首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.  相似文献   

2.
Supercritical fluid extraction (SFE) with pure CO(2) was assessed as a confirmatory tool in phase III of whole sediment toxicity identification evaluations (TIEs). The SFE procedure was assessed on two reference sediments and three contaminated sediments by using a combination of toxicological and chemical measurements to quantify effectiveness. Sediment toxicity pre- and post-SFE treatment was quantified with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia), and nonionic organic contaminants (NOCs) polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were measured in sediments, overlying waters, and interstitial waters. In general, use of SFE with the reference sediments was successful, with survival averaging 91% in post-SFE treatments. Substantial toxicity reductions and contaminant removal from sediments and water samples generated from extracted sediments of up to 99% in two of the contaminated sediments demonstrated SFE effectiveness. Furthermore, toxicological responses for these SFE-treated sediments showed comparable results to those from the same sediments treated with the powdered coconut charcoal addition manipulation. These data demonstrated the utility of SFE in phase III of a whole sediment TIE. Conversely, in one of the contaminated sediments, the SFE treatments had no effect on sediment toxicity, whereas sediment concentrations of PCBs and PAHs were reduced. We propose that, for some sediments, the SFE treatment may result in the release of otherwise nonbioavailable cationic metals that subsequently cause toxicity to test organisms. Overall, SFE treatment was found to be effective for reducing the toxicity and concentrations of NOCs in some contaminated sediments. However, these studies suggest that SFE treatment may enhance toxicity with some sediments, indicating that care must be taken when applying SFE and interpreting the results.  相似文献   

3.
A sublethal whole-sediment toxicity test that uses flow cytometry to measure inhibition of esterase activity in the marine microalga Entomoneis cf punctulata was applied to the assessment of hydrocarbon-contaminated sediments and toxicity identification and evaluation (TIE). Concentration-response relationships were developed, and a 20% effect concentration for total polycyclic aromatic hydrocarbons (PAHs) of 60 mg/kg normalized to 1% total organic carbon was calculated. Relationships between toxic effects and sediment organic carbon concentrations, organic carbon forms (e.g., black carbon), and sediment particle size indicated that further normalization of hydrocarbon concentrations to sediment particle size may improve concentration-response relationships. The algal toxicity test was applied as a rapid whole-sediment TIE procedure that involved the addition to sediment of powdered coconut charcoal (PCC), a hydrophobic, carbon-based material that strongly adsorbs PAHs and decreases the pore-water exposure pathway. Sediments with PCC concentrations of up to 15% (w/w) provided acceptable responses in control sediments. For six sediments with total PAH concentrations of 1,060, 4,060, 5,120, 9,150, 9,900, and 15,900 mg/kg, inhibition of E. cf punctulata esterase activity (% of control) was 75, 97, 94, 93, 100, and 97%, respectively. Following a 15% PCC amendment to these sediments, inhibition of esterase activity was 0, 1, 11, 69, 32, and 68%, respectively, indicating a decrease in toxicity in all sediments. Because the alga E. cf punctulata is exposed to toxicants via both pore water and overlying water, the reduction in toxicity achieved by 15% PCC additions can be related to the efficient removal of dissolved hydrocarbons released from sediment particles. The sediment-PCC manipulations coupled with algal whole-sediment toxicity tests provided an effective and rapid TIE method to determine whether hydrocarbon contaminants are responsible for toxicity in sediments.  相似文献   

4.
A method for a whole-sediment toxicity test using alginate immobilized microalgae Pseudokirchneriella subcapitata was developed using spiked sediments and applied to contaminated field sediment samples. For method development, a growth inhibition test (72 h) with algal beads was conducted for the sediments spiked with Cu or diuron. The method was validated by determining dose-response relationships for Cu and diuron in both fine-grained and coarse-grained sediments. The results of a spiked sediment toxicity test suggested that sediment particle size distribution (clay content) had a significant effect on the growth of P. subcapitata. The developed method using immobilized microalgae P. subcapitata beads was applied successfully in the toxicity test and toxicity identification evaluation (TIE) for the four field sediment samples. After a series of extractions with 0.01 M CaCl(2) solution, acetone, and dichloromethane, the extracted sediment, which was shown to be nontoxic to algae, was used as the control and diluent for the same sediment in the whole-sediment toxicity test. The results showed that all investigated field sediment samples were found to be toxic to the immobilized algae P. subcapitata, with their median effective concentration (EC50) values ranging from 41.4 to 79.0% after 72 h exposure. In the whole sediment TIE, growth of P. subcapitata was improved to varying degrees after adding zeolite, resin, or activated charcoal, suggesting different contributions to toxicity from ammonia, metals, and organic contaminants in the tested sediments.  相似文献   

