首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modulatory effects of diencephalic stimulation on the activities of raphe-spinal neurons were studied extracellularly in cats. Among 240 raphe neurons recorded, 57 neurons were activated antidromically by stimulation of the cervical dorsolateral funiculus. These raphe-spinal neurons were found in the caudal raphe nuclei, i.e., the raphe magnus (43 neurons), raphe obscurus (11), raphe pallidus (2), and raphe pontis (1). All of them responded to innocuous and/or noxious peripheral mechanical stimuli with a broad receptive field. The activities of the majority of these neurons were facilitated by trains of pulse stimulation of the rostral periaqueductal gray and the thalamic relay nucleus but not of the thalamic center median nucleus. The facilitation of firing persisted for more than 3 min after the cessation of train pulse stimulation when the stimulation was applied at 20 Hz for 5 to 30 s. This facilitation was not affected by decortication of the sensorimotor area bilaterally. The facilitatory response to periaqueductal gray stimulation was markedly suppressed by systemic administration of naloxone. On the other hand, that of the thalamic relay nucleus stimulation was found to be unaffected. Based on these findings, the mechanisms of pain relief by stimulation of the rostral periaqueductal gray and thalamic relay nucleus reported in human intractable pain appear to relate, at least partly, to the activation of raphe-spinal neurons. However, the paths to raphe-spinal neurons of stimuli from the periaqueductal gray and the thalamic relay nucleus are thought to be independent from each other based on the different effects of naloxone.  相似文献   

2.
Pharmacological, physiological, and behavioral studies suggest that inhibitory GABAergic neurons influence the projection from the midbrain periaqueductal gray matter to the medullary nucleus raphe magnus. The present study used electron microscopic immunocytochemical techniques to examine the morphology and synaptic relationships of GABA-immunoreactive terminals in the ventrolateral periaqueductal gray. These putative GABAergic terminals comprise almost 40% of all axon terminals in the periaqueductal gray. GABA-immunoreactive terminals contain small, clear, pleomorphic or round, vesicles, and 46% also contain some dense-cored vesicles. In some experiments we also used a colloidal gold-conjugated retrograde tracer to label periaqueductal gray neurons that project to the nucleus raphe magnus. About half of the synaptic inputs onto the cell bodies and proximal dendrites of retrogradely labeled neurons are GABA-immunoreactive; these putative GABAergic synapses, which directly control activity in neurons projecting from the periaqueductal gray to the nucleus raphe magnus, might mediate the antinociception-related effects of exogenous GABAA receptor ligands.  相似文献   

3.
Previous reports indicate that the midbrain periaqueductal gray and the central nucleus of the amygdala are interconnected but the organization of these projections has not been characterized. We have analyzed this reciprocal circuitry using anterograde and retrograde tracing methods and image analysis. Our findings reveal that innervation of periaqueductal gray from the central nucleus of the amygdala is extensive and discretely organized along the rostrocaudal axis of periaqueductal gray. In addition, the reciprocal projection from periaqueductal gray to the central nucleus of the amygdala is more extensive and more highly organized than previously suggested. Multiple or single discrete injections of wheatgerm agglutinin-horseradish peroxidase into several rostrocaudal levels of periaqueductal gray retrogradely labeled a substantial population of neurons, predominantly located in the medial division of the central nucleus of the amygdala. Tracer injections into the central nucleus revealed a high degree of spatial organization in the projection from this nucleus to periaqueductal gray. Two discrete longitudinally directed columns in dorsomedial and lateral/ventrolateral periaqueductal gray are heavily targeted by central amygdalar inputs throughout the rostral one-half to two-thirds of periaqueductal gray. Beginning at the level of dorsal raphe and continuing caudally, inputs from the central nucleus terminate more uniformly throughout the ventral half of periaqueductal gray. In addition, a substantial population of periaqueductal gray neurons were retrogradely labeled from the central nucleus of the amygdala; these were heterogeneously distributed along the rostrocaudal axis of periaqueductal gray, and included both raphe and non-raphe neurons. Thus, the present study demonstrates that periaqueductal gray receives heavy, highly organized projections from the central nucleus of the amygdala and in turn, has reciprocal connections with the central nucleus. Previous studies have demonstrated that longitudinally organized columns of output neurons located in dorsomedial and lateral/ventrolateral periaqueductal gray project to the ventral medulla. Thus, there may be considerable overlap between the two longitudinally organized terminal input columns from the central nucleus of the amygdala and the two longitudinal columns of descending projection neurons from periaqueductal gray to the ventral medulla. The central nucleus of the amygdala has been implicated in a variety of emotional/cognitive functions ranging from fear and orienting responses, defensive and aversive reactions, associative conditioning, cardiovascular regulation, and antinociception. Many of these same functions are strongly represented in the periaqueductal gray. It is noteworthy that the present results demonstrate that lateral periaqueductal gray, a preeminent central trigger site for behavioral and autonomic components of the defense/aversion response, is heavily targeted by inputs from the central nucleus of the amygdala at all levels of periaqueductal gray. Thus, the central nucleus of the amygdala to periaqueductal gray projection may be involved in the neural integration of behavioral, antinociceptive and autonomic responses with emotional state. In addition, the present demonstration of extensive reciprocal connections between the central nucleus of the amygdala and periaqueductal gray represents a route via which functional activity represented in periaqueductal gray may gain access to a forebrain structure long implicated m the integration of the cognitive and autonomic components of emotional behavior. Thus, the periaqueductal gray to central nucleus of the amygdala projection may provide a relatively direct linkage between critical species-preserving behavioral reactions and a forebrain structure capable of influencing multiple nodal points in the descending autonomic system.  相似文献   

