首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
不同年龄人骨髓间充质干细胞体外增殖及成骨分化的研究   总被引:8,自引:1,他引:7  
目的 :观测年龄对人骨髓间充质干细胞 (humanmesenchymalstemcells ,hMSCs)体外增殖、成骨分化的影响。方法 :使用密度梯度离心法分离不同年龄人骨髓MSCs进行培养 ,保留贴壁细胞传代 ,观察细胞生长情况 ,检测其增殖活性、碱性磷酸酶活性 (ALP)、诱导后骨钙素定量测定。结果 :低龄hMSCs较高龄hMSCs体外生长快、MTT、ALP及骨钙素浓度高。结论 :hMSCs的增殖和成骨分化的能力和活性随着年龄的增加而降低。  相似文献   

2.
Human mesenchymal stem cells (hMSCs) from the bone marrow represent a potential source of pluripotent cells for autologous bone tissue engineering. We previously discovered that over activation of the Wnt signal transduction pathway by either lithium or Wnt3A stimulates hMSC proliferation while retaining pluripotency. Release of Wnt3A or lithium from porous calcium phosphate scaffolds, which we use for bone tissue engineering, could provide a mitogenic stimulus to implanted hMSCs. To define the proper release profile, we first assessed the effect of Wnt over activation on osteogenic differentiation of hMSCs. Here, we report that both lithium and Wnt3A strongly inhibit dexamethasone-induced expression of the osteogenic marker alkaline phosphatase (ALP). Moreover, lithium partly inhibited mineralization of hMSCs whereas Wnt3A completely blocked it. Time course analysis during osteogenic differentiation revealed that 4 days of Wnt3A exposure before the onset of mineralization is sufficient to block mineralization completely. Gene expression profiling in Wnt3A and lithium-exposed hMSCs showed that many osteogenic and chondrogenic markers, normally expressed in proliferating hMSCs, are downregulated upon Wnt stimulation. We conclude that Wnt signaling inhibits dexamethasone-induced osteogenesis in hMSCs. In future studies, we will try to limit release of lithium or Wnt3A from calcium phosphate scaffolds to the proliferative phase of osteogenesis.  相似文献   

3.
《Injury》2018,49(8):1504-1512
Human mesenchymal stromal cells (hMSCs) are the cellular source of new bone formation and an essential component of autologous bone grafts. Autologous bone graft harvesting is routinely conducted at the iliac crest, although alternative donor sites with lower complication rates are available. Thus, the aim of this study was to compare hMSCs harvested from the iliac crest and the proximal tibia regarding their proliferative and osteogenic differentiation capacity. Furthermore, we investigated the influence of donor age on these biological properties.HMSCs were isolated from iliac crest or proximal tibia bone grafts of 46 patients. Proliferative capacity was assessed by cumulative population doublings, population doubling time, colony forming units and cell proliferation assays. Osteogenic capacity was assessed by quantification of extracellular calcium deposition and marker gene expression levels. The number of hMSCs per gram harvested tissue was determined. Furthermore, the adipogenic and chondrogenic differentiation capacity were quantified using BODIPY and Safranin Orange staining, respectively. Additional analyses were carried out after grouping young (18–49 years) and aged (≥50 years) donors.HMSCs derived from the proximal tibia featured a comparable proliferative and osteogenic differentiation capacity. No significant differences were found for any analysis conducted, when compared to hMSCs obtained from the iliac crest. Furthermore, no significant differences could be revealed when comparing young and aged donors. This was equally true for hMSCs from both donor sites after comparison within the same age group.Our study demonstrates comparable biological properties of hMSCs derived from both donor sites, the iliac crest and the proximal tibia. Furthermore, aging does not alter proliferative and osteogenic differentiation capacity. Consequently, the proximal tibia should be considered more closely as an alternative donor site in patients of all age groups.  相似文献   