5.
An empirical screening level approach was developed to assess the probability of toxicity to benthic organisms associated with contaminated sediment exposure. The study was based on simple logistic regression models (LRMs) of matching sediment chemistry and toxicity data retrieved from a large database of field-collected sediment samples contaminated with multiple chemicals. Three decisions were made to simplify the application of LRMs to sediment samples contaminated with multiple chemicals. First, percent mortality information associated with each sediment sample was condensed into a dichotomous response (i.e., toxic or nontoxic). Second, each LRM assumed that toxicity was attributable to a single contaminant. Third, individual contaminants present at low concentrations were excluded from toxic sediment samples. Based on an analysis of the National Sediment Inventory database, the LRM approach classified 55% of nontoxic sediments as toxic (i.e., false-positives). Because this approach has been used to assess the probability of benthic toxicity as reported by the U.S. Environmental Protection Agency (U.S. EPA), the resultant estimates of potential toxicity convey a misleading impression of the increased hazard that sediments pose to the health of aquatic organisms at many sites in the United States. This could result in important resources needlessly being diverted from truly contaminated sites to evaluate and possibly remediate sediments at uncontaminated sites.  相似文献   

6.
In situ toxicity and bioaccumulation tests with Ceriodaphnia dubia (48 h), Chironomus tentans (96 h), Hyalella azteca (96 h), and Lumbriculus variegatus (96 h) were conducted at three stations on a river that was contaminated primarily with chlorobenzenes (CBs), and results were compared to a nearby reference site. Exposures were characterized by using minipiezometers for contaminant profiling and determination of hydraulic heads and vertical flow direction within the sediments and measuring contaminants in sediment, surface water, and exposure chamber water samples. Localized zones of upwelling and downwelling existed in the exposure areas at contaminated sites 5 and 18, while site 23 was downwelling at all measurement positions. Pore-water samples from minipiezometers contained CBs at the three contaminated sites that were highest at site 23. However, sediment and water samples from exposure chambers at site 23 contained the lowest levels of CBs among the contaminated sites. The CBs were not detected at the reference site, but other organic contaminants and metals were detected at all sites, with the highest concentrations occurring at sites 5 and 18. In water column exposures, no significant (p > 0.05) differences were observed in species survival between the contaminated sites and the reference. Mean percentage survival of H. azteca, C. dubia, and C. tentans exposed to surficial sediments (SS) at sites 5 and 18 was significantly (p < 0.05) reduced compared to the reference, whereas only C. tentans survival was significantly reduced at site 23. Body residues of total CB congeners in L. variegatus exposed to SS were highest at site 18 (618 micromol/kg lipid) and lowest at site 23 (21 micromol/kg lipid). The data suggest that downwelling reduced the bioavailability of CBs in surficial sediments, most likely by mobilizing the freely dissolved and colloid-bound fractions to deeper sediments. Overall, downwelling conditions reduced the in situ exposure of organisms in surficial sediments and hence the toxicity and bioaccumulation of CBs. Hydrologic and chemistry data from nested minipiezometers improved the interpretation of exposure-effects relationships.  相似文献   

