首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The average axon diameter in the proximal segment of a transected and reconstructed peripheral nerve will decrease shortly after the transection and increase again when the regenerating axons make contact with their targets. The magnetically recorded nerve compound action current (NCAC) amplitude and the conduction velocity (CV) are directly related to the axon diameters. In this experiment, the peroneal nerve was unilaterally transected and reconstructed in 42 rabbits. After 3, 4.5, 6, 8, 12, 20, and 36 weeks of regeneration time, hind leg motor function recovery, NCAC amplitude, and CV(1st peak) were studied. Our results demonstrate a significant decrease in signal amplitude and CV in the first 8 weeks after reconstruction. These decreases are related (P < 0.05). After 8 weeks of regeneration time, motor function and the CV of the recorded signals start to recover, but the signal amplitudes do not. Based on the correlation of the CV and signal amplitude with axon diameter, they would both be expected to increase with recovering function. As an explanation for this lack of increase of signal amplitude, we suggest that, at the same time as some axons reach their target organs and start to mature, a number of the axons which have not reached a proper target organ will lose their signal-conducting capability. This will cause a decrease in compound signal amplitude, which cancels out the expected increase in NCAC amplitude, due to axonal maturation.  相似文献   

2.
OuYang W  Wang G  Hemmings HC 《Brain research》2004,1024(1-2):203-211
Voltage-gated ion channels are critical to excitation-secretion coupling in nerve terminals. We have identified two distinct populations of rat neurohypophysial (NHP) terminals distinguished by size, neuropeptide content and electrophysiological properties, including resting membrane potential, action potential (AP) properties, and K+ current and Na+ current characteristics. In large terminals (10-16 microm diameter), resting membrane potential was more negative than in small terminals (5-9.9 microm; -61+/-4 mV vs. -55+/-3 mV; p<0.01), action potential amplitude was larger (69+/-4 mV vs. 53+/-3 mV; p<0.01), peak IK was larger (1460+/-90 pA vs. 1140+/-70 pA; p<0.05) with a more negative V1/2 for activation (-3.1 mV vs. -0.6 mV; p<0.05), and Na+ current density was greater (approximately 470 pA/pF vs. approximately 300 pA/pF; p<0.01) with more negative V1/2 values for activation from -70 or -90 mV holding potentials (-44 mV vs. -24 mV; p<0.01). A positive linear correlation between INa amplitude and terminal size showed an inflection at a diameter of 9.2 microm. Neuropeptide content was generally segregated into a population of small terminals (<10 microm diameter) containing predominantly vasopressin and a population of large terminals (> or =10 microm diameter) containing predominantly oxytocin (OT); a small fraction of terminals in each group contained both peptides. These findings suggest that electrophysiological differences between small vasopressin-containing and large oxytocin-containing neurohypophysial terminals may contribute to their observed differential firing and peptide release patterns.  相似文献   

3.
We used the Plp1-overexpressing transgenic mouse model to investigate whether progressive demyelination of axons results in adaptive changes involving mitochondria within the axons. These models have myelinated axons from birth but gradually lose myelin and develop axonal loss associated with progressive neurological disability analogous to patients with secondary progressive mulltiple sclerosis (SPMS). At 1 and 2 months, electron microscopy demonstrated a significant increase in intraaxonal mitochondrial density in the homozygous line 72 Plp1-overexpressing mice compared with wild type (1.43 +/- 0.31 vs. 0.84 +/- 0.16 microm(-3), P = 0.031; 1.66 +/- 0.11 vs. 0.92 +/- 0.43 microm(-3), P = 0.02) and a significant increase at 1 and 4 months in the density of mitochondria in the surrounding cells in the same mice (1.86 +/- 0.31 vs. 0.81 +/- 0.30 microm(-3), P = 0.006; 2.77 +/- 0.44 vs. 1.37 +/- 0.42 microm(-3), P = 0.016). At both 1 and 4 months, COX histochemistry and time-lapse histochemistry demonstrated a significant increase in mitochondrial activity and rate of mitochondrial activity in the homozygous Plp1-overexpressing mouse optic nerve compared with the wild type (112.37 +/- 11.9 vs. 136.89 +/- 9.1 MeanD, P = 0.006; 128.02 +/- 3.0 vs. 188.77 +/- 9.7 MeanD P < 0.001; Rate -0.78 +/- 0.25 vs. -0.58 +/- 0.15 MeanD min(-1), P < 0.001; -1.48 +/- 0.15 vs. 0.51 +/- 0.17 MeanD min(-1), P < 0.001, respectively). We propose that adaptive changes involving mitochondria occur within CNS axons in Plp1-overexpressing mice, which may be detrimental to long-term viability. Analogous changes occurring in chronically demyelinated axons in MS lesions would be one mechanism increasing axonal vulnerability in SPMS.  相似文献   

4.
We propose that double-transgenic thy1-CFP(23)/S100-GFP mice whose Schwann cells constitutively express green fluorescent protein (GFP) and axons express cyan fluorescent protein (CFP) can be used to serially evaluate the temporal relationship between nerve regeneration and Schwann cell migration through acellular nerve grafts. Thy1-CFP(23)/S100-GFP and S100-GFP mice received non-fluorescing cold preserved nerve allografts from immunologically disparate donors. In vivo fluorescent imaging of these grafts was then performed at multiple points. The transected sciatic nerve was reconstructed with a 1-cm nerve allograft harvested from a Balb-C mouse and acellularized via 7 weeks of cold preservation prior to transplantation. The presence of regenerated axons and migrating Schwann cells was confirmed with confocal and electron microscopy on fixed tissue. Schwann cells migrated into the acellular graft (163+/-15 intensity units) from both proximal and distal stumps, and bridged the whole graft within 10 days (388+/-107 intensity units in the central 4-6 mm segment). Nerve regeneration lagged behind Schwann cell migration with 5 or 6 axons imaged traversing the proximal 4 mm of the graft under confocal microcopy within 10 days, and up to 21 labeled axons crossing the distal coaptation site by 15 days. Corroborative electron and light microscopy 5 mm into the graft demonstrated relatively narrow diameter myelinated (431+/-31) and unmyelinated (64+/-9) axons by 28 but not 10 days. Live imaging of the double-transgenic thy1-CFP(23)/S100-GFP murine line enabled serial assessment of Schwann cell-axonal relationships in traumatic nerve injuries reconstructed with acellular nerve allografts.  相似文献   

5.
Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.  相似文献   

6.
Possible sex-related differences in the extent of collateral sprouting of noninjured nociceptive axons after peripheral nerve injury were examined. In the first experiment, peroneal, tibial, and saphenous nerves were transected and ligated in female and male rats. Eight weeks after nerve injury, skin pinch tests revealed that the nociceptive area of the noninjured sural nerve in the instep skin expanded faster in females; the final result was a 30% larger increase in females than in males. In the second experiment, the end-to-side nerve anastomosis was used as a model for axon sprouting. In addition to the previous procedure, the end of an excised peroneal nerve segment was sutured to the side of the intact sural nerve. Eight weeks later, collateral sprouting of nociceptive axons into the anastomosed peroneal nerve segment was assessed by the nerve pinch test and axon counting. There was no significant difference with respect to the percentages of male and female rats with a positive nerve pinch test. The number of myelinated axons in the anastomosed nerve segment was significantly larger in female (456 +/- 217) than in male (202 +/- 150) rats, but the numbers of unmyelinated axons were not significantly different. In normal sural nerves, the numbers of either all myelinated axons or thin myelinated axons did not significantly differ between the two sexes. Therefore, the more extensive collateral axon sprouting observed in female than in male rats is probably due to the higher sprouting capacity of thin myelinated sensory axons in females.  相似文献   

7.
OBJECTIVE: This study was aimed to understand ultrastructural pathology of nerves of tumor origin of spinal schwannomas, which has not been reported so far, in order to understand the mechanism of the postoperative functional restoration after the nerve transection. METHODS: From 13 patients who underwent sacrifice of an affected nerve root at total removal of spinal schwannomas (C2 conus), the proximal (spinal cord side, n = 12) and distal (dorsal root ganglion side, n = 10) stumps of the nerves of the tumor origin were collected and examined by light and electron microscope, followed by morphometric analysis (n = 9). RESULTS: Almost all of affected nerves at both proximal and distal to the lesion were composed of well-preserved myelin sheath and axons with mild disturbance of endo- and perineurial structures at light microscopic level except one case, which showed severe fibrosis. Electron-microscopically, regenerated axons with thin myelin were found in part in the proximal and distal nerves with few macrophages in three cases. The area of nerves (mm2), density of myelinated axons (axons/mm2) and total number of myelinated axons in the proximal stump (0.552 +/- 0.430, 10,400 +/- 5,240 and 5,480 +/- 4,790) was approximately 70%, 80% and 60%, respectively, of those in the distal stump (0.765 +/- 0.333, 12,400 +/- 5,180 and 9,970 +/- 8,630). CONCLUSIONS: This data combined with no permanent deficits after nerve transection suggest that the nerves of tumor origin are in the processes of slowly progressed deterioration with repeated degeneration and regeneration/remyelination, and the postoperative rapid recovery from the transient neurological deficit may be explained by functional compensation by the adjacent non-affected nerves with slow tumor growth.  相似文献   

8.
The influence of hyperglycemia on peripheral nerve function was studied in 9 patients with long-term insulin-dependent diabetes. Blood glucose concentration was raised 13.5 +/- 0.5 mmol/l (mean +/- SEM) within 15 min and kept approximately 15 mmol/l over basal level for 120 min by intravenous glucose infusion. Hyperglycemia was accompanied by increased plasma osmolality. Sensory and motor nerve conduction and distal motor latency in the ulnar nerve were determined before, immediately after induction of hyperglycemia, and again after 120 min hyperglycemia. Distal (5th finger - wrist) and proximal (wrist - elbow) sensory nerve conduction showed an insignificant increase as hyperglycemia was induced. During hyperglycemia mean distal sensory conduction decreased from 53.1 m/s to 50.4 m/s (P less than 0.05) and mean proximal sensory conduction decreased from 56.0 m/s to 54.2 m/s (P less than 0.01). A mean of distal and proximal sensory conduction increased (53.5 m/s vs 54.6 m/s) (P less than 0.05) as hyperglycemia was induced and decreased (54.6 m/s vs 52.3 m/s) (P less than 0.01) during clamping. Motor nerve conduction decreased insignificantly throughout the study. Mean distal motor latency decreased from 3.1 ms to 2.8 ms (P less than 0.005) immediately after induction of hyperglycemia. During hyperglycemia it increased from 2.8 ms to 3.1 ms (P less than 0.001). We conclude that acute induction of hyperglycemia in long-term diabetics seems to increase sensory conduction and decrease distal motor latency, while 120 min hyperglycemia seems to decrease sensory conduction and increase distal motor latency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Motor and sensory function in a healthy nerve is strongly related to the number of neuronal units connecting to the distal target organs. In the regenerating nerve the amplitudes of magnetically recorded nerve compound action currents (NCACs) seem to relate to the number of functional neuronal units with larger diameters regenerating across the lesion. The goal of this experiment was to compare the signal amplitudes recorded from the distal segment of a reconstructed nerve to functional recovery. To this end, the peroneal nerves of 30 rabbits were unilaterally transected and reconstructed. After 6, 8, 12, 20, and 36 weeks of regeneration time the functional recovery was studied based on the toe-spread test, and the nerve regeneration based on the magnetically recorded NCACs. The results demonstrate that the signal amplitudes recorded magnetically from the reconstructed nerves increase in the first 12 weeks from 0% to 21% of the amplitudes recorded from the control nerves and from 21% to 25% in the following 23 weeks. The functional recovery increases from absent to good between the 8th and the 20th week after the reconstruction. A statistically significant relation was demonstrated between the signal amplitude and the functional recovery (P < 0.001). It is concluded that the magnetic recording technique can be used to evaluate the quality of a peripheral nerve reconstruction and seems to be able to predict, shortly after the reconstruction, the eventual functional recovery. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21:750–755, 1998.  相似文献   

10.
Myelinated and unmyelinated axons in the inferior cardiac nerve of the cat were examined to determine how many axons were (1) sensory, (2) preganglionic sympathetic, and (3) postganglionic sympathetic. In one group of cats, a segment was removed from the middle of the inferior cardiac nerve as a control, and the proximal and distal stumps of the nerve were examined one week later. In another group of cats, the control segment of nerve was removed and the first thoracic white ramus communicans and sympathetic trunk were cut proximal to the stellate ganglion, followed in one week by examination of the proximal and distal stumps of the inferior cardiac nerve. In still another group of cats, the first five thoracic spinal nerves were cut just distal to the dorsal root ganglion. The counts of myelinated and unmyelinated axons after these surgical procedures indicated that, in the cat inferior cardiac nerve, all or almost all of the approximately 30,000 unmyelinated axons and 10 percent of the myelinated axons are postganglionic sympathetic fibers, and that approximately 90 percent of the myelinated axons are sensory.  相似文献   

11.
Carlton SM 《Brain research》2002,947(2):252-259
This study investigates Ca(2+)/calmodulin kinase IIalpha (CaMKIIalpha) in primary sensory neurons. Immunohistochemical staining with a CaMKIIalpha antibody demonstrates 28% of dorsal root ganglion (DRG) cells are positively stained and have a diameter of 27 +/- 2.4 microm (mean +/- S.D.). Placement of tight ligatures around the sciatic nerve demonstrates a build up of immunoreaction product proximal to the ligatures indicating that CaMKIIalpha is transported into the peripheral processes of DRG cells. Immunostaining of lumbar dorsal roots at the electron microscopic level demonstrates reaction product in 15.4 +/- 2.1% of unmyelinated and 2.4 +/- 1.0% of myelinated axons, indicating that CaMKIIalpha is transported into the central processes of DRG cells. Electron microscopic analysis of normal digital nerves demonstrates CaMKIIalpha labeling in 3.3 +/- 0.3% of unmyelinated and 2.0 +/- 1.1% of myelinated cutaneous axons. These percentages increase significantly to 14.1 +/- 2.3% for unmyelinated and 5.1 +/- 1.4% for myelinated axons 48 h after complete Freund's adjuvant-induced inflammation of the hindpaw. The data indicate that CaMKIIalpha is present in small diameter primary sensory neurons, that it is transported into the peripheral and central processes of these cells and may play a role in processing noxious input, particularly in the inflamed state.  相似文献   

12.
The ultrastructural features of serotonergic fibers, terminals and synaptic contacts were studied with the pre-embedding immunocytochemical method in the isthmo-optic nucleus of the pigeon centrifugal visual system. The 5-HT immunoreactive (-ir) profiles were diffusely distributed and their density was low. The labeled axons were thin and unmyelinated (mean diameter=0.21+/-0.03 microm) though a few larger myelinated axons were observed (mean diameter=0.51+/-0.07 microm). The 5-HT-ir terminals or varicosities were small (diameter=0.71+/-0.54 microm) and contained small agranular synaptic vesicles (diameter=28.5+/-6.9 nm) and large granular vesicles (diameter=102.2+/-19.5 nm). The latter only constituted approximately 1% of the total profiles containing synaptic vesicles in the isthmo-optic nucleus. In single thin sections, only 5% of the 5-HT-ir varicosities exhibited an active asymmetrical zone synapsing upon dendritic profiles of centrifugal visual neurons. Calculations indicated that 17% of these 5-HT-ir varicosities were actually engaged in junctional synaptic relationships, whereas the remaining (83%) were nonjunctional. The data suggest that, within the isthmo-optic nucleus, 5-HT acts both at synaptic junctions (wiring transmission) and at a distance via the extracellular space (volume transmission). These 5-HT afferents could thus modulate the activity of the retinopetal neurons and visual information processing.  相似文献   

13.
Susan M. Carlton   《Brain research》2002,947(2):R644-259
This study investigates Ca(2+)/calmodulin kinase IIalpha (CaMKIIalpha) in primary sensory neurons. Immunohistochemical staining with a CaMKIIalpha antibody demonstrates 28% of dorsal root ganglion (DRG) cells are positively stained and have a diameter of 27 +/- 2.4 microm (mean +/- S.D.). Placement of tight ligatures around the sciatic nerve demonstrates a build up of immunoreaction product proximal to the ligatures indicating that CaMKIIalpha is transported into the peripheral processes of DRG cells. Immunostaining of lumbar dorsal roots at the electron microscopic level demonstrates reaction product in 15.4 +/- 2.1% of unmyelinated and 2.4 +/- 1.0% of myelinated axons, indicating that CaMKIIalpha is transported into the central processes of DRG cells. Electron microscopic analysis of normal digital nerves demonstrates CaMKIIalpha labeling in 3.3 +/- 0.3% of unmyelinated and 2.0 +/- 1.1% of myelinated cutaneous axons. These percentages increase significantly to 14.1 +/- 2.3% for unmyelinated and 5.1 +/- 1.4% for myelinated axons 48 h after complete Freund's adjuvant-induced inflammation of the hindpaw. The data indicate that CaMKIIalpha is present in small diameter primary sensory neurons, that it is transported into the peripheral and central processes of these cells and may play a role in processing noxious input, particularly in the inflamed state.  相似文献   

14.
OBJECTIVE: To establish an in vitro model for measurement of the excitability properties of cutaneous sensory axons. METHODS: We used a saphenous skin-nerve preparation from adult rat in combination with computerized threshold tracking. We measured strength-duration time constant, the recovery of excitability after a supramaximal stimulus and the accommodation to conditioning subthreshold polarizing stimuli (threshold electrotonus, current-threshold relationship) and compared these with previously published recordings from sensory axons in human median nerve. RESULTS: Threshold electrotonus and the amplitude of superexcitability were indistinguishable between human median nerve in vivo and rat saphenous nerve in vitro, but several excitability parameters were significantly different in the rat: strength-duration time constant was significantly shorter (0.19+/-0.01 vs. 0.53+/-0.02 ms); the refractory period was shorter (1.9+/-1.1 ms vs. 3.5+/-1.0 ms) and late subexcitability was smaller (6.3+/-0.3% vs. 11.3+/-0.5%); thirdly, during recording of current-threshold relationship, rat nerves displayed more inward rectification to strong hyperpolarizing currents. Parameters were stable over more than 3h. CONCLUSIONS: Excitability changes of sensory Abeta-fibres can be reliably studied in the rat in vitro and are qualitatively similar to humans. SIGNIFICANCE: This rat model will facilitate pharmacological studies of nerve excitability and work on models of neuropathy.  相似文献   

15.
The objective of this study was to evaluate 2,3,5-triphenyltetrazolium chloride (TTC) staining in the brain tissue of rats submitted to a closed head traumatic injury, in comparison to control rats not submitted to trauma. The closed head, weight drop trauma model described by Marmarou et al. (1994) was used. Animals were all sