首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have demonstrated that augmentation of intrarenal angiotensin II (ANG II) levels during ANG II induced hypertension involves both endogenous formation and accumulation of circulating ANG II. The present work extends these findings and determines whether accumulation of infused ANG II in the kidney requires AT1 receptor activation by using Val5-ANG II as the infused peptide. Male Sprague-Dawley rats were uninephrectomized and divided into three groups: control (n = 6), Val5-ANG II (exogenous form) infused (n = 8), and Val5-ANG II infused rats treated with losartan (n = 8). Val5-ANG II, which has the same biological and immunoreactive properties as endogenous ANG II, was infused at 40 ng/min via an osmotic minipump implanted subcutaneously. By day 12, systolic blood pressure (SBP) increased significantly in Val5-ANG II infused rats (197 ± 7 mm Hg). As previously shown, the development of hypertension in ANG II infused rats was prevented by losartan treatment. Blood and kidney samples were harvested, subjected to HPLC to separate Val5-ANG II (exogenous) from Ile5-ANG II (endogenous) and the fractions were measured by radioimmunoassay. In the Val5-ANG II infused rats treated with losartan, total plasma ANG II levels were elevated to a greater extent than in rats not treated with losartan (289 ± 20 v 119 ± 14 fmol/mL). However, losartan markedly decreased by 88% the enhancement of intrarenal Val5-ANG II content that occurred in the rats infused with Val5-ANG II alone. These results demonstrate that AT1 receptor blockade markedly reduces the intrarenal uptake of circulating ANG II that occurs in ANG II induced hypertension.  相似文献   

2.
Renal angiotensin II (AII) is suggested to play a role in the enhanced sodium reabsorption that causes a shift in pressure natriuresis in obesity related hypertension; however, the mechanism is not known. Therefore, to assess the influence of AII on tubular sodium transport, we determined the effect of AII on the Na+, K+-ATPase activity (NKA), an active transporter regulated by the AT1 receptor activity, in the isolated proximal tubules of lean and obese Zucker rats. Also, we determined the levels of the tubular AT1 receptor and associated signal transducing G proteins, as the initial signaling components that mediate the effects of AII on Na+, K+-ATPase activity. In the isolated proximal tubules, AII produced greater stimulation of the NKA activity in obese compared with lean rats. Determination of the AT1 receptors by Scatchard analysis of the [125I] Sar-Ang II binding and Western blot analysis in the basolateral (BLM) and brush border membrane (BBM) revealed a modest but significant increase (23%) in the AT1 receptor number mainly in the BLM of obese compared with lean rats. The AII affinity for AT1 receptors, as determined by IC50 values of AII to displace [125I] Sar-Ang II binding in BLM and BBM were similar in lean and obese rats. Western blot analysis revealed significant increases in Giα1, Giα2, Giα3, and Gq/11α in BLM and Giα1, Giα3, and Gq/11α in BBM of obese as compared with lean rats. The increase in the levels of the AT1 receptor and G proteins, mainly in the BLM, may be contributing to the enhanced AII-induced activation of NKA in the proximal tubules of obese rats. This phenomenon, in part, may be responsible for the increased sodium reabsorption and the development of hypertension in obese Zucker rats.  相似文献   

3.
In liver cirrhosis, renin‐angiotensin system (RAS) activation sustains renal sodium retention and hepatic fibrogenesis. New information has recently enlivened the traditional concept of RAS. For instance, renin and prorenin bind their ubiquitous receptors, resulting in the local production of angiotensin (Ang) II; increased serum calcium and calcimimetic agents, through stimulation of extracellular calcium‐sensing receptors (CaSR), blunt renin production and lead to natriuretic effects in human and experimental cirrhosis. Alongside systemic production, there is Ang II tissue production within various organs through RAS enzymes different from angiotensin‐converting enzyme (ACE), that is chymase, tissue plasminogen activator and several cathepsins. In experimental cirrhosis, inhibition of chymase leads to natriuretic and hepatic antifibrotic effects, without changes in systemic haemodynamics. In the kidney, local RAS coordinates proximal and distal tubular sodium reabsorption. However, renalase, whose plasma and tissue levels are severely altered in experimental cirrhosis, degrades systemic and renal tubule catecholamines, antagonizing the effects of renal RAS. Angiotensinogen‐derived natriuretic and vasodilating peptides (Ang1‐9, Ang1‐7, Ang3‐8) and their receptors have been described. Receptor agonists or antagonists are available to affect portal hypertension and sodium retention in cirrhosis. ACE2‐dependent generation of Ang1‐7 may inhibit experimental liver fibrosis. inhibition of Ang1‐7 clearance by means of neprilysin blockade has portal hypotensive and natriuretic effects. Ang1‐12, whose production renin does not regulate, is converted to several different angiotensin peptides via chymase. Finally, Ang II behaves as either an antinatriuretic or a natriuretic agent, based on the tissue content of AT1R and AT2R receptors, their ratio being prone to pharmacological modulation.  相似文献   