7.
Discharges from chemical and petrochemical manufacturing facilities have contaminated portions of Louisiana's Calcasieu River estuary with a variety of organic and inorganic contaminants. As part of a special study, sediment toxicity testing was conducted to assess potential impact to the benthic community. Ten-day flow-through sediment toxicity tests with the amphipod Ampelisca abdita revealed significant toxicity at 68% (26 of 38) of the stations tested. A. abdita mortality was highest in the effluent-dominated bayous, which are tributaries to the Calcasieu River. Mortality was correlated with total heavy metal and total organic compound concentrations in the sediments. Ancillary experiments showed that sediment interstitial water salinity as low as 2.5 o/oo did not significantly affect A. abdita's response in the flow-through system; sediment storage for 7 weeks at 4°C did not significantly affect toxicity. Sediment toxicity to A. abdita was more prevalent than receiving water toxicity using three short-term chronic bioassays. Results suggest that toxicity testing using this amphipod is a valuable tool when assessing sediments containing complex contaminant mixtures and for assessing effects of pollutant loading over time. In conjunction with chemical analyses, the testing indicated that the effluent-dominated, brackish bayous (Bayou d'Inde and Bayou Verdine) were the portions of the estuary most impacted by toxicity.  相似文献   

8.
Hydrophobic organic contaminants (HOCs) enter the marine environment through several means, including industrial, urban, and agricultural runoff, and accumulate in sediments. Methods for measurement of sediment toxicity include porewater tests using sea urchin (Arbacia punctulata) fertilization and embryological development assessments. Previous studies investigating sediments from Boston Harbor determined that significant binding of contaminants to organic matter led to insufficient evidence of the bioavailability of HOCs in porewater toxicity tests. It was hypothesized that excessive biomass in testing systems prevents a critical body residue of HOCs from forming, thus curbing toxic effects. In this study, the effect of biomass on the toxicity of phenanthrene (a polycyclic aromatic hydrocarbon) and lindane (an organochlorine pesticide) were assessed individually and combined in a mixture. The fertilization toxicity test for phenanthrene and mixture solutions containing both compounds revealed less biomass in the test vial caused higher toxicity levels, the fact of which was enhanced with increased hydrophobicity. The 50% inhibition concentration (IC50) of phenanthrene to sea urchin fertilization success in test vials with 50 eggs/mL (lowest biomass concentration tested) was 3.72 μmol/L, but in vials with 100 to 400 eggs/mL, the IC50 was >4.12 μmol/L. Toxicity of several concentrations of the phenanthrene and lindane mixture to sea urchin fertilization success and embryological development was significantly higher at lower biomasses (50 and 100 eggs or embryos/mL) than with biomasses ≥200 eggs or embryos/mL. The results suggest that when testing environmental samples that may contain HOCs, lowering the biomass can help better estimate sediment toxicity using porewater tests.  相似文献   

9.
Waukegan Harbor in Illinois was designated as a Great Lakes Area of Concern due to high concentrations of sediment-associated polychlorinated biphenyls (PCBs). The objective of this study was to evaluate the toxicity of 20 sediment samples collected after remediation (primarily dredging) of Waukegan Harbor for PCBs. A 42-day whole sediment toxicity test with the amphipod Hyalella azteca (28-day sediment exposure followed by a 14-day reproductive phase) and sediment toxicity tests with Microtox(R) were conducted to evaluate sediments from Waukegan Harbor. Endpoints measured were survival, growth, and reproduction (amphipods) and luminescent light emission (bacteria). Survival of amphipods was significantly reduced in 6 of the 20 sediment samples relative to the control. Growth of amphipods (either length or weight) was significantly reduced relative to the control in all samples. However, reproduction of amphipods identified only two samples as toxic relative to the control. The Microtox basic test, conducted with organic extracts of sediments identified only one site as toxic. In contrast, the Microtox solid-phase test identified about 50% of the samples as toxic. A significant negative correlation was observed between reproduction and the concentration of three polynuclear aromatic hydrocarbons (PAHs) normalized to total organic carbon. Sediment chemistry and toxicity data were evaluated using sediment quality guidelines (consensus-based probable effect concentrations, PECs). Results of these analyses indicate that sediment samples from Waukegan Harbor were toxic to H. azteca contaminated at similar contaminant concentrations as sediment samples that were toxic to H. azteca from other areas of the United States. The relationship between PECs and the observed toxicity was not as strong for the Microtox test. The results of this study indicate that the first phase of sediment remediation in Waukegan Harbor successfully lowered concentrations of PCBs at the site. Though the sediments were generally not lethal, there were still sublethal effects of contaminants in sediments at this site observed on amphipods in long-term exposures (associated with elevated concentrations of metals, PCBs, and PAHs).  相似文献   

