首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cycloburtane nucleoside analog (1R-1 alpha,2 beta,3 alpha)-9-[2,3-bis(hydroxymethyl)cyclobutyl]guanine [(R)-BHCG or SQ 34,514] was recently synthesized and shown to be the active enantiomer of (+/-)-BHCG (SQ 33,054), a potent inhibitor of several strains of herpesviruses [J. Med. Chem 34:1415-1421 (1991); Antiviral Res. 13:41-52 (1990)]. In plaque reduction assays, (R)-BHCG was about 1000 times more active than its S-enantiomer on herpes simplex virus type I (HSV-1) and over 200 times more active against a thymidine kinase-deficient mutant HSV-1 and human cytomegalovirus (HCMV). We now show that both (R)-BHCG and (S)-BHCG are efficiently phosphorylated to their mono-, di-, and triphosphates by HSV-1-infected cells, in a manner similar to that of acyclovir [Proc. Natl. Acad. Sci. USA 74:5716-5720 (1977)]. The uptake of both enantiomers was greatly increased upon infection; however, (S)-BHCG was taken up to about twice the extent of (R)-BHCG and accumulated primarily as the mono- and diphosphates. (R)-BHCG accumulated primarily as the triphosphate, and accumulation was linear with both time and added drug concentration. The triphosphate had an apparent half-life of about 10 hr. Metabolic studies using HCMV-infected cells showed only a small degree of phosphorylation of (R)-BHCG and none of (S)-BHCG. When cells were labeled with 25 microM (R)-BHCG, the amount of (R)-BHCG triphosphate formed was less than 0.5 pmol/10(6) cells. Interestingly, the ED50 value of (R)-BHCG is about 100-fold higher against HCMV than against HSV-1, and the relative levels of (R)-BHCG triphosphate formed in cells infected by the two viruses are roughly proportional to the antiviral activities.  相似文献   

2.
The biological activities of 1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-fluorouracil (2'F-ara-FU), 1-(3'-deoxy-3'-fluoro-beta-D-arabinofuranosyl)-5-fluorouracil (3'F-ara-FU) and 1-beta-D-arabinofuranosylthymine (ara-T) were compared in human cytomegalovirus (HCMV)-infected and noninfected human fibroblasts. 2'F-ara-FU inhibited HCMV plaque formation (ED50, 16 microM for AD 169 strain) at lower concentrations than 3'F-ara-FU (ED50, 100 microM for AD 169). These nucleoside analogues are expected to be phosphorylated to their 5'-phosphate forms by cellular thymidine kinase in HCMV-infected cells. The thymidine kinase activities in the virus-infected and noninfected cells were compared. Cellular thymidine kinase was increased in the virus-infected cells and showed better phosphorylation of 2'F-ara-FU than did 3'F-ara-FU. HCMV DNA polymerase was purified using affinity column chromatography, and the inhibitory effect of the 5'-triphosphate derivatives of 2'F-ara-FU (2'F-ara-FUTP) and 3'F-ara-FU (3'F-ara-FUTP) against viral and host DNA polymerase alpha was examined. No significant difference in the effectiveness of inhibition was observed between viral DNA polymerase and host polymerase alpha. However, viral polymerase incorporated 2'F-ara-FUTP into newly synthesized DNA, whereas polymerase alpha did not utilize 2'F-ara-FUTP as a substrate. Thus, viral polymerase differs from host polymerase alpha in its recognition and utilization of 2'F-ara-FUTP. This difference may be important to the design of selective antiviral agents for HCMV.  相似文献   

3.
Racemic 9-[(2,3-dihydroxy-1-propoxy)methyl]guanine [(+/-)-iNDG], a new analogue of acyclovir (ACV) and a structural analogue of 2'-nor-2'-deoxyguanosine (2'NDG), was synthesized and found to inhibit the replication of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Subsequently, its optical isomers, (R)- and (S)-iNDG, were prepared from chiral intermediates. The chloromethyl ethers of 1,2-di-O-benzyl-D- and -L-glycerol were made and reacted with tris(trimethylsilyl)guanine to give the 9-alkylated guanines, which were deprotected by catalytic hydrogenolysis. Against HSV-1 and HSV-2 in cell culture, (S)-iNDG was approximately 10- to 25-fold more active than the R enantiomer and had an ED50 comparable to those for ACV and 2'NDG. The inferior activity of (R)-iNDG paralleled the poor inhibition of viral DNA polymerase by its phosphorylation products. In mice infected intraperitoneally or orofacially with HSV-1 or intravaginally with HSV-2, (S)-9-[(2,3-dihydroxy-1-propoxy)methyl]guanine [(S)-iNDG] was less efficacious than 2'NDG but comparable to or more active than ACV.  相似文献   

4.
(+/-)-(1 alpha,2 beta,3 alpha)-9-[2,3-Bis(hydroxymethyl)cyclobutyl] guanine [(+/-)-BHCG] is a nucleoside analog with potent in vitro activity against herpesviruses [Tetrahedron Lett. 30:6453-6456 (1989)]. The two enantiomers have been synthesized, and their biochemical characterization is reported here. [1S(1 alpha,2 beta,3 alpha)]-9-[2,3-Bis(hydroxymethyl)cyclobutyl]guanine [(S)-BHCG] was phosphorylated by herpes simplex virus type 1 (HSV-1) thymidine kinase (Vmax = 8 nmol/hr/micrograms of enzyme), whereas [1R(1 alpha,2 beta,3 alpha)]-9-[2,3-bis(hydroxymethyl)cyclobutyl]guanine [(R)-BHCG] was a poor substrate for the viral thymidine kinase under these conditions. The triphosphate of each enantiomer was enzymatically synthesized, and both enantiomers competitively inhibited HSV-1 DNA polymerase with respect to dGTP. However, the potency of (R)-BHCG-TP was 4 orders of magnitude greater than that of (S)-BHCG-TP. (R)-BHCG-TP inhibited HeLa DNA polymerase alpha, but the inhibition constant was 30-fold higher than that for the viral DNA polymerase. In comparison, (S)-BHCG-TP was a very poor inhibitor of DNA polymerase alpha. (R)-[3H]BHCG-TP could be incorporated into a synthetic DNA template by HSV-1 DNA polymerase at 80% the extent of dGTP under the assay conditions used and, therefore, could act as an alternative substrate. Incorporation of (R)-BHCG-TP was similar to that observed for acyclovir triphosphate and ganciclovir triphosphate, based on maximal velocities. In contrast, HSV-1 DNA polymerase did not incorporate (S)-BHCG-TP into DNA. Compared with dGTP, only limited extension (10%) of the DNA primer by HSV-1 DNA polymerase occurred after incorporation of (R)-BHCG-TP and, therefore, (R)-BHCG-TP acts as a nonobligate chain terminator.  相似文献   

5.
5-(2-Chloroethyl)-2'-deoxyuridine (CEDU) is a potent and selective inhibitor of the replication of herpes simplex virus type 1 (HSV-1). CEDU is preferentially phosphorylated by HSV-infected (Vero) cells, as compared with mock-infected cells or cells infected with a thymidine kinase-deficient strain of HSV-1. The end product of this phosphorylation process, CEDU 5'-triphosphate, is a competitive inhibitor of HSV-1 DNA polymerase activity and, to a lesser extent, of cellular DNA polymerase alpha activity. However, in the absence of the natural substrate dTTP, CEDU 5'-triphosphate also serves as an alternative substrate for viral and cellular DNA polymerase. When exposed to HSV-1-infected cells, [2-14C]CEDU was incorporated into both viral and cellular DNA. The extent to which [2-14C]CEDU was incorporated remained approximately constant over a concentration range of 0.5 to 50 microM. Within this concentration range, CEDU effected a concentration-dependent inhibition of viral DNA synthesis that closely paralleled the inhibition of viral progeny formation. It is postulated that CEDU owes (i) its selectivity as an antiviral agent to its preferential phosphorylation by the virus-infected cell and (ii) its antiviral potency to an inhibition of viral DNA synthesis at the level of the viral DNA polymerization reaction.  相似文献   