4.
Mesenchymal stem cells (MSCs) are of major clinical interest for the development of cell-based strategies to treat musculoskeletal diseases including critical-size bone defects caused by trauma, degenerative disorders, or infections. Elderly people mainly suffer from critical-size bone defects from the rising incidence of trauma, osteoporosis, and arthroplasties. In this study we investigated the influence of donor age on proliferation and osteogenic differentiation in long-term ex vivo cultures of primary human MSCs from patients in different age groups. Fifteen patients (8 men/7 women) comprised three age groups: (I) <50 years, (II) 50–65 years, and (III) >65 years. MSCs harvested from bone marrow derived from routine surgical procedures were isolated and cultured in standard medium over eight passages. Osteogenic differentiation was induced by dexamethasone (10 nM), ascorbic acid (300 μM), and β-glycerophosphate (3.5 mM). Osteogenic differentiation capacity of MSCs was quantified by alkaline phosphatase (ALP) activity, fluorescence-activated cell sorting (FACS) analysis of the surface markers CD9, CD90, CD54, CD166, CD105, CD44, and CD73, and RT-PCR for Coll I and II, Cbfa 1, ALP, OC, BSP1, and GAPDH genes characterized the phenotypic changes during monolayer expansion. In vitro chondrogenic differentiation was analyzed by immunohistochemistry and RT-PCR. Progenitor cells could be expanded in the long term from all bone marrow donations. FACS single staining analysis from MSCs showed no significant difference between the age groups. The surface antigen CD166 was predominantly found in all cell cultures independently of differentiation stage. Comparison of expanded and differentiated MSCs within a single age group showed that undifferentiated MSCs had higher CD44 levels. Osteogenic stimulation of MSCs was confirmed by measuring ALP activity. The highest ALP activity was found in probands of the age group >65 years. Additionally, we observed a tendency toward male-specific ALP increase during differentiation. Osteogenic marker gene expression in MSCs was detected by RT-PCR. No significant expression differences were detected between the three donor age groups. Micromass culture of MSCs resulted histologically and immunohistologically in a chondrogenic phenotype. Elderly osteoprogenitor cell donors are a highly clinically relevant patient population. In summary, cultivation leads to a reduced osteogenic differentiation capacity regardless of age. Because donor age does not affect osteogenic differentiation potential, it should not be used as an exclusion criterion for autologous transplantation of human adult MSCs.  相似文献   

5.
6.
成人间充质干细胞体外成骨的初步研究   总被引:2,自引:0,他引:2  
目的 建立一种分离和培养成人骨髓来源的间充质干细胞(MSCs)的方法,观察成人MSCs体外成骨潜能。方法 用Percoll分离液分离出骨髓中的单个核细胞,并在含10%胎牛血清的低糖DMEM培养液中培养。通过传代培养扩增MSCs。为促进成人MSCs体外成骨性分化,第5传代培养时加入成骨性添加剂,培养第4、12天分别用流式细胞仪分析成人MSCs表面分子的表达,并用碱性磷酸酶组化染色和Von Kossa染色。结果 成人MSCs是骨髓黏附细胞中有相应细胞表面蛋白表达和形态均的一细胞群。成骨性添加剂可作用于传代培养的成人MSCs,表现为培养皿表面有相互连接的结节状聚合体、碱酶染色阳性细胞数量增多、Von Kossa染色可见钙化的基质沉积。结论 所建立的成人MSCs的分离和培养条件可分选出骨髓黏附细胞中一组独特的细胞群,成人MSCs具有体外成骨潜能。  相似文献   

7.
The potential for osteogenic differentiation of dental pulp mesenchymal stem cells (DPMSCs) in vitro and in vivo has been well documented in a variety of studies. Previously, we obtained a population of cells from human dental pulp called dental pulp pluripotent stem cells (DPPSCs) that could differentiate into mesodermal, ectodermal and endodermal progenies. We compared the osteogenic capacity of DPPSCs and DPMSCs that had been isolated from the same donors (N=5) and cultivated in the same osteogenic medium in 3D (three dimensions) Cell Carrier glass scaffolds. We also compared the architecture of bone-like tissue obtained from DPPSCs and human maxillary bone tissue. Differentiation was evaluated by scanning electron microscopy, whereas the expression of bone markers such as ALP, Osteocalcin, COLL1 and Osteonectin was investigated by quantitative real time polymerase chain reaction (qRT-PCR). We also used calcium quantification, Alizarin red staining and alkaline phosphatase (ALP) activity to compare the two cell types. New bone tissue formed by DPPSCs was in perfect continuity with the trabecular host bone structure, and the restored bone network demonstrated high interconnectivity. Significant differences between DPPSCs and DPMSCs were observed for the expression of bone markers, calcium deposition and ALP activity during osteogenic differentiation; these criteria were higher for DPPSCs than DPMSCs. Both DPPSCs and differentiated tissue showed normal chromosomal dosage after being cultured in vitro and analysed using short-chromosome genomic hybridisation (short-CGH). This study demonstrates the stability and potential for the use of DPPSCs in bone tissue engineering applications.  相似文献   

8.
This study compared the osteogenic differentiation of F-MDSCs and M-MDSCs. Interestingly, M-MDSCs expressed osteogenic markers and underwent mineralization more readily than F-MDSCs; a characteristic likely caused by more osteoprogenitor cells within the M-MDSCs than the F-MDSCs and/or an accelerated osteogenic differentiation of M-MDSCs. INTRODUCTION: Although therapies involving stem cells will require both female and male cells, few studies have investigated whether sex-related differences exist in their osteogenic potential. Here, we compared the osteogenic differentiation of female and male mouse skeletal muscle-derived stem cells (F- and M-MDSCs, respectively), a potential cell source for orthopedic tissue engineering. MATERIALS AND METHODS: F- and M-MDSCs were stimulated with bone morphogenetic protein (BMP)4, followed by quantification of alkaline phosphatase (ALP) activity and expression of osteogenic genes. F- and M-MDSCs were also cultured as pellets in osteogenic medium to evaluate mineralization. Single cell-derived colonies of F- and M-MDSCs were stimulated with BMP4, stained for ALP, and scored as either Low ALP+ or High ALP+ to detect the presence of osteoprogenitor cells. F- and M-MDSCs were transduced with a BMP4 retrovirus (MDSC-BMP4 cells) and used for the pellet culture and single cell-derived colony formation assays. As well, F- and M-MDSC-BMP4 cells were implanted in the intramuscular pocket of sex-matched and sex-mismatched hosts, and bone formation was monitored radiographically. RESULTS AND CONCLUSIONS: When stimulated with BMP4, both F- and M-MDSCs underwent osteogenic differentiation, although M-MDSCs had a significantly greater ALP activity and a larger increase in the expression of osteogenic genes than F-MDSCs. In the pellet culture assay, M-MDSCs showed greater mineralization than F-MDSCs. BMP4 stimulation of single cell-derived colonies from M-MDSCs showed higher levels of ALP than those from F-MDSCs. Similar results were obtained with the MDSC-BMP4 cells. In vivo, F-MDSC-BMP4 cells displayed variability in bone area and density, whereas M-MDSC-BMP4 cells showed a more consistent and denser ectopic bone formation. More bone formation was also seen in male hosts compared with female hosts, regardless of the sex of the implanted cells. These results suggest that M-MDSCs may contain more osteoprogenitor cells than F-MDSCs, which may have implications in the development of cellular therapies for bone healing.  相似文献   