4.
The present study was designed to determine the cellular signaling mechanisms responsible for mediating the effects of angiotensin II on proximal tubular Na+,K+-ATPase activity. Angiotensin II produced a biphasic effect on Na+,K+-ATPase activity: stimulation at 10-13-10-10M followed by inhibition at 10-7-10-5M of angiotensin II. The stimulatory and inhibitory effects of angiotensin II were antagonized by losartan (1nM) suggesting the involvement of AT, receptor. Angiotensin IT produced inhibition of forskolin-stimulated CAMP accumulation at 10-13-10-10M followed by a stimulation in basal CAMP levels at 10-7-10-5M. Pretreatment of proximal tubules with losartan (1nM) antagonized both the stimulatory and inhibitory effects of angiotensin II on CAMP accumulation. Pretreatment of the proximal tubules with pertussis toxin (PTx) abolished the stimulation of Na+,K+-ATPase activity but did not affect the inhibition of Na+,K+-ATPase activity produced by angiotensin II. Pretreatment of the tubules with cholera toxin did not alter the biphasic effect of angiotensin II on Na+,K+-ATPase activity. Mepacrine (l0μM), a phospholipase A2 (PLA2) inhibitor, reduced only the inhibitory effect of angiotensin II on Na+,K+-ATPase activity. These results suggest that the activation of AT1angiotensin II receptors stimulates Na+,K+-ATPase activity via a PTx-sensitive G protein-linked inhibition of adenylyl cyclase pathway, whereas the inhibition of Na+,K+-ATPase activity following AT1receptor activation involves multiple signaling pathways which may include stimulation of adenylyl cyclase and PLA2  相似文献   

5.
Angiotensin II (Ang II) via the activation of AT1 receptors and subsequent stimulation of the tubular sodium transporters increases sodium and water reabsorption in the proximal tubule. An enhanced tubular action of Ang II is implicated in obesity related hypertension; however, the mechanism of such a phenomenon is unknown. Present study was designed to determine the AT1 receptor numbers and function in the proximal tubule of obese and lean Zucker rats. Obese Zucker rats were hypertensive and hyperinsulinemic. The plasma renin activity was similar in the lean and obese rats. Angiotensin II stimulated the Na,H‐exchanger (NHE) activity in the proximal tubule, but the stimulatory response was markedly greater in obese than in lean rats. Similarly, Ang II caused greater inhibition in cAMP accumulation in the proximal tubule of obese compared to lean rats. The [125I]sar‐Ang II binding revealed a 100% increase in the AT1 receptor number in the brush border membrane (BBM) of obese compared to lean rats. The Western blot analysis revealed a 36–51% increase in the Giα1 and Giα3 in the BBM of obese compared to lean rats. We conclude that increases in the AT1 receptor number and abundance of the Giα on BBM may be responsible for the enhanced signaling and subsequent greater stimulation of NHE by Ang II in proximal tubules of obese rats. The greater stimulation of NHE by Ang II may contribute to the increased tubular sodium reabsorption and to the hypertension in obese Zucker rats.  相似文献   

6.
Both renin–angiotensin systems and insulin participate in kidney-involved blood pressure regulation. Activation of angiotensin II type 2 receptor (AT2R) decreases sodium reabsorption in renal proximal tubule (RPT) cells, whereas insulin produces the opposite effect. We presume that AT2R has an inhibitory effect on insulin receptor expression in RPT cells, which may affect renal sodium transport and therefore be of physiological or pathological significance. Our present study found that activation of AT2R inhibited insulin receptor expression in a concentration and time-dependent manner in RPT cells from Wistar-Kyoto (WKY) rats. In the presence of a protein kinase C (PKC) inhibitor (PKC inhibitor peptide 19–31, 10?6 mol/L) or a phosphatidylinositol 3 kinase inhibitor (wortmannin, 10?6 mol/L), the inhibitory effect of AT2R on insulin receptor was blocked, indicating that both PKC and phosphatidylinositol 3 kinase were involved in the signaling pathway. There was a linkage between AT2R and insulin receptor which was determined by both laser confocal microscopy and coimmunoprecipitation. However, the effect of AT2R activation on insulin receptor expression was different in RPT cells from spontaneously hypertensive rats (SHRs). Being contrary to the effect in WKY RPT cells, AT2R stimulation increased insulin receptor in SHR RPT cells. Insulin (10?7 mol/L, 15 minutes) enhanced Na+-K+-ATPase activity in both WKY and SHR RPT cells. Pretreatment with CGP42112 decreased the stimulatory effect of insulin on Na+-K+-ATPase activity in WKY RPT cells, whereas pretreatment with CGP42112 increased it in SHR RPT cells. It is suggested that activation of AT2R inhibits insulin receptor expression and function in RPT cells. The lost inhibitory effect of AT2R on insulin receptor expression may contribute to the pathophysiology of hypertension.  相似文献   

7.
Angiotensin II (ANG II) has been implicated in the hypertrophic and fibrotic responses of the heart and kidney to systemic hypertension. To determine whether these actions of ANG II are related to tissue-specific stimulation of growth factors, we infused adult Sprague-Dawley rats with ANG II at 50 ng/min (low dose), 100 ng/min (high dose), or vehicle for 1 week. Rats receiving vehicle or low-dose ANG II were normotensive with normal plasma aldosterone concentration, whereas rats receiving high-dose ANG II were hypertensive with increased plasma aldosterone. Tissue fibrosis was quantified morphometrically, and messenger RNA (mRNA) for transforming growth factor-β1 (TGF-β1) and prepro-epidermal growth factor (EGF) was measured in liver, heart, and renal glomeruli and tubules. In addition, mRNA was determined for clusterin, a glycoprotein expressed in response to tissue injury. Compared to vehicle, low-dose ANG II increased TGF-β1 expression in glomeruli, tubules, and heart, but not in liver, and increased EGF expression in renal tubules only. High-dose ANG II decreased clusterin expression in liver only. Fibrosis was induced by low- and high-dose ANG II in kidney and heart, but not in liver. We conclude that ANG II selectively stimulates TGF-β1 mRNA in the heart and kidney, which may contribute to cardiac and renal interstitial fibrosis resulting from activation of the renin-angiotensin system independent of hypertension. By stimulating cellular proliferation, selective stimulation by ANG II of EGF in renal tubules may amplify the effects of TGF-β1. Suppression of clusterin expression in the liver of hypertensive rats may represent a specific response to high levels of circulating ANG II or a response to hypertensive injury.  相似文献   

8.
BackgroundThe renin angiotensin system (RAS) and the renal dopaminergic system (RDS) act as autocrine and paracrine systems to regulate renal sodium management and inflammation and their alterations have been associated to hypertension and renal damage. Nearly 30–50% of hypertensive patients have insulin resistance (IR), with a strong correlation between hyperinsulinemia and microalbuminuria.ObjectiveThe aim of this study was to demonstrate the existence of an imbalance between RAS and RDS associated to IR, hypertension and kidney damage induced by fructose overload (FO), as well as to establish their prevention, by pharmacological inhibition of RAS with losartan.Materials/MethodsNinety-six male Sprague-Dawley rats were randomly divided into four groups and studied at 4, 8 and 12 weeks: control group (C4, C8 and C12; tap water to drink); fructose-overloaded group (F4, F8 and F12; 10% w/v fructose solution to drink); losartan-treated control (L) group (L4, L8 and L12; losartan 30 mg/kg/day, in drinking water); and fructose-overloaded plus losartan group (F + L4, F + L8 and F + L12, in fructose solution).ResultsFO induced metabolic and hemodynamic alterations as well as an imbalance between RAS and RDS, characterized by increased renal angiotensin II levels and AT1R overexpression, reduced urinary excretion of dopamine, increased excretion of l-dopa (increased l-dopa/dopamine index) and down-regulation of D1R and tubular dopamine transporters OCT-2, OCT-N1 and total OCTNs. This imbalance was accompanied by an overexpression of renal tubular Na+, K+-ATPase, pro-inflammatory (NF-kB, TNF-α, IL-6) and pro-fibrotic (TGF-β1 and collagen) markers and by renal damage (microalbuminuria and reduced nephrin expression). Losartan prevented the metabolic and hemodynamic alterations induced by FO from week 4. Increased urinary l-dopa/dopamine index and decreased D1R renal expression associated to FO were also prevented by losartan since week 4. The same pattern was observed for renal expression of OCTs/OCTNs, Na+, K+-ATPase, pro-inflammatory and pro-fibrotic markers from week 8. The appearance of microalbuminuria and reduced nephrin expression was prevented by losartan at week 12.ConclusionThe results of this study provide new insight regarding the mechanisms by which a pro-hypertensive and pro-inflammatory system, such as RAS, downregulates another anti-hypertensive and anti-inflammatory system such as RDS. Additionally, we propose the use of l-dopa/dopamine index as a biochemical marker of renal dysfunction in conditions characterized by sodium retention, IR and/or hypertension, and as a predictor of response to treatment and follow-up of these processes.  相似文献   

9.
In several models of angiotensin II (ANG II) dependent hypertension, intrarenal ANG II levels increase to a much greater extent than the circulating levels even though the renal renin levels are decreased. The 2-kidney-1-clip (2K1C) Goldblatt rat model is particularly intriguing because hypertension develops in the presence of an intact kidney which would be expected to maintain sodium balance and protect against hypertension. Although the non-clipped kidney becomes renin depleted, it exhibits enhanced microvascular reactivity and increased tubular fractional sodium reabsorption. The non-clipped kidney ANG II content is either elevated or unchanged and proximal tubular fluid ANG II concentrations are not suppressed compared to the nanomolar concentrations found in normal rats. These results suggest that intrarenal ANG II content can be regulated independently of renal renin content. A similar hypertensive process occurs in rats infused chronically with low doses of ANG II. Renal ANG II content increases over 14 days to a greater extent than the circulating concentrations. Functionally, ANG II infused rats demonstrate reduced sodium excretion and marked suppression of pressure natriuresis. These ANG II dependent influences on kidney function contribute to the maintenance of hypertension. Renal augmentation of ANG II, hypertension, and suppressed sodium excretion are blocked by AT1 receptor blockers. To study the mechanisms responsible for intrarenal ANG II augmentation, we infused a different form of ANG II (Val5 ANG II), that can be separated from endogenous ANG II by HPLC. These results indicated that the increased renal ANG II content was due to accumulation of circulating ANG II in addition to continued production of endogenous ANG II. The renal accumulation of Val5-ANG II was markedly reduced by concomitant treatment with the AT1 receptor blocker, losartan. In addition, we found an unchanged overall ANG II-AT1 receptor protein which probably contributes to the maintained ANG II dependent influences. Collectively, the data support the concept that there is internalization of ANG II through an AT1 receptor mediated process and that some of the internalized ANG II is protected from degradation. The augmented intrarenal ANG II coupled with sustained levels of AT1 receptors contribute to the continued ANG II dependent suppression of renal function and sodium excretion thereby maintaining the hypertension.  相似文献   

10.
IntroductionThis study was performed to determine the effects of high-salt diet on the magnitude of the increases in systolic blood pressure (SBP) and kidney tissue angiotensin (ANG) II levels that occur after induction of ANG II-dependent malignant hypertension in Cyp1a1-Ren2 transgenic rats with inducible expression of the mouse Ren2 renin gene [strain name: TGR(Cyp1a1Ren2)].MethodsCyp1a1- Ren2 rats (n = 6) were fed a normal diet containing 0.3% indole-3- carbinol (I3C) for 10 days to induce ANG II-dependent malignant hypertension.ResultsRats induced with I3C exhibited increases in SBP and elevations of ANG II levels in kidney cortex and medulla. In a second group of rats (n = 6), high-salt intake alone did not alter basal SBP; however, subsequent dietary administration of 0.3% I3C during continued high-salt intake elicited a substantially greater increase in SBP than observed in rats fed a normal salt diet. ANG II levels in kidney cortex and medulla of rats induced with I3C and fed a high-salt diet were elevated similarly to those in rats induced with I3C alone. Chronic administration of the AT1 receptor antagonist, losartan (100 mg/L in drinking water, n = 6), markedly attenuated the I3C-induced increase in SBP and prevented the augmentation of ANG II levels in kidney cortex and medulla in rats induced with I3C and maintained on a high-salt diet.ConclusionsActivation of AT1 receptors contributes to the augmented blood pressure and elevated kidney tissue ANG II levels that occur in Cyp1a1-Ren2 transgenic rats with malignant hypertension maintained on a high-salt diet.  相似文献   

11.
In the past, virtually all of the physiologic actions of angiotensin II (ANG II) were thought to be mediated by the type-1 ANG II receptor. However, there is now a compelling body of evidence suggesting that the type-2 (AT2) receptor is an important regulator of renal function and blood pressure (BP). The AT2 receptor stimulates a bradykinin (BK)-nitric oxide (NO)-cyclic GMP vasodilator cascade in blood vessels and in the kidney. Recent studies have shown that absence of the AT2 receptor lends to pressor and natriuretic hypersensitivity to ANG II. Furthermore, there is now excellent evidence that the AT2 receptor mediates pressure natriuresis. The AT2 receptor also stimulates the conversion of prostaglandin E2 (PGE2) to PGF2. In addition, it is now apparent that the therapeutic reduction in BP with AT1 receptor blockade (eg, losartan, valsartan, candesartan) is mediated by ANG II stimulation of the AT2 receptor, leading to increased levels of BK, NO, and cGMP. Current evidence predicts that AT2 receptor agonists would be beneficial in the treatment of hypertension.  相似文献   

12.
Recent evidence suggests that the renal tubular renin angiotensin system regulates urinary Na+ and water excretion and blood pressure. Three key components of the tubular renin angiotensin system, namely renin, prorenin receptor, and angiotensin-II type 1 receptor, are localized to the collecting duct. This system may modulate collecting duct Na+ and water reabsorption via angiotensin-II-dependent and angiotensin-II-independent pathways. Further, the system may be of greatest relevance in hypertensive states and particularly those characterized by high circulating angiotensin-II. In this review, we summarize the current knowledge on the synthesis, regulation, and function of collecting duct-derived renin angiotensin system components and examine recent developments with regard to regulation of blood pressure and renal fluid and Na+ excretion.  相似文献   

13.
The renin-angiotensin system (RAS) is a master regulator of blood pressure and fluid homeostasis. Because RAS components are expressed in several tissues that may influence blood pressure, studies using conventional gene targeting to globally interrupt the RAS have not determined the contributions of angiotensin II receptor type 1 (AT1) receptors in specific tissue pools to blood pressure regulation and tissue injury. Recent experiments using kidney cross-transplantation and mice lacking the dominant murine AT1 receptor isoform, AT 1A, have demonstrated that 1) AT1 receptors inside and outside the kidney make equivalent contributions to normal blood pressure homeostasis, 2) activation of renal AT 1 receptors is required for the development of angiotensin II-dependent hypertension, and 3) this blood pressure elevation rather than activation of AT1 receptors in the heart drives angiotensin II-induced cardiac hypertrophy. These findings, together with previous experiments, confirm the kidney’s critical role in the pathogenesis of hypertension and its complications.  相似文献   

14.
Angiotensin II, via activation of AT1 receptors in the kidney regulates sodium/fluid homeostasis and blood pressure. An exaggerated action of angiotensin II mediated via activation of AT1 receptors has been implicated in the increased renal sodium retention and the resetting of the pressure natriuresis in obesity related hypertension. Treatment of obese Zucker rats with AT1 receptor blockers reduces blood pressure to a greater extent and produces greater natriuresis. Also, there is an increased membranal AT1 receptor numbers and angiotensin II produces greater activation of sodium transporters in the isolated tubules from obese Zucker rats. Interestingly, AT2 receptors, which are believed to be beneficial to the renal and cardiovascular function in terms of their action on kidney and blood vessels, are greatly increased in proximal tubular membranes of obese Zucker rats. Whole animal and in vitro studies indicate that higher plasma insulin level, generally associated with obesity, is responsible for the up‐regulation of both AT1 and AT2 receptors in the kidney. Determining the consequence of selective blocking of AT1 receptors and/or activation of the AT2 receptors on renal and cardiovascular function, and the effect of lowering insulin on these receptors present an important area of further investigation in obesity.  相似文献   

15.
The renin-angiotensin system is an enzyme-linked hormonal cascade that plays an important role in body fluid and cardiovascular regulation. The system is initiated by the action of renin on the precursor protein, angiotensinogen (AGT), whose sequence information is scarce because of its high variability among species. In the present study, we cloned AGT in chondrichthyans (elasmobranchs: Triakis scyllium, Dasyatis akajei,Leucoraja erinacea and a holocephalan: Callorhinchus milii). Homology was low among AGTs thus far identified; 25-28% between elasmobranchs and tetrapods and 33-61% even within chondrichthyans. All chondrichthyan angiotensin (ANG) II’s have a unique Pro3 instead of Val3 as seen in all other species. In addition, holocephalan ANG II has an unusual His4 instead of Tyr4. In addition, and the N-terminal amino acid, which is usually Asp1 in tetrapods and Asn1 in fishes, was highly variable (Asp, Asn or Tyr) in chondrichthyans. Molecular phylogenetic analysis showed that chondrichthyan AGT precursors are clustered into a group separated from those of tetrapods and teleosts. The AGT gene was most abundantly expressed in the liver, followed by the kidney, interrenal tissue and rectal gland of Triakis where biological actions of ANG II have been demonstrated. Collectively, we identified diversified AGT genes for the first time in chondrichthyes and showed that their ANG II’s have unique amino acid residues at positions 1, 3 and 4. High variability of ANG II sequences in chondrichthyans is discussed in relation to their unique regulatory mechanisms such as urea-based osmoregulation.  相似文献   

16.
The renin–angiotensin system plays a critical role in the pathogenesis of several cardiovascular diseases, largely through activation of type I angiotensin (AT1) receptors by angiotensin II. Treatment with AT1 receptor blockers (ARBs) is a proven successful intervention for hypertension and progressive heart and kidney disease. However, the divergent actions of AT1 receptors on individual cell lineages in hypertension may present novel opportunities to optimize the therapeutic benefits of ARBs. For example, T lymphocytes make important contributions to the induction and progression of various cardiovascular diseases, but new experiments indicate that activation of AT1 receptors on T cells paradoxically limits inflammation and target organ damage in hypertension. Future studies should illustrate how these discrepant functions of AT1 receptors in target organs versus mononuclear cells can be exploited for the benefit of patients with recalcitrant hypertension and other cardiovascular diseases.  相似文献   

17.
The fawn-hooded hypertensive (FHH) rat serves as a genetic model of spontaneous hypertension associated with glomerular hyperfiltration and proteinuria. However, the knowledge of the natural course of hypertension and kidney disease in FHH rats remains fragmentary and the underlying pathophysiological mechanisms are unclear. In this study, over the animals’ lifetime, we followed the survival rate, blood pressure (telemetry), indices of kidney damage, the activity of renin–angiotensin (RAS) and nitric oxide (NO) systems, and CYP450-epoxygenase products (EETs). Compared to normotensive controls, no elevation of plasma and renal RAS was observed in prehypertensive and hypertensive FHH rats; however, RAS inhibition significantly reduced systolic blood pressure (137 ± 9 to 116 ± 8, and 159 ± 8 to 126 ± 4 mmHg, respectively) and proteinuria (62 ± 2 to 37 ± 3, and 132 ± 8 to 87 ± 5 mg/day, respectively). Moreover, pharmacological RAS inhibition reduced angiotensin (ANG) II and increased ANG 1–7 in the kidney and thereby may have delayed the progression of kidney disease. Furthermore, renal NO and EETs declined in the aging FHH rats but not in the control strain. The present results, especially the demonstration of exaggerated vascular responsiveness to ANG II, indicate that RAS may contribute to the development of hypertension and kidney disease in FHH rats. The activity of factors opposing the development of hypertension and protecting the kidney declined with age in this model. Therefore, therapeutic enhancement of this activity besides RAS inhibition could be attempted in the therapy of human hypertension associated with kidney disease.  相似文献   

18.
The amount of renal prorenin in models of hypertension in rats was studied by using a novel enzyme (PreR-Co). Ten microgrames of PreR-Co promoted a complete conversion of inactive renin, and during the first 15-min incubation the reaction was under initial velocity conditions. The enzyme-substrate reaction obeyed Michaelis-Menten kinetics, with a Vmax of 0.97 × 10?5 pmol Ang I/min and a Km of 5.03 × 10?5 pmol prorenin. The difference between the total renin concentration (TRC) and active renin concentration (ARC) in the normal rat kidney (356.4 ± 20.6 and 105.3 ± 7.6 ng Ang I/mg tissue/h respectively), indicated that inactive renin comprised 70% of TRC. In the aortic coarctation model, inactive renin comprised 68% of TRC in the right kidney and no or very little prorenin was found in the left kidney. In the Goldblatt 2-kidney, 1-clip rats, the right kidney prorenin comprised 61% of the TRC and 54% in the clamped left kidney. After DOCA–Salt treatment prorenin was almost absent in the rat kidneys.

In conclusion, we have developed an easy and sensitive method to measure inactive renin in the kidney that may be useful to study the biochemical events of renin maturation in physiological and pathological states.  相似文献   

19.
Here, we briefly review the role of the renin–angiotensin system (RAS) in cognitive impairment and neurodegenerative disease, mainly discussing our experimental studies on the angiotensin II type 2 (AT2) receptor. Ischemic brain damage is enhanced in mice with overexpression of angiotensin II, with reduced cerebral blood flow in the penumbra and an increase in oxidative stress in the ischemic area. Angiotensin II binds two types of receptors, type 1 (AT1) and type 2 (AT2). Our previous experiments showed that AT1 receptor signaling has a harmful effect, and AT2 receptor signaling has a protective effect on the brain after stroke. AT2 receptor signaling in bone marrow stromal cells or hematopoietic cells was shown to prevent ischemic brain damage after middle cerebral artery occlusion. In contrast, AT2 receptor signaling also affects cognitive function. We showed that direct stimulation of the AT2 receptor by a newly generated direct AT2 receptor agonist, Compound 21 (C21), enhanced cognitive function in wild‐type (C57BL6) mice and an Alzheimer's disease mouse model with intracerebroventricular injection of amyloid β (1–40). Finally, we carried out clinical research by investigating the levels of RAS components in patients with neurodegenerative diseases. We observed a reduction of angiotensin II and angiotensin converting enzyme (ACE) 2 levels, and an increase in ACE level in cerebrospinal fluid from patients with multiple sclerosis. These results suggest that RAS is also involved in neurodegenerative disease. Therefore, regulation of RAS might be a new therapeutic target to protect neurons from neural diseases. Geriatr Gerontol Int 2012; ••: ••–•• .  相似文献   

20.
Objective The intrarenal renin-angiotensin system (RAS) is activated in patients with chronic kidney disease (CKD), and urinary angiotensinogen (AGT) levels, a surrogate marker of the intrarenal RAS activation, are associated with blood pressure (BP) and urinary albumin excretion. In addition, it has been shown that changes in urinary AGT levels correlate with annual changes in the estimated glomerular filtration rate (eGFR) in patients with type 2 diabetes and that elevated levels of urinary AGT in type 2 diabetic patients with albuminuria are a high-risk factor for worsening renal and cardiovascular complications. However, whether or not baseline urinary AGT levels predict deterioration of the kidney function in all patients with CKD is unclear. Methods We recruited 62 patients with CKD whose eGFR was >15 mL/min/1.73 m2. We performed 24-hour ambulatory BP monitoring at 30-min intervals and daily urinary collection to examine the urinary AGT levels and albumin excretion and measured the levels of plasma angiotensin II (Ang II), a surrogate marker of circulating RAS. In addition, annual changes in the eGFR were followed up for 3.4±1.5 years. Results Annual changes in the eGFR were significantly and negatively associated with urinary AGT levels (r=-0.31, p=0.015) as well as the age, systolic BP, and urinary albumin levels. In contrast, annual changes in the eGFR were not correlated with plasma Ang II levels. Furthermore, when dividing patients into quartiles according to urinary AGT levels, patients with the highest urinary AGT levels showed a progressive decline in the eGFR. Conclusion These results suggest that elevated baseline urinary AGT levels can predict renal dysfunction in patients with CKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号