10.
The toxic effects of organic and saline extracts of sediment samples collected from 16 sites in Boston Harbor, Massachusetts and from 17 sites in the Hudson River-Raritan Bay estuary, New York were tested with the Microtox® bioassay. This bioassay measures changes in light production by bioluminescent marine bacteria exposed to sediment extracts. Organic solvent extracts of all 33 sediments showed some degree of toxicity, with sediment samples from sites in the urban areas of the bays being significantly more toxic than those from less urbanized areas of the bays. Saline extracts, however, were less toxic, only seven of 33 saline extracts produced a significant response using the recommended method of data analyses. The proportional decrease in bacterial light production at the highest concentration of saline sediment extract in the reaction mixture compared to the bacterial light production in the controls (saline light change—SLC) appeared to be a better indicator of sediment toxicity than generating a saline EC50 (the amount of sediment required to reduce bioluminescence 50%) value; 16 of 33 saline extracts produced a significant response (?10% reduction in bioluminescence). Organic extracts of sediments previously extracted with saline were also always toxic in the Microtox® bioassay but were less toxic than sediments not previously extracted. Organic EC50 and SLC were inversely related to concentrations of sediment contaminants, principally low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs). This relationship was strongest for the organic solvent extracts of sediments tested in the bioassay. Organic solvent extracts of sediments from Boston Harbor were also significantly more toxic in the Microtox® bioassay than those from the Hudson-Raritan estuary, even though sediment concentrations of PAHs, a measure of anthropogenic contamination, were similar. The cause for the differential toxicity is unknown at this time, but chemical contaminants other than chlorinated hydrocarbons (CHs) and PAHs may be contributing to the observed toxicity in the Microtox® bioassay using organic extracts of sediment. Testing sediment toxicity using organic extracts of sediment with the Microtox® bioassay provides better estimates of toxicity due to sediment contaminants than using saline extracts of sediments.  相似文献   

11.
The lower Santa Maria River watershed provides important aquatic habitat on the central California coast and is influenced heavily by agricultural runoff. As part of a recently completed water quality assessment, we conducted a series of water column and sediment toxicity tests throughout this watershed. Sediment from Orcutt Creek, a tributary that drains agricultural land, consistently was toxic to the amphipod Hyalella azteca, which is a resident genus in this river. Toxicity identification evaluations (TIEs) were conducted to determine cause(s) of toxicity. We observed no toxicity in sediment interstitial water even though concentrations of chlorpyrifos exceeded published aqueous toxicity thresholds for H. azteca. In contrast to interstitial water, bulk sediment was toxic to H. azteca. In bulk-phase sediment TIEs, the addition of 20% (by volume) coconut charcoal increased survival by 41%, implicating organic chemical(s). Addition of 5% (by volume) of the carbonaceous resin Ambersorb 563 increased survival by 88%, again suggesting toxicity due to organic chemicals. Toxicity was confirmed by isolating Ambersorb from the sediment, eluting the resin with methanol, and observing significant toxicity in control water spiked with the methanol eluate. A carboxylesterase enzyme that hydrolyzes synthetic pyrethroids was added to overlying water, and this significantly reduced toxicity to amphipods. Although the pesticides chlorpyrifos, DDT, permethrin, esfenvalerate, and fenvalerate were detected in this sediment, and their concentrations were below published toxicity thresholds for H. azteca, additivity or synergism may have occurred. The weight-of-evidence suggests toxicity of this sediment was caused by an organic contaminant, most likely a synthetic pyrethroid.  相似文献   

12.
Two models, a sigmapolycyclic aromatic hydrocarbon (PAH) model based on equilibrium partitioning theory and a logistic-regression model, were developed and evaluated to predict sediment-associated PAH toxicity to Hyalella azteca. A sigmaPAH model was applied to freshwater sediments. This study is the first attempt to use a sigmaPAH model based on water-only, median lethal concentration (LC50) toxic unit (TU) values for sediment-associated PAH mixtures and its application to freshwater sediments. To predict the toxicity (i.e., mortality) from contaminated sediments to H. azteca, an interstitial water TU, calculated as the ambient interstitial water concentration divided by the water-only LC50 in which the interstitial water concentrations were predicted by equilibrium partitioning theory, was used. Assuming additive toxicity for PAH, the sum of TUs was calculated to predict the total toxicity of PAH mixtures in sediments. The sigmaPAH model was developed from 10- and 14-d H. azteca water-only LC50 values. To obtain estimates of LC50 values for a wide range of PAHs, a quantitative structure-activity relationship (QSAR) model (log LC50 - log Kow) with a constant slope was derived using the time-variable LC50 values for four PAH congeners. The logistic-regression model was derived to assess the concentration-response relationship for field sediments, which showed that 1.3 (0.6-3.9) TU were required for a 50% probability that a sediment was toxic. The logistic-regression model reflects both the effects of co-occurring contaminants (i.e., nonmeasured PAH and unknown pollutants) and the overestimation of exposure to sediment-associated PAH. An apparent site-specific bioavailability limitation of sediment-associated PAH was found for a site contaminated by creosote. At this site, no toxic samples were less than 3.9 TU. Finally, the predictability of the sigmaPAH model can be affected by species-specific responses (Hyalella vs Rhepoxynius); chemical specific (PAH vs DDT in H. azteca) biases, which are not incorporated in the equilibrium partitioning model; and the uncertainty from site-specific effects (creosote vs other sources of PAH contamination) on the bioavailability of sediment-associated PAH mixtures.  相似文献   

13.
A series of studies was conducted to compare different porewater extraction techniques and to evaluate the effects of sediment and porewater storage conditions on the toxicity of pore water, using assays with the sea urchin Arbacia punctulata. If care is taken in the selection of materials, several different porewater extraction techniques (pressurized squeezing, centrifugation, vacuum) yield samples with similar toxicity. Where the primary contaminants of concern are highly hydrophobic organic compounds, centrifugation is the method of choice for minimizing the loss of contaminants during the extraction procedure. No difference was found in the toxicity of pore water obtained with the Teflon® and polyvinyl chloride pressurized extraction devices. Different types of filters in the squeeze extraction devices apparently adsorbed soluble contaminants to varying degrees. The amount of fine suspended particulate material remaining in the pore water after the initial extraction varied among the methods. For most of the sediments tested, freezing and thawing did not affect the toxicity of porewater samples obtained by the pressurized squeeze extraction method. Pore water obtained by other methods (centrifugation, vacuum) and frozen without additional removal of suspended particulates by centrifugation may exhibit increased toxicity compared with the unfrozen sample.The toxicity of pore water extracted from refrigerated (4°C) sediments exhibited substantial short-term (days, weeks) changes. Similarly, sediment pore water extracted over time from a simulated amphipod solid-phase toxicity test changed substantially in toxicity. For the sediments tested, the direction and magnitude of change in toxicity of pore water extracted from both refrigerated and solid-phase test sediments was unpredictable.  相似文献   

14.
The Australian benthic bivalve Tellina deltoidalis tolerates a wide range of sediment and water conditions, is easy to handle in the laboratory, and is a useful species for undertaking whole-sediment toxicity tests. The sensitivity of T. deltoidalis to metals was investigated in 10-day metal-spiked sediment exposures for Cd, Cu, Ni, Pb, and Zn and in water-only exposures for Cu and Zn. The survival of T. deltoidalis in 10-day exposures to metal-spiked sediments was 88–100% for Cd, Ni, Pb, and Zn concentrations of 75, 420, 1,000, and 4,000 mg/kg, respectively. The 4-day LC50s for dissolved Cu and Zn were 0.18 and 13 mg/L, respectively. The 8-day LC50 for Cu was 31 (24–34) μg/L. Cu and Zn concentrations in the tissues of T. deltoidalis increase linearly with increasing dissolved exposure concentration. In the Cu-spiked sediment and water exposures, the survival was negatively correlated with the Cu concentration in both the overlying water and in the tissues of T. deltoidalis. In contrast, particulate Cu concentrations were found to be a poor predictor of Cu bioaccumulation and toxicity for Cu-spiked sediments.  相似文献   

15.
Sublethal whole-sediment toxicity tests are an important tool for assessing the potential effects of contaminated sediments. However, the longer duration required for evaluating potential chronic effects may increase endpoint variability and test costs compared to survival endpoints. In the present study we compare the performance and sensitivity to contaminants of 10-d sublethal sediment toxicity tests with the amphipod Melita plumulosa and harpacticoid copepod Nitocra spinipes. For both tests, sublethal effects were consistently observed when sediment contaminant concentrations exceeded sediment quality guideline (SQG) concentrations. The response of these bioassays in metal-contaminated sediments was shown to conform ideally with respect to the mean SQG quotient calculated on the basis of the Australian and New Zealand lower SQG trigger value, with toxicity being observed only in those sediments where the mean quotient exceeded one. Better predictions of nontoxicity were obtained when dilute acid-extractable rather than total metal concentrations were used. Using the upper SQG, toxicity frequently occurred at mean quotients below one. The effects were generally consistent with predictions from the acid-volatile sulfide and simultaneously extracted metal model. Effects on reproduction of M. plumulosa were detected for sediments that did not cause effects on survival and highlighted the environmental relevance and importance of using these sublethal endpoints. When using four replicates for M. plumulosa and five replicates for N. spinipes, the endpoint variability (standard error) was less than 10%. Variations in sediment particle size and organic carbon content did not affect endpoint variability. Both species are relatively easily cultured in the laboratory, and the estimated effort and cost of achieving the sublethal endpoints is 1.5 times that of the acute survival test endpoints.  相似文献   

16.
The amphipod Melita plumulosa is commonly used to assess the toxicity of contaminated sediments. Seven-day-old M. plumulosa are <1 mm in size, and during 10-day tests in sandy sediments with low nutritional value, starvation can cause >50% mortality. In sediment toxicity tests, therefore, it can be difficult to determine if toxicity is due to contaminants or starvation, particularly in contaminated sandy sediments. This study investigated the influence of amphipod age and food addition on amphipod survival in toxicity tests. The 4-day LC50 increased linearly from 120 to 470 μg/L when M. plumulosa age at the beginning of the test increased from 5 to 30 days. The addition of food as algae or fish food did not significantly affect the sensitivity of 11-day-old M. plumulosa (11-d Mp) to dissolved copper over 4 days in water-only tests. The survival of 11-d Mp in water-only tests over 10 days was poor without feeding, but when fed fish food, the 10-day LC50 was 76 ± 15 μg/L. In sediment tests, feeding 0.063 mg fish food/amphipod on days 3 and 7 of 10-day tests consistently resulted in greater than 80% survival of 11-d Mp for a range of clean, sandy sediments, which had low amphipod survival without added food. Algae were not always suitable as a food source, as their growth can be stimulated by nutrients released from sediment and was inhibited by contaminants. The toxicity of most contaminated sediments was not ameliorated by the addition of food, suggesting that food addition was suitable for inclusion in routine testing protocols for this amphipod. An erratum to this article can be found at  相似文献   

17.
The use of Vibrio fischeri as luminescence bacteria is particularly effective in evaluating contaminated sediment. In this study, the ecotoxicity of five core sediments from the Bay of Santander, northern Spain, utilising V. fischeri as marine bacterium, was carried out. Different toxicity assay procedures were applied in order to study the influence of the mobility and bioavailability of the pollutants. Basic Solid Phase Test (BSPT) in whole sediment and acute toxicity test, using pore water and three leaching test procedures as liquid extracts, were applied. In addition, the study of the influence of the pH value on the toxicity results of the leaching tests was conducted. The obtained results show toxicity units (TU50) values in BSPT test ranging from 0.42 to 39.06 with a decrease with depth as general trend and TU50 values from 0.010 to 0.389 in the liquid extracts, where TU50 is calculated as the inverse of EC50 (%). The obtained data show the historical toxicity trends of the Bay of Santander and provides a technical database for the management of contaminated sediments. Moreover, these results showed evidence that each sediment test procedure provided independent and complementary ecotoxicological responses useful for a sediment classification. In order to analyse the correlations between chemical parameters (both organic and inorganic) and the toxicity results, the self-organising map (SOM) neural network and regression equations were applied. Satisfactory correlations (R=0.93) between chemical concentrations of sum of five heavy metals and 16 PAHs and BSPT toxicity were obtained.  相似文献   

18.
The amphipod Melita plumulosa is commonly used to assess the toxicity of contaminated sediments. Seven-day-old M. plumulosa are <1 mm in size, and during 10-day tests in sandy sediments with low nutritional value, starvation can cause >50% mortality. In sediment toxicity tests, therefore, it can be difficult to determine if toxicity is due to contaminants or starvation, particularly in contaminated sandy sediments. This study investigated the influence of amphipod age and food addition on amphipod survival in toxicity tests. The 4-day LC50 increased linearly from 120 to 470 μg/L when M. plumulosa age at the beginning of the test increased from 5 to 30 days. The addition of food as algae or fish food did not significantly affect the sensitivity of 11-day-old M. plumulosa (11-d Mp) to dissolved copper over 4 days in water-only tests. The survival of 11-d Mp in water-only tests over 10 days was poor without feeding, but when fed fish food, the 10-day LC50 was 76 ± 15 μg/L. In sediment tests, feeding 0.063 mg fish food/amphipod on days 3 and 7 of 10-day tests consistently resulted in greater than 80% survival of 11-d Mp for a range of clean, sandy sediments, which had low amphipod survival without added food. Algae were not always suitable as a food source, as their growth can be stimulated by nutrients released from sediment and was inhibited by contaminants. The toxicity of most contaminated sediments was not ameliorated by the addition of food, suggesting that food addition was suitable for inclusion in routine testing protocols for this amphipod.  相似文献   

19.
Sediments act as sinks for contaminants of natural and anthropogenic origin, constituting a risk to the living organisms. In this study, sediments were collected from three sites on the coast of southwest France. The objective of this research was to determine the effects of sediments on embryonic development of bivalves and to identify precisely when the contaminants affect the embryos and induce them to develop in an abnormal way. The toxicity of decanted sediments and overlying waters were assessed using the oyster embryo bioassay. The physical characteristics and contaminant levels in the sediments were measured, including polycyclic aromatic hydrocarbon (PAH) and metal concentrations. Despite contaminant concentrations for PAH and metals only exceeding the effects range-low levels, all decanted sediments tested induced deleterious effects on the embryonic development of oysters, while no significant abnormalities were observed for overlying waters. The study results suggest that abnormal larvae mainly are caused by direct contact with contaminated sediments.  相似文献   

20.
In the present study six adsorbents viz. wood charcoal, fly ash, coconut charcoal, saw dust, coconut fiber and baggasse charcoal were studied for their capacity to remove atrazine from water. The removal efficiency of different adsorbents varied from 76.5% to 97.7% at 0.05 ppm concentration and 78.5% to 95.5% at 0.1 ppm concentration of atrazine solution, which was less than removal efficiency of activated charcoal reported as 98% for atrazine (Adams and Watson, J Environ Eng ASCE 39:327-330, 1996). Wood charcoal was a cheap (Rs 15 kg(-1)) and easily available material in house holds. Since wood charcoal was granular in nature, it could be used for the removal of atrazine from water to the extent of 95.5%-97.7%. Fly ash is a waste product of thermal plant containing 40%-50% silica, 20%-35% alumina, 12%-30% carbon and unburnt minerals having a high pH of 9-10. It is very cheap and abundant material and has comparatively good adsorption capacity. It was found that fly ash effectively removed about 84.1%-88.5% atrazine from water at 0.05 and 0.1 ppm levels. Coconut shell is also waste product. Therefore, both are inexpensive. The removal efficiency of atrazine from water was 92.4%-95.2% by coconut shell charcoal and 85.9%-86.3% by coconut fiber. Sawdust is generally used as domestic fuel and found everywhere. It is also very cheap (Re. 1 kg(-1)). Baggasse charcoal is a waste product of sugar mill and abundant material. Its cost is due to transport expense, which depends upon distance from the sugar mill. The removal efficiency of sawdust and baggasse charcoal was found 78.5-80.5 and 76.5-84.6, respectively. The efficacy of chemically treated adsorbents for the removal of atrazine from water is in the order: wood charcoal > coconut shell charcoal > fly ash > coconut fiber charcoal > baggasse charcoal > sawdust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号