4.
The responses of pontomedullary raphe neurons to electrical stimulation of the medullary reticular formation (MRF) and the mesencephalic ventral periaqueductal gray region (PAG) were studied using intracellular methods in chloralose-anesthetized cats. Single shock stimulation of PAG at the level of the trochelear nucleus evoked short latency, monosynaptic excitatory postsynaptic potentials (EPSPs) in antidromically identified raphe-spinal neurons. Similar large EPSPs were produced by medullary reticular stimulation of either side. The large majority of raphe-spinal neurons responded to sciatic nerve shock, and most responded to tooth pulp or forepaw shock as well; these responses were always bilateral. The responses of cells that could not be antidromically invaded from spinal cord were similar to those of raphe-spinal neurons, but tended to be more variable. Intracellular injection of horseradish peroxidase into electrophysiologically characterized cells revealed that most recordings were made from large and medium sized raphe neurons. These findings are discussed in the context of a potential role for pontomedullary raphe neurons in nociception.  相似文献   

5.
Electrical stimulation of the feline periaqueductal gray matter and nucleus raphe magnus was found to inhibit the firing of trigeminal sub-nucleus caualis nocipeptive neurons, as has been previously reported. However, stimulation at these same sites using similar current intensities was also found to be equally effective in inhibiting the responses of non-nociceptive neurons in both nucleus caudalis and in the dorsal column nuclei.  相似文献   

6.
Studies of spontaneous firing (SF) in the midbrain periaqueductal gray (PAG) neurons before and after stimulation of nucleus raphe magnus, locus coeruleus and substantia nigra were performed on the rat anesthetized with Hexenal (200 mg/kg). Three types of neurons different in SF structure were found. Stimulation of indicated structures increased SF rate in 11-14.5% and decreased 31-47% of the studied neurons of the third group. Simultaneous stimulation of two structures did not induce a remarkable increase of SF rate. If one of two simultaneously stimulated structures suppressed SF the ultimate effect was, as a rule, depression of SF. Greatest suppression of SF was observed if stimulation of nucleus raphe magnus was induced. Role of PAG in organization of the brain stem component of antinociceptive mechanism is discussed.  相似文献   

7.
Experiments were performed in cats anesthetized with α-chloralose to examine the effects of stimulating in the periaqueductal gray (PAG) and nucleus raphe magnus (NRM) on the responses of spinocervical cells and unidentified ascending projection neurons to non-noxious peripheral stimuli. Peripheral stimuli consisted of low amplitude sinusoidal displacements applied to either the glabrous skin or the hairy skin of the neuron's receptive field. Stimulating in either the periaqueductal gray or nucleus raphe magnus reduced the impulse activity of most neurons in both groups. By applying brainstem stimuli at various phases of the sinusoidal peripheral stimulus, it was demonstrated that the effects of stimulating either the PAG or NRM on the responses of both types of neurons was dependent on the timing of the electrical stimuli relative to the peripheral input. The effects of stimulating in the PAG and NRM on the responses of these cells to non-noxious stimuli were reversibly blocked by naloxone. It was concluded that stimulating in the nucleus raphe magnus and in the periaqueductal gray can produce dramatic modifications in the responses of spinocervical cells and unidentified ascending projection neurons to non-noxious peripheral stimuli, suggesting a role for these descending systems in non-noxious information processing.  相似文献   

8.
The inhibition of somatosensory responses of lateral cervical nucleus neurons resulting from stimulation of the brainstem has been investigated. Single unit extracellular recordings were obtained from neurons in the lateral cervical nucleus of chloralose-anesthetized cats. Electrical stimulation of the periaqueductal gray, nucleus raphe magnus, nucleus cuneiformis, and nuclei reticularis gigantocellularis and magnocellularis was found to be very effective in inhibiting the responses of lateral cervical nucleus neurons evoked by electrical or tactile stimulation of the skin. Additional experiments were performed to determine whether the inhibitory effects were mediated in the spinal cord dorsal horn or in the lateral cervical nucleus. These experiments which examined the effect of brainstem stimulation on the responses induced by stimulation of the dorsolateral funiculus or on the antidromic latency of activation of lateral cervical nucleus neurons from thalamus, revealed that most and possibly all the inhibition could be accounted for by an action on the spinal cord. These results are consistent with other studies showing that spinocervical tract cells in the spinal cord can be inhibited by stimulation of the same brainstem regions.  相似文献   

9.
Glyoxylic acid-paraformaldehyde-induced histofluorescence was used to determine locations of catecholamine-containing neurons in the brain stem of Tupaia. Fluorescent cells in the medulla were located ventrolaterally in association with the lateral reticular nucleus; another group was found dorsolateral to the hypoglossal nucleus and extended laterally toward the solitary nucleus. In the pons, fluorescent cells were found in locus coeruleus, subcoeruleus and in association with the superior olivary nucleus. At caudal midbrain levels, catecholamine neurons were seen within the reticular formation and in association with the dorsal raphe nucleus, while more rostrally fluorescent neurons were located in substantia nigra, ventrla tegmental area, among root fibers of the oculomotor nerve and in periaqueductal gray. The locations of catecholamine-containing neurons in tree shrew conform to the general mammalian pattern. Additionally, tree shrew has catecholamine neurons in the rostral mesencephalic periaqueductal gray as described in rat, opossum, rabbit and some primate; catecholamine neurons are also associated with the dorsal raphe nucleus in Tupaia, a finding previously reported only in primates.  相似文献   

10.
Recordings were made from single cells in the nucleus raphe magnus (NRM) of the rat. The response of these cells to electrical stimulation of the periaqueductal gray (PAG) was correlated with their response to iontophoretically applied norepinephrine (NE). It is shown that NE can cause excitation as well as inhibition of NRM neurons, although excitatory response was obtained more often than an inhibitory response. No correlation between the response to PAG stimulation and to NE was obtained. It is concluded that NE is not the transmitter that mediates the interaction between the PAG and NRM.  相似文献   

11.
In urethane-anesthetized rabbits the effects of periaqueductal gray (PAG) and nucleus raphe magnus (NRM) stimulation on the spontaneous and the noxious-evoked activity of the lateral reticular nucleus (LRN) neurons were studied. The PAG and the NRM stimulating electrodes were located in the optimal sites for suppressing the jaw-opening reflex (JOR) evoked by the tooth pulp stimulation. It was found that the 12% of neurons tested were affected by one or both stmuli. A total of 80 responsive neurons (52% antidromically activated by the cerebellum) were analyzed. Out of these neurons, 31 showed a convergence to both stimuli, 43 responded only to PAG and 6 only to NRM. Noxious heat stimulation of the contralateral foot was effective in altering the activity of 60% of these neurons. The PAG and NRM stimuli modified the noxious-evoked responses in most of these units. While the excitation was the predominant effect on the spontaneous activity (52 cells), the inhibition was predominant on the noxious-evoked activity (29 cells). These results indicate the presence of connections from PAG and NRM to LRN, probably devoted to the processing of the nociceptive information.  相似文献   