9.
10.
Human mesenchymal stem cells (hMSCs) are a promising candidate cell type for regenerative medicine and tissue engineering applications by virtue of their capacity for self‐renewal and multipotent differentiation. Our intent was to characterize the effect of pulsed electromagnetic fields (PEMFs) on the proliferation and osteogenic differentiation of hMSCs in vitro. hMSCs isolated from the bone marrow of adult patients were cultured with osteogenic medium for up to 28 days and exposed to daily PEMF stimulation with single, narrow 300 µs quasi‐rectangular pulses with a repetition rate of 7.5 Hz. Relatively greater cell numbers were observed at late stages of osteogenic culture with PEMF exposure. The production of alkaline phosphatase (ALP), an early marker of osteogenesis, was significantly enhanced at day 7 with PEMF treatment in both basal and osteogenic cultures as compared to untreated controls. Furthermore, the expressions of other early osteogenic genes, including Runx2/Cbfa1 and ALP, were also partially modulated by PEMF exposure, indicating that osteogenesis in hMSCs was associated with the specific PEMF stimulation. Based on ALP and alizarin red S staining, the accumulation of ALP protein produced by the hMSCs as well as calcium deposits reached their highest levels at day 28. Our results indicate that extremely low‐frequency PEMF stimulation may play a modulating role in hMSC osteogenesis. Taken together, these findings provide insights on the development of PEMF as an effective technology for regenerative medicine. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res  相似文献   

11.
Background While the importance of physical factors in the maintenance and regeneration of bone tissue has been recognized for many years and the mechano-sensitivity of bone cells is well established, there is increasing evidence that body fat constitutes an independent risk factor for complications in bone fracture healing and aseptic loosening of implants. Although mechanical causes have been widely suggested, we hypothesized that the osteogenic mechano-response of human mesenchymal stem cells (hMSCs) may be altered in obese patients.Methods We determined the phenotypic and genotypic response of undifferentiated hMSCs of 10 donors to cyclic tensile strain (CTS) under controlled in vitro conditions and analyzed the potential relationship relevant to the donor''s anthropomorphometric and biochemical parameters related to donor''s fat and bone metabolism.Results and interpretation The osteogenic marker genes were all statistically significantly upregulated by CTS, which was accompanied by a significant increase in cell-based ALP activity. Linear correlation analysis revealed that there was a significant correlation between phenotypic CTS response and the body mass index of the donor (r = –0.91, p < 0.001) and phenotypic CTS response was also significantly related to leptin levels (r = –0.68) and estradiol levels (r = 0.67) within the bone marrow microenvironment of the donor. Such an upstream imprinting process mediated by factors tightly related to the donor''s fat metabolism, which hampers the mechanosensitivity of hMSCs in obese patients, may be of pathogenetic relevance for the complications associated with obesity that are seen in orthopedic surgery.  相似文献   

12.
During the process of aseptic loosening of prostheses, particulate wear debris induces a continuous inflammatory‐like response resulting in the formation of a layer of fibrous peri‐prosthetic tissue at the bone‐prosthesis interface. The current treatment for loosening is revision surgery which is associated with a high‐morbidity rate, especially in old patients. Therefore, less invasive alternatives are necessary. One approach could be to re‐establish osseointegration of the prosthesis by inducing osteoblast differentiation in the peri‐prosthetic tissue. Therefore, the aim of this study was to investigate the capacity of peri‐prosthetic tissue cells to differentiate into the osteoblast lineage. Cells isolated from peri‐prosthetic tissue samples (n = 22)−obtained during revision surgeries−were cultured under normal and several osteogenic culture conditions. Osteogenic differentiation was assessed by measurement of Alkaline Phosphatse (ALP), mineralization of the matrix and expression of several osteogenic genes. Cells cultured in osteogenic medium showed a significant increase in ALP staining (p = 0.024), mineralization of the matrix (p < 0.001) and ALP gene expression (p = 0.014) compared to normal culture medium. Addition of bone morphogenetic proteins (BMPs), a specific GSK3β inhibitor (GIN) or a combination of BMP and GIN to osteogenic medium could not increase ALP staining, mineralization, and ALP gene expression. In one donor, addition of GIN was required to induce mineralization of the matrix. Overall, we observed a high‐inter‐donor variability in response to osteogenic stimuli. In conclusion, peri‐prosthetic tissue cells, cultured under osteogenic conditions, can produce alkaline phosphatase and mineralized matrix, and therefore show characteristics of differentiation into the osteoblastic lineage. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1732–1742, 2017.
  相似文献   

13.
目的:建立骨髓MSCs体外分离培养体系,并进行骨向分化诱导,以证实其多向分化潜能,为骨髓MSCs进一步的临床应用研究提供实验依据。方法:用密度梯度离心法分离大鼠骨髓MSCs,并对其形态学特征进行观察。用诱导剂对骨髓MSCs向成骨细胞进行诱导分化,并进行形态学观察和免疫细胞化学检测。结果:用密度梯度离心法成功分离获得了高纯度的骨髓MSCs。经骨向诱导后,ALP和矿化结节染色阳性。结论:采用密度梯度离心法成功建立了大鼠骨髓MSCs体外分离和培养体系,并能够向成骨细胞分化。  相似文献   

14.
We used the patch-clamp technique and RT-PCR to study the molecular and functional expression of VOCCs in undifferentiated hMSCs and in cells undergoing osteogenic differentiation. L-type Ca2+ channel blocker nifedipine did not influence alkaline phosphatase activity, calcium, and phosphate accumulation of hMSCs during osteogenic differentiation. This study suggests that osteogenic differentiation of hMSCs does not require L-type Ca2+ channel function. INTRODUCTION: During osteogenic differentiation, mesenchymal stem cells from human bone marrow (hMSCs) must adopt the calcium handling of terminally differentiated osteoblasts. There is evidence that voltage-operated calcium channels (VOCCs), including L-type calcium channels, are involved in regulation of osteoblast function. We therefore studied whether VOCCs play a critical role during osteogenic differentiation of hMSCs. MATERIALS AND METHODS: Osteogenic differentiation was induced in hMSCs cultured in maintenance medium (MM) by addition of ascorbate, beta-glycerophosphate, and dexamethasone (ODM) and was assessed by measuring alkaline phosphatase activity, expression of osteopontin, osteoprotegerin, RANKL, and mineralization. Expression of Ca2+ channel alpha1 subunits was shown by semiquantitative or single cell RT-PCR. Voltage-activated calcium currents of hMSCs were measured with the whole cell voltage-clamp technique. RESULTS: mRNA for the pore-forming alpha1C and alpha1G subunits of the L-type and T-type Ca2+ channels, respectively, was found in comparable amounts in cells cultured in MM or ODM. The limitation of L-type Ca2+ currents to a subpopulation of hMSCs was confirmed by single cell RT-PCR, where mRNA for the alpha1C subunits was detectable in only 50% of the cells cultured in MM. Dihydropyridine-sensitive L-type Ca2+ currents were found in 13% of cells cultured in MM and in 12% of the cells cultured in ODM. Under MM and ODM culture conditions, the cells positive for L-type Ca2+ currents were significantly larger than cells without Ca2+ currents as deduced from membrane capacitance; thus, current densities were comparable. Addition of the L-type Ca2+ channel blocker nifedipine to the culture media did not influence alkaline phosphatase activity and the extent of mineralization. CONCLUSION: These results suggest that, in the majority of hMSCs, Ca2+ entry through the plasma membrane is mediated by some channels other than VOCCs, and blockade of the L-type Ca2+ channels does not affect early osteogenic differentiation of hMSCs.  相似文献   

