonpalpable, and PSA levels decreased from a mean of 22+/-8 to 2+/-1 ng/ml by 8 weeks after castration. In mice treated 5 weeks after castration (androgen-independent tumors; late-phase treatment group), tumors decreased in volume from a mean of 233+/-136 mm3 to nonpalpable, and serum PSA decreased from 24+/-8 to 9+/-4 ng/ml. Observed side effects of the treatment were limited to minor ulceration at the needle injection site in paclitaxel-treated mice only. The controlled-release formulation can be injected via 22-gauge needles and is effective in inhibiting LNCaP tumor growth and PSA levels in mice bearing multiple nonmetastatic tumors. Paclitaxel may be an effective therapy for patients with localized tumors recurring after radiotherapy and for some patients with localized tumors who are not candidates for radical treatment.  相似文献   

18.
To establish a prostate cancer model expressing prostate-specific antigen (PSA) with metastatic potential, LNCaP or PC-3 cells were inoculated into the testis of SCID mice, resulting in a 100% rate of tumor formation. A significant increase in serum PSA was found in mice with LNCaP xenografts. Circulating tumor cells and micrometastases to organs such as lung, liver, spleen, and omentum were detected for both cell lines by PCR of the human beta-globin gene. Lymph node metastases occurred more frequently with PC-3 than LNCaP cells. This is the first report showing stable growth of LNCaP cells in mice with metastases to the regional lymph nodes. This model of prostate cancer should help to assess treatment strategies targeting PSA.  相似文献   

19.
The ability of prostate-specific antigen (PSA) to predict tumor volume and stage in patients with prostate cancer would be improved if factors regulating its production and clearance were better defined. A thorough understanding of the pharmacokinetics (regulation of production, metabolism, and excretion) of PSA has been precluded, however, by the absence of an in vivo animal model. The purposes of this study are to develop a murine model for evaluating PSA pharmacokinetics in vivo and to assess factors that influence PSA production in vitro. The human prostate cancer cell line, LNCaP, was chosen because it is androgen sensitive and PSA positive. Although LNCaP cells are usually nontumorigenic when inoculated s.c. in athymic mice, coinoculation of 1 x 10(6) LNCaP cells with 1 x 10(6) human bone fibroblasts reliably produces PSA-secreting carcinomas. This LNCaP model provides accurate correlation between tumor volume and serum PSA levels (r = 0.94) and demonstrates that tumor volume and androgens are codeterminants of circulating PSA levels. Following castration, serum PSA levels decrease rapidly up to 8-fold and increase up to 20-fold following androgen supplementation, without detectable castration-induced tumor cell death or concomitant changes in tumor volume. Serum PSA levels increase 0.24 ng/ml/mm3 of tumor, which is approximately 5-fold less than that estimated for humans. Most likely this reduced PSA index (PSA:tumor volume ratio) results from a 7-fold faster clearance of PSA in athymic mice than in humans; other than this shorter half-life, PSA elimination in the murine model appears similar to that in humans, with both following first-order kinetics characteristic of a two-compartment model. Interestingly, following prolonged growth (greater than 21 days) in castrate hosts, LNCaP tumors are capable of adapting to an androgen-deprived environment whereby LNCaP tumors regain the ability to secrete PSA in amounts similar to the precastrate state. In LNCaP cells, androgens increase PSA mRNA levels 4-fold in vivo and in vitro. PSA mRNA expression is also altered by various growth factors. Changes in PSA production induced by androgens and growth factors do not always parallel changes in LNCaP cell growth rate induced by these factors, suggesting that PSA production occurs independently of cell growth rate and may be influenced by various interrelated factors, including hormonal and stromal milieu. Observations from this murine model suggest that androgens and tumor volume are independent determinants of serum PSA levels and imply that decreases in circulating PSA following antiandrogen therapy may not always reflect a corresponding reduction in tumor volume.  相似文献   

20.
A variety of novel therapeutic approaches have emerged recently for the treatment of human cancers. We have coupled two of these therapeutic approaches, gene therapy and antiangiogenic therapy and tested them in two murine prostate cancer models Recombinant adenovirus encoding the ligand-binding ectodomain of the VEGF receptor 2 (Flk1) fused to an Fc domain was administered to SCID mice carrying orthotopic human LNCaP tumors as well as to transgenic (TRAMP) mice with spontaneous prostate tumors. Ad Flk1-Fc injection reduced tumor growth by 66% for orthotopic LNCaP tumors and by 42% for spontaneous tumors in TRAMP mice. Microvessel density in the primary tumors was reduced by 68% and 40% in the two models respectively. A decrease in microvessel density was also observed in lymphatic metastases in Ad Flk1-Fc-treated TRAMP mice and was correlated with a decrease in the frequency of regional metastases in the treated animals. Survival time was also extended in the Ad Flk1-Fc-treated TRAMP mice relative to the control-treated animals. Our results suggest that adenoviral delivery of soluble Flk1 receptor can reduce vascular density and prostate tumor growth and prolong survival time in orthotopically implanted tumors as well as in spontaneous prostate tumors in transgenic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号