6.
A new class of 5-(1-cyanamido-2-haloethyl)-2'-deoxyuridines (4-6) and arabinouridines (7, 8) were synthesized by the regiospecific addition of halogenocyanamides (X-NHCN) to the 5-vinyl substituent of the respective 5-vinyl-2'-deoxyuridine (2) and 2'-arabinouridine (3). Reaction of 2 with sodium azide, ceric ammonium nitrate, and acetonitrile-methanol or water afforded the 5-(1-hydroxy-2-azidoethyl)-(10) and 5-(1-methoxy-2-azidoethyl)-2'-deoxyuridines (11). In vitro antiviral activities against HSV-1-TK(+) (KOS and E-377), HSV-1-TK(-), HSV-2, VZV, HCMV, and DHBV were determined. Of the newly synthesized compounds, 5-(1-cyanamido-2-iodoethyl)-2'-deoxyuridine (6) exhibited the most potent anti-HSV-1 activity, which was equipotent to acyclovir and superior to 5-ethyl-2'-deoxyuridine (EDU). In addition, it was significantly inhibitory for thymidine kinase deficient strain of HSV-1 (EC(50) = 2.3-15.3 microM). The 5-(1-cyanamido-2-haloethyl)-2'-deoxyuridines (4-6) all were approximately equipotent against HSV-2 and were approximately 1.5- and 15-fold less inhibitory for HSV-2 than EDU and acyclovir, respectively. Compounds 4-6 were all inactive against HCMV but exhibited appreciable antiviral activity against VZV. Their anti-VZV activity was similar or higher to that of EDU and approximately 5-12-fold lower than that of acyclovir. The 5-(1-cyanamido-2-haloethyl)-(7,8) analogues of arabinouridine were moderately inhibitory for VZV and HSV-1 (strain KOS), whereas compounds 10 and 11 were inactive against herpes viruses. Compounds 5 and 6 also demonstrated modest anti-hepatitis B virus activity against DHBV (EC(50) = 19.9-23.6 microM). Interestingly, the related 5-(1-azido-2-bromoethyl)-2'-deoxyuridine (1n) analogue proved to be markedly inhibitory to DHBV replication (EC(50) = 2.6-6.6 microM). All compounds investigated exhibited low host cell toxicity to several stationary and proliferating host cell lines as well as mitogen-stimulated proliferating human T lymphocytes.  相似文献   

7.
A novel series of 4-oxo-4,7-dihydrothieno[2,3-b]pyridine-5-carboxamides have been identified as potential antivirals against human herpesvirus infections resulting from human cytomegalovirus (HCMV), herpes simplex virus type 1 (HSV-1), and varicella-zoster virus (VZV). Compounds 10c and 14 demonstrated broad-spectrum inhibition of the herpesvirus polymerases HCMV, HSV-1, and VZV. High specificity for the viral polymerases was observed compared to human alpha polymerase. The antiviral activity of 10c and 14, as determined by plaque reduction assay, was comparable or superior to that of existing antiherpes drugs, ganciclovir (for HCMV) and acyclovir (for HSV-1 and VZV). Drug resistance to compound 14 correlated to point mutations in conserved domain III of the herpesvirus DNA polymerase, but these mutations do not confer resistance to existing nucleoside therapy. In addition, compound 14 maintained potent antiviral activity against acyclovir-resistant HSV-1 strains. Substitution to the pyridone nitrogen (N7) was found to be critical for enhanced in vitro antiviral activity.  相似文献   

8.
Acyclovir and vidarabine both exhibit anti-herpetic activity. Because different mechanisms of action of vidarabine and acyclovir have been reported, we analyzed their combined anti-herpetic activity on plaque formation of herpes simplex virus (HSV)-1, HSV-2, and varicella-zoster virus (VZV) by isobolograms. The results indicate that acyclovir and vidarabine have a synergistic effect on wild type HSV-1, HSV-2, and VZV. The susceptibility of thymidine kinase-deficient HSV-1 to vidarabine was not affected by the presence of acyclovir, suggesting that phosphorylation of acyclovir is essential for synergism. The combined anti-HSV activity of acyclovir and vidarabine against phosphonoacetic acid-resistant HSV-1 with DNA polymerase mutation did not show synergism in contrast to that against wild-type herpesviruses. Alteration of the substrate specificity of viral DNA polymerase to acyclovir and vidarabine annihilated the synergism. Thus, the nature of their binding sites on DNA polymerase is important to the synergistic anti-herpesvirus activity of acyclovir and vidarabine.  相似文献   