15.
Neuronal membrane glycoprotein gene (GPM6B) encodes a membrane glycoprotein that belongs to the proteolipid protein family. We identified GPM6B as a gene that is strongly upregulated during osteoblast differentiation. To investigate the role of GPM6B in the process of bone formation, we silenced GPM6B expression during osteogenic differentiation of human mesenchymal stem cells (hMSCs). GPM6B silencing in hMSCs resulted in reduced alkaline phosphate (ALP) activity along with reduced mineralization of extracellular matrix (ECM). Microarray expression analysis of GPM6B‐depleted osteogenic hMSCs revealed significant changes in genes involved in cytoskeleton organization and biogenesis. Immunocytochemistry results confirm changes in the distribution of actin filaments, as well as the shape and size of focal adhesions on GPM6B silencing. Moreover, we demonstrated that production and release of ALP‐positive matrix vesicles (MVs) were reduced. In conclusion, we identified GPM6B as a novel regulator of osteoblast function and bone formation. This finding demonstrates the significance of cytoskeleton organization for MV production and subsequent mineralization. © 2011 American Society for Bone and Mineral Research  相似文献   

16.
Stem cells, such as mesenchymal stem cells (MSCs), contribute to bone fracture repair if they are delivered to the injury site. However, it is difficult to assess the retention and differentiation of these cells after implantation. Current options for non‐invasively tracking the transplanted stem cells are limited. Cell‐based therapies using MSCs would benefit greatly through the use of an imaging methodology that allows cells to be tracked in vivo and in a timely fashion. In this study, we implemented an in vivo imaging methodology to specifically track early events such as differentiation of implanted human MSCs (hMSCs). This system uses the collagen type 1 (Col1α1) promoter to drive expression of firefly luciferase (luc) in addition to a constitutively active promoter to drive the expression of green fluorescent protein (GFP). The resulting dual‐promoter reporter gene system provides the opportunity for osteogenic differentiation‐specific luc expression for in vivo imaging and constitutive expression of GFP for cell sorting. The function of this dual‐promoter reporter gene was validated both in vitro and in vivo. In addition, the ability of this dual‐promoter reporter system to image an early event of osteogenic differentiation of hMSCs was demonstrated in a murine segmental bone defect model in which reporter‐labeled hMSCs were seeded into an alginate hydrogel scaffold and implanted directly into the defect. Bioluminescence imaging (BLI) was performed to visualize the turn‐on of Col1α1 upon osteogenic differentiation and followed by X‐ray imaging to assess the healing process for correlation with histological analyses. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res XX:XXX–XXX, 2013 © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 871–879, 2013  相似文献   

17.
Human bone marrow-derived stem cells (hMSCs) are a major source of osteoprogenitors. Hepatocyte growth factor (HGF), a glycoprotein constitutively produced by hMSCs, is reported to act on differentiated osteoblasts and also osteoclasts. Moreover, HGF has been shown by us and others to enhance osteoblastic differentiation from hMSCs. Typically, the pro-differentiation effects of HGF have required cooperative action with regulatory factors such as vitamin D or bone matrix material. Here, we have pursued the molecular mechanisms underlying the osteogenic effect of HGF on hMSCs, the principal precursors to bone forming cells. HGF treatment of hMSCs reduced the cell number over time and increased G1/S cell-cycle arrest compared to control (non-treated) cells. RT-qPCR showed treatment with HGF increased gene expression of the cell-cycle inhibitors p53, p21, and p27, possibly explaining the cell growth inhibition and G1 arrest, a step critical to phenotypic differentiation. Transfection of siRNA specific for cMet, the HGF receptor, eliminated the HGF anti-proliferation effect on hMSCs and the HGF-mediated increase in p53, p21, and p27, strongly supporting a role for these cell-cycle inhibitors in HGF's regulation of hMSCs. HGF in combination with a known inducer of osteogenic differentiation, 1,25-dihydroxyvitamin D, significantly increased cell maturation/differentiation as indicated by an increase in several osteoblast markers. Taken together these results demonstrate that HGF significantly enhances hMSC osteoblast differentiation by 1,25-dihydroxyvitamin D.  相似文献   

18.
Long-term stability of arthroplasty prosthesis depends on the integration between osseous tissue and the implant biomaterial. Integrity of the osseous tissue requires the contribution of mesenchymal stem cells and their continuous differentiation into an osteoblastic phenotype. This study aims to investigate the hypothesis that exposure to wear debris particles derived from orthopaedic biomaterials affects the osteoblastic differentiation of human mesenchymal stem cells (hMSC). Upon in vitro culture in the presence of osteogenic supplements (OS), we observe that cultures of hMSCs isolated from femoral head bone marrow are capable of osteogenic differentiation, expressing alkaline phosphatase, osteocalcin, and bone sialoprotein (BSP), in addition to producing collagen type I and BSP accompanied by extracellular matrix mineralization. Exposure of OS-treated hMSCs to submicron commercially pure titanium (cpTi) particles suppresses BSP gene expression, reduces collagen type I and BSP production, decreases cellular proliferation and viability, and inhibits matrix mineralization. In comparison, exposure to zirconium oxide (ZrO2) particles of similar size did not alter osteoblastic gene expression and resulted in only a moderate decrease in cellular proliferation and mineralization. Confocal imaging of cpTi-treated hMSC cultures revealed patchy groups of cells displaying disorganized cytoskeletal architecture and low levels of extracellular BSP. These in vitro findings suggest that chronic exposure of marrow cells to titanium wear debris in vivo may contribute to decreased bone formation at the bone/implant interface by reducing the population of viable hMSCs and compromising their differentiation into functional osteoblasts. Understanding the nature of hMSC bioreactivity to orthopaedic wear debris should provide additional insights into mechanisms underlying aseptic loosening.  相似文献   

19.
Low-level laser therapy (LLLT) has been used for more than 30 years to heal wounds. In recent years, LLLT or photostimulation has been indicated as an effective tool for regenerative and dental medicine by using monochromatic light. The aim of this study is to indicate the usability of plasma arc light source for bone regeneration. This is why we used polychromatic light source providing effective wavelengths in the range of 590–1500 nm for cellular response and investigated photostimulation effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on 3D silk scaffolds. Cellular responses were examined by using cell culture methods in terms of proliferation, differentiation, and morphological analyses. The results showed that photostimulation with a polychromatic light source (applied for 5 min from the 3rd day after seeding up to the 28th day in 2-day intervals with 92-mW/cm2 power from 10-cm distance to the cells) enhanced osteogenic differentiation of hMSCs according to higher alkaline phosphatase (ALP) activity, collagen and calcium content, osteogenic gene expressions, and matrix mineralization. In conclusion, we suggest that the plasma arc light source that was used here has a great potential for bone regeneration.  相似文献   

20.
Mesenchymal stem cells (hMSCs) have been shown to differentiate into osteoblasts that, in turn, are capable of forming tissues analogous to bone. The present study was designed to investigate the inhibition of osteogenesis by hMSCs. Bone marrow-derived hMSCs were treated with transforming growth factor beta-3 (TGFbeta3) at various doses during or after their differentiation into osteogenic cells. TGFbeta3 was encapsulated in poly(DL-lactic-co-glycolic acid) (PLGA) microspheres and released via controlled delivery in the osteogenic culture of hMSCs and hMSC-derived osteoblasts for up to 28 days. Controlled release of TGFbeta3 inhibited the osteogenic differentiation of hMSCs, as evidenced by significantly reduced alkaline phosphatase activity and staining, as well as decreased mineral deposition. After hMSCs had been differentiated into osteoblasts, controlled release of TGFbeta3 further inhibited not only alkaline phosphatase and mineral deposition but also osteocalcin expression. These findings demonstrate the potential for sustained modulation of the behavior of stem cells and/or stem cell-derived lineage-specific cells via controlled release of growth factor(s). The attenuation of osteogenic differentiation of MSCs may facilitate understanding not only the regulation and patterning of osteogenesis in development but also several pathological models such as osteopetrosis, craniosynostosis, and heart valve calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号