12.
Previous studies have shown that both the midbrain periaqueductal gray (PAG) and the superior colliculus receive a significant serotoninergic (5-HT) innervation. In the present study the origins of these 5-HT projections to the rodent PAG and superior colliculus were analyzed by using a combined immunohistochemical-retrograde transport technique. Thirteen brainstem regions were found to contain double-labelled 5-HT-like immunoreactive neurons following HRP injections into the PAG while only four brainstem nuclei contained double-labelled neurons following superior collicular injections. After HRP deposits into the ventral PAG, the largest percentage of double-labelled neurons was identified in nucleus raphe magnus, pars alpha of the nucleus gigantocellularis, and the paragigantocellular nucleus. The dorsal PAG, on the other hand, received the largest percentage of its 5-HT projections from nuclei raphe dorsalis, raphe obscurus, raphe pontis, and raphe medianis. The 5-HT input to the superior colliculus was found to arise exclusively from nuclei raphe dorsalis, raphe medianis, and raphe pontis and from the contralateral periaqueductal gray. Raphe nuclei were found to contribute serotoninergic projections to both the PAG and the superior colliculus while reticular nuclei contributed 5-HT projections only to the PAG. Injections of the fluorescent retrograde tracers true blue and nuclear yellow were then made into the PAG and superior colliculus to ascertain if neurons located in raphe nuclei that projected to both structures provided axon collaterals to both areas. Generally, less than 10% of raphe neurons projecting to the superior colliculus were identified as providing axon collaterals to the PAG. The present results demonstrate major quantitative and qualitative differences in the origin of 5-HT projections to the ventral PAG and superior colliculus. The origin of 5-HT input to the dorsal PAG, on the other hand, showed many similarities to the origin of 5-HT innervation of the superior colliculus. These data also indicate that approximately 35% of raphe neurons provide nonserotoninergic projections to the PAG and superior colliculus.  相似文献   

13.
The fluorescent tracers fluoro-gold and 1,1'-dioctadecyl-3,3,3,3-tetramethyl indocarbocyanine perchlorate were used as retrograde markers to examine reciprocal connections between the rat nucleus submedius and the ventrolateral orbital cortex. In addition, midbrain projections to each of these regions were examined. In the prefrontal cortex, we found that input from the nucleus submedius terminates rostrally within the lateral and ventral areas of the ventrolateral orbital cortex. Conversely, the cortical input to the nucleus submedius originates from the medial and dorsal parts of the ventrolateral orbital cortex. Our data also demonstrated that neurons from the ventrolateral periaqueductal gray and the raphe nuclei project to the midline nuclei of the thalamus, including a small projection to the nucleus submedius. We further determined that regions within the ventrolateral periaqueductal gray and raphe nuclei project to the ventrolateral orbital cortex, and that these regions overlap with those that project to the nucleus submedius. These findings suggest that the nucleus submedius might be part of a neural circuit involved in the activation of endogenous analgesia.  相似文献   

14.
Capsaicin augments synaptic transmission in the rat medial preoptic nucleus   总被引:2,自引:0,他引:2  
Functional imaging studies and clinical evidence suggest that structures in the brainstem contribute to migraine pathophysiology with a strong association between the brainstem areas, such as periaqueductal gray (PAG), and the headache phase of migraine. Stimulation of the superior sagittal sinus (SSS) in humans evokes head pain. Second-order neurons in the trigeminal nucleus that are activated by SSS stimulation can be inhibited by PAG stimulation. The present study was undertaken to identify pontine and medullary structures that respond to noxious stimulation of the superior sagittal sinus or to ventrolateral PAG stimulation. The distribution of neurons expressing the protein product (fos) of the c-fos immediate early gene were examined in the rostral medulla and caudal pons of the cat after (i) sham, (ii) stimulation of the superior sagittal sinus, (iii) stimulation of the superior sagittal sinus with PAG stimulation, or (iv) stimulation of the PAG alone. The structures examined for fos were the trigeminal nucleus, infratrigeminal nucleus, reticular nuclei, nucleus raphe magnus, pontine blink premotor area, and superior salivatory nucleus. Compared with all other interventions, fos expression was significantly greater in the trigeminal nucleus and superior salivatory nucleus after SSS stimulation. After PAG with SSS stimulation, on the side ipsilateral to the site of PAG stimulation, fos was significantly greater in the nucleus raphe magnus. These structures are likely to be involved in the neurobiology of migraine.  相似文献   

15.
There is considerable evidence that the dorsolateral funiculus (DLF) of the spinal cord contains descending pathways critical for both opiate and brainstem stimulation-produced analgesia. To obtain a comprehensive map of brainstem neurons projecting to the spinal cord via the DLF, large injections of horseradish peroxidase (HRP) were made into the lumbosacral spinal cord of cat and rat. These injections were made caudal to midthoracic lesions which spared only a single DLF or ventral quadrant (VQ); thus only those neurons whose axons descended in the spared funiculus would be labelled. Cells with descending axons in the VQ were concentrated in the medullary nucleus raphe pallidus and obscurus, nucleus retroambiguus and in various subregions of the reticular formation including the nucleus reticularis ventralis, gigantocellularis, magnocellularis, pontis caudalis and pontis oralis. Significant numbers of neurons were also found in medial and lateral vestibular nuclei and in several presumed catecholamine-containing neurons of the dorsolateral pons. In the rat, but not in the cat, considerable numbers of cells are present in the mesencephalic reticular formation just lateral to the periaqueductal gray. In both species, some cells were found in the paraventricular nucleus of the hypothalamus. Brainstem cells projecting in the DLF were concentrated in the nucleus raphe magnus and in the adjacent nucleus reticularis magnocellularis, ipsilateral to the spared funiculus. Significant numbers of cells were found in the dorsolateral pons, differing somewhat in their distribution from those projecting in the VQ. DLF-projecting cells were also present in the ipsilateral Edinger-Westphal nucleus and periaqueductal grey contralateral red nucleus of the midbrain and in the ipsilateral hypothalamus. Smaller projections from other sites are described. These results are discussed in terms of the differential contribution of several brainstem neuronal groups, including the serotonergic nucleus, raphe magnus, the ventromedial reticular formation of the medulla, and various catecholamine-containing neurons of the dorsolateral pontine tegmentum to the analgesia produced by opiates and electrical brain stimulation.  相似文献   

16.
Neurons in the nucleus raphe magnus (RM) may play an important role in the modulation of nociception. To determine how RM neurons are activated during a nociceptive reflex, the intracellular responses of raphe neurons were studied during the jaw-opening reflex (JOR) elicited by tooth pulp shock in lightly anesthetized cats. Tooth pulp stimulation produces reflex EMG activation of the digastric muscle at a latency of 7-11 ms, resulting in jaw opening. Tooth pulp shock that elicits the JOR also produces an EPSP in a subset of raphe neurons. This EPSP consists of an early small depolarization that occurs at a latency of 10-15 ms followed by a larger depolarization at a latency of 20-60 ms. In all cases the latency to EPSP is longer than the latency to digastric EMG onset. Electrical stimulation of the 4 paws elicits oligosynaptic EPSPs in the same cells at a latency of 16-20 ms. Electrical train stimulation of the midbrain periaqueductal gray region (PAG) suppresses the JOR. Single shock stimulation at the same PAG sites that suppress the JOR evokes monosynaptic EPSPs in the large majority of raphe neurons recorded. In all cases, the threshold for EPSP is below the threshold for suppression of the JOR. The EPSP amplitude is a direct function of PAG stimulus intensity and there is temporal summation of EPSPs evoked by paired PAG shocks. At condition-test intervals of 40-90 ms, train stimulation of PAG suppresses the tooth pulp-evoked EPSP in raphe neurons. The threshold for EPSP suppression occurs at a PAG stimulation intensity below that required for suppression of the JOR. The present findings provide evidence that RM neurons may play an important role in the modulation of the tooth pulp-evoked JOR, but only after the initial withdrawal reflex has occurred.  相似文献   

17.
Thalamic nociceptive neurons receiving afferent input from the tooth pulp (TP) were recorded from the nucleus ventralis posteromedialis proper (VPM) in cats anesthetized with urethane and chloralose. Effects of cervical vagus nerve stimulation on responses of TP neurons in the VPM were investigated. Twenty-one tooth pulp specific (TPS) and eight wide dynamic range (WDR) neurons with TP input were obtained from the periphery (shell region) of the posterior half of the VPM. Of these, many were also excited by electrical stimulation of trigeminothalamic tract (TTT) fibers in the trigeminal medial lemniscus. A conditioning-test paradigm was used to examine effects of vagal stimulation on responses of VPM neurons to electrical stimulation of TP and TTT. Inhibition of the responses was observed in 12 TPS and seven WDR neurons. Local anesthetic block of the mesencephalic periaqueductal gray (PAG) and/or nucleus raphe dorsalis (NRD) eliminated the inhibitory effects of vagal stimulation on the responses of both classes of TP neurons to TTT stimulation. In contrast, the inhibitory effects on responses to TP stimulation were insignificantly affected. These data suggest that vagal afferents can activate the ascending antinociceptive pathway from PAG/NRD onto VPM, in addition to activating the descending antinociceptive system acting upon the lower brain stem.  相似文献   

18.
Several lines of evidence indicate that the processing of somatosensory information in the dorsal column nuclei (DCN) is subject to descending controls. Anatomical experiments have demonstrated projections to the DCN from the sensorimotor cerebral cortex and the reticular formation. Physiological studies have shown that the activity of DCN neurons can be altered following stimulation of the cerebral cortex, reticular formation, periaqueductal gray, or raphe nuclei. Recent biochemical and electrophysiological evidence suggests a serotoninergic modulation of DCN neurons. The present study identifies serotonin-containing contacts on cells in the DCN that project to the thalamus in the rat. Retrograde labeling of brainstem neurons by horseradish peroxidase demonstrated projections to the DCN from the nucleus reticularis paragigantocellularis lateralis and from several raphe nuclei, including nuclei raphe obscurus (RO), pallidus (RP), and magnus (RM). Double labeling with horseradish peroxidase and antibody for serotonin indicated that the RO, RP and RM are likely to be the sources of the serotoninergic projections to the DCN. Thus, the role of the serotoninergic output from the raphe nuclei includes modulation of activity in the DCN.  相似文献   

19.
Bago M  Marson L  Dean C 《Brain research》2002,945(2):249-258
Double-label fluoresence immunohistochemistry was performed to define serotonergic projections from the raphe and midbrain to the sympathoexcitatory region of the rostroventrolateral medulla (RVLM). Immunolabelling of cholera toxin B subunit retrogradely transported from the pressor region of the RVLM was combined with serotonin (5-HT) immunohistochemistry. Major sources of serotonergic input to the RVLM were shown to include the raphe obscurus, raphe pallidus and raphe magnus with a minor contribution from the ventrolateral, lateral and ventral regions of the periaqueductal gray matter, and the dorsal raphe nucleus. Serotonergic modulation of sympathoexcitatory neurons may establish patterns of sympathetic nerve activity evident in many aspects of cardiovascular regulation.  相似文献   

20.
目的:研究大鼠网状背侧亚核的功能传出通路及该通路上NADPH-d的分布。方法:将微量海人酸注入大鼠延髓网状背侧亚核,2h后灌注,脑片进行NADPH-d组织化学和Fos免疫组化染色。结果:Fos阳性细胞主要分布于中缝背核(DR)、中缝大核(NRM)、蓝斑(LC)、中脑导水管周围灰质腹外侧(vlPAG)和下丘脑室旁核。Fos/NADPH-d双标细胞主要分布于巨细胞网状核、下丘脑室旁核和中缝大核。结论:大鼠延髓网状背侧亚核与脊髓上中枢存在广泛的功能联系,而且在延髓网状背侧亚核的功能传出通路上有一氧化氮合酶的分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号