9.
Human cytomegalovirus (HCMV) is a major opportunistic pathogen in immunocompromised individuals. Current therapies target viral DNA replication and accumulate mutations that yield cross-resistance among the approved drugs. A novel, non-nucleoside inhibitor of HCMV replication, PD0084430, was identified in a screening assay using the HCMV beta-galactosidase recombinant RC256. The EC(50) for PD0084430 by inhibition of beta-galactosidase production is 1+/-0.7 microM. This antiviral activity was confirmed by yield reduction and plaque reduction assays using HCMV strain AD169. The TC(50) of PD0084430 as measured by (4C)thymidine incorporation is approximately 30 microM and by XTT is approximately 90 microM. The TC(50) for inhibition of cellular proliferation is approximately 20 microM. Time of addition experiments displayed a similar drop in efficacy for both PD0084430 and GCV when added after the onset of viral DNA replication. The transcomplementation assay for viral DNA replication, using a transfected ori(Lyt) containing plasmid, confirmed that viral DNA synthesis was inhibited at the same concentrations that showed antiviral activity. Western blots showed no apparent block of immediate early or early gene expression. Two ganciclovir (GCV) resistant isolates of HCMV tested showed no cross-resistance to PD0084430. These data suggested a potentially promising novel compound that inhibited HCMV at or before viral DNA replication. However, in vivo testing in mice dosed either orally or intraperitoneally showed rapid glucuronidation on the -OH group. SAR studies on this backbone showed that the -OH group was essential for the antiviral activity in vitro.  相似文献   

10.
9-[(2-Hydroxy-1,3,2-dioxaphosphorinan-5-yl)oxymethyl]guanine P-oxide (2'-nor-cGMP), the cyclic phosphate of 2'-nor-deoxyguanosine (2'-NDG) was synthesized by phosphorylation of 2'-NDG and evaluated for antiherpetic activity in cell cultures and in animal protection studies. 2'-nor-cGMP was effective in cell culture against both thymidine kinase deficient and wild-type herpes simplex virus type 1 strains and also against herpes simplex virus type 2. The anti-herpes activity of 2'-nor-cGMP against thymidine kinase deficient HSV-1 was confirmed by animal protection studies. Also, in comparative cell culture protection studies, the ED50 (microM) of 2'-nor-cGMP was approximately 10-fold lower than that of 2'-NDG against three strains of varicella zoster virus. In addition, 2'-nor-cGMP was effective orally in preventing HSV-1 orofacial infection and HSV-2 genital infection of mice. Topical therapeutic applications of 2'-nor-cGMP prevented orofacial HSV-1 lesion development in mice and development of HSV-2 genital lesions in guinea pigs. Subcutaneous application of 2'-nor-cGMP to intracerebral HSV-1 challenged weanling mice significantly prolonged survival. These studies indicate that 2'-nor-cGMP is not dependent on viral thymidine kinase for its antiviral activity and is highly effective in preventing experimental HSV infections.  相似文献   

11.
Anti-herpesvirus activity of carbocyclic oxetanocin G in vitro   总被引:3,自引:0,他引:3  
A series of new compounds, carbocyclic oxetanocins, have been synthesized and their anti-herpesvirus activity determined. Carbocyclic oxetanocin G (OXT-G) was most active against herpes simplex virus (HSV) and human cytomegalovirus (HCMV) among carbocyclic oxetanocins tested; the median effective concentrations (EC50) for HSV-1, -2, and HCMV were 0.23, 0.04 and 0.40 micrograms/ml, respectively. The EC50 value of carbocyclic OXT-G against HSV-2 was significantly lower than those of acyclovir, ganciclovir (DHPG) and OXT-G, while the value for HCMV was comparable to those of DHPG and OXT-G. Carbocyclic OXT-G showed much higher activity against TK+ HSV-2 than against a TK- mutant, suggesting that this compound is a good substrate for HSV-2-induced TK. The antiviral activity of the compound was only partially reversed even by the addition of 100-fold excess deoxyguanosine. The results suggest that the mode of action of carbocyclic OXT-G is different from that of OXT-G.  相似文献   

12.
(+-)-(1 alpha,2 beta,3 alpha)-9-[2,3-bis(hydroxymethyl)cyclobutyl] guanine [(+-)-BHCG or SQ 33,054] is a newly synthesized nucleoside analog with potent and selective antiviral activity against members of the herpesvirus group, including human cytomegalovirus. The activity against a thymidine kinase deficient HSV-2 mutant was 25-fold poorer than against the parent virus, suggesting that phosphorylation is an important prerequisite for antiviral activity against HSV-2. (+-)-BHCG is readily phosphorylated by purified HSV-1 thymidine kinase, and BHCG triphosphate synthesized enzymatically is a selective inhibitor of HSV-1 DNA polymerase. (+-)-BHCG did not inhibit host cell growth at concentrations at least 1000-fold higher than HSV-2 inhibitory concentrations. Subcutaneous administration of (+-)-BHCG was protective against HSV-1 systemic infections in mice. BHCG is an exciting antiviral agent and represents a new class of nucleoside analogs.  相似文献   

13.
A fatty acid derivative of ganciclovir (GCV), elaidic acid ganciclovir (E-GCV), has been evaluated for its inhibitory activity against laboratory and clinical strains of herpes simplex type 1 (HSV-1) and type 2 (HSV-2), varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) in human embryonic lung fibroblasts. GCV, cidofovir, acyclovir (ACV), brivudin (BVDU) and foscarnet (PFA) were included as reference compounds. The viruses studied were wild-type, thymidine kinase-deficient (TK(-)) and PFA-resistant (PFA(r)) HSV strains. The IC(50) values obtained for E-GCV were 5- to 30-fold lower than those observed for GCV, the IC(50) value of E-GCV for HSV-1 strain KOS being 0.07 nM. A similarly increased activity of E-GCV (as compared to GCV) was noted for TK(-) and PFA(r) HSV-1 or HSV-2 strains. However, E-GCV did not exhibit superior activity over GCV to VZV or HCMV in vitro. The antiviral efficacy of E-GCV was also evaluated in vivo against intracerebral HSV-2 infection in NMRI mice. Animals were treated intraperitoneally or perorally with E-GCV, GCV or placebo once daily for 10 days, starting the day of infection. E-GCV compared to GCV at equimolar doses, proved markedly more efficacious than GCV in terms of reduction of mortality rate and delay of mean time of death. The elaidic acid ester of GCV should therefore be considered as a novel approach towards the treatment of HSV infections.  相似文献   

14.
The anti-herpesvirus activity of (1'S,2'R)-9-[[1',2'-bis(hydroxymethyl)cycloprop-1'-yl]methyl]guani ne (A-5021) was evaluated in murine cells and in several murine models of herpes simplex virus (HSV) infection. Against HSV type 1 (HSV-1), A-5021 was 15-30- and 30-60-fold more active, and against HSV type 2 (HSV-2), it was 2- and 8-fold more active than acyclovir and penciclovir in Balb/3T3 cells, respectively. When antiviral compounds were administered orally (once daily) to mice infected intraperitoneally with HSV-1 (Tomioka), A-5021 was more active than acyclovir or famciclovir in spite of its relatively low oral bioavailability. A-5021 was as active as penciclovir when the antiviral compounds were given intravenously (three times daily) to mice infected intraperitoneally with HSV-2 (186). In mice with a cutaneous HSV-1 (KOS) infection, three times daily oral therapy with A-5021 at 25 mg/kg per day produced more significant reduction in severity of skin lesions than equivalent treatment with acyclovir or famciclovir. In mice infected intracerebrally with HSV-1 (Tomioka), complete survival was observed in the group treated intravenously with A-5021 at 25 mg/kg per day (three times daily), while more than 50% of mice died in the groups treated intravenously with acyclovir of up to 100 mg/kg per day (three times daily). Moreover, A-5021 was more effective than acyclovir in clearing infectious virus from the brain. These findings demonstrate that A-5021 has potent anti-HSV activity in several murine models.  相似文献   

15.
Casuarinin, a hydrolyzable tannin isolated from the bark of Terminalia arjuna Linn. (Combretaceae), was investigated for its antiviral activity on herpes simplex type 2 (HSV-2) in vitro. Results showed that the IC(50) of casuarinin in XTT and plaque reduction assays were 3.6+/-0.9 and 1.5+/-0.2 microM, respectively. The 50% cytotoxic concentration for cell growth (CC(50)) was 89+/-1 microM. Thus, the selectivity index (SI) (ratio of CC(50) to IC(50)) of casuarinin was 25 and 59 for XTT and plaque reduction assays, respectively. Casuarinin continued to exhibit antiviral activity even added 12 h after infection. During the attachment assay, casuarinin was shown to prevent the attachment of HSV-2 to cells. Furthermore, casuarinin also exhibited an activity in inhibiting the viral penetration. Interestingly, casuarinin was virucidal at a concentration of 25 microM, reducing viral titers up to 100,000-fold. This study concludes that casuarinin possesses anti-herpesvirus activity in inhibiting viral attachment and penetration, and also disturbing the late event(s) of infection.  相似文献   

16.
The synthetic acridone compound, 5-chloro-1,3-dihydroxyacridone inhibits herpes simplex virus (HSV) replication by inducing the formation of defective viral (B-type) capsids [Antiviral Res. 53 (2002) 113]. In this report, synthetic elaboration of the 1-hydroxyacridone scaffold coupled with antiviral testing led to the identification of 3,7-dimethoxy-1-hydroxy-acridone (2) as an inhibitor of low multiplicity human cytomegalovirus (HCMV) infection (ED(50) value of 1.4 microM (0.5 microg/ml); greater than 35-fold selectivity). Compound 2 was inactive against HSV replication and the efficacy as an anti-HCMV agent at higher viral loads was only apparent if host cells were replicated in the presence of the compound prior to infection. Interestingly, the 3,5-dimethoxy regioisomer inhibited cell replication (mean CC(50) 33 microM) and was inactive as a selective anti-herpes agent. A limited parallel synthesis and testing of ten 3,7-dialkoxylated compounds closely related to compound 2 led to the discovery of the 3-ethoxy-, 3-propoxy-, 3-isopropoxy- and 3-allyloxy-derivatives as dual inhibitors of both HSV and HCMV (selectivity of the 3-allyloxy analog was greater than 10- and 36-fold, respectively). The 3-benzyloxy-derivative was active (ED(50) value of 6.9 microM) against HCMV only. Moreover, the corresponding C-7 variable alkoxylated parallel series were either weakly active or inactive antiviral agents suggesting an apparent requirement for a C-7 methoxy substituent in the active structure. Exploratory mode of action studies showed that dual inhibitors were most active against a low multiplicity HSV infection and potent inhibition of viral release likely contributed to this. Furthermore, suppression of late viral protein synthesis by dual inhibitors did not correlate with anti-HSV activity. On the basis of the present findings, the 1-hydroxyacridone scaffold is further expanded as a useful template for the discovery of investigational anti-herpes agents. As a group, the active 3,7-dialkoxylated compounds likely have diverse mechanisms of action, consequently they are of potential medicinal interest.  相似文献   

17.
9-(S)-(3-Hydroxy-2-phosphonomethoxypropyl)adenine [(S)-HPMPA] was one of the first acyclic nucleoside phosphonates described and has been reported to have good antiviral activity against most double-stranded DNA viruses, including the herpes group viruses and the orthopoxviruses. However, (S)-HPMPA is not orally bioavailable and has not been developed for clinical use. We have prepared orally bioavailable lipid esters of (S)-HPMPA and report their synthesis and antiviral evaluation against cytomegalovirus and orthopoxviruses. These esters were evaluated in vitro in cells infected with human cytomegalovirus (HCMV), murine cytomegalovirus (MCMV), vaccinia (VV), and cowpox viruses (CV). The most active compound, oleyloxyethyl-(S)-HPMPA, was found to have EC50 value of 0.003 microM against HCMV vs 1.4 microM for unmodified HPMPA. In cells infected with VV and CV, octadecyloxyethyl-(S)-HPMPA had EC50 values of 0.01-0.02 microM versus 2.7-4.0 microM for unmodified HPMPA. When compared with the alkoxyalkyl esters of cidofovir, the corresponding alkoxyalkyl esters of (S)-HPMPA were equally active against HCMV and MCMV but were 15-20-fold more active against VV and CV in vitro. The alkoxyalkyl esters of (S)-HPMPA are promising new compounds worthy of further investigation for treatment of infections caused by herpes viruses and orthopoxviruses.  相似文献   

18.
Citrusinine-I, a new acridone alkaloid isolated from the root bark of the citrus plant (Rutaceae), exhibited potent activity against herpes simplex virus (HSV) type 1 and type 2 at low concentrations relative to their cytotoxicity; 50% effective concentrations (ED50) of citrusinine-I were 0.56 micrograms/ml and 0.74 micrograms/ml against HSV-1 and HSV-2, respectively. Inhibitory action was also demonstrated against cytomegalovirus (CMV) and thymidine kinase-deficient or DNA polymerase mutants of HSV-2. The compound markedly suppressed HSV-2 and CMV DNA synthesis at concentrations which did not inhibit the synthesis of virus-induced early polypeptides. However, citrusinine-I had no inhibitory activity against HSV and CMV DNA polymerases in cell-free extracts. Although the target of this inhibitor remains to be elucidated, the most plausible candidate is a virus-coded ribonucleotide reductase. Citrusinine-1, when combined with acyclovir or ganciclovir, synergistically potentiated the antiherpetic activity of these agents. Based on a comparative study of the antiherpetic activity of citrusinine-1 and 28 related compounds, a structure-activity relationship could be established.  相似文献   

19.
2-Fluoropodophyllotoxin (11) and several 4beta-anilino-2-fluoro-4'-O-demethyl analogues were synthesized and evaluated in both antineoplastic and antiviral assays. These compounds were moderately active against some cancer cell lines, but they were less active than the corresponding nonfluorinated analogues. Compound 11 exhibited the best activity against KB carcinoma with a GI(50) of approximately 30 nM. Most compounds exhibited moderate activity against HCMV with ID(50) and ID(90) values in the range of 1 microM and 4 microM, respectively. Both 9 and 11 showed an unusual 10-fold selectivity for HSV-2 compared to HSV-1.  相似文献   

20.
The antiviral activity and cytotoxicity of (E)-5-(2-bromovinyl)-2'-deoxycytidine (BrVdCyd) against herpes simplex virus type 1 (HSV-1), singly and in combination with deaminase inhibitors was determined using rabbit kidney (RK-13), HEP-2, BHK-21 and VERO cells. BrVdCyd was a potent inhibitor of HSV-1 replication with ED50 values of 0.30 to 1.20 microM depending on the cell line used. In the presence of tetrahydrouridine or tetrahydrodeoxyuridine (H4dUrd), potency of BrVdCyd increased approximately two fold (ED50: 0.54 microM) in HSV-infected VERO cells. The combination of BrVdCyd and H4dUrd was also effective in decreasing virus yield. Dihydrodeoxyuridine (H2dUrd) reversed the activity of BrVdCyd (ED50: 6 to 7 microM). The effect of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BrVdUrd), BrVdCyd and BrVdCyd in combination with H4dUrd on deoxyribonucleoside triphosphate (dNTP) pools was assessed in VERO cells infected with a high multiplicity of infection (10 PFU/cell). Significant differences in dNTP poll sizes (pmol/10(6) cell) were observed with different treatments. BrVdUrd and BrVdCyd treatment resulted in marked expansion of the dTTP pool (greater than 1200 pmol) compared to HSV-infected VERO cells (303 pmol). Exposure to H4dUrd resulted in a 12-fold expansion of the dCTP pool (326 pmol) and barely detectable levels of dTTP (less than 1.0 pmol). BrVdCyd plus H4dUrd treatment resulted in a slight expansion of the dTTP pool (515 pmol). These results indicate: (i) H4dUrd inhibits de novo dCyd/dCMP deaminase pathway and (ii) exposure to BrVdCyd plus H4dUrd puts a strain on viral DNA synthesis to such an extent that even though dTTP is being formed from alternative pathways, its eventual utilization as a substrate is reduced and hence it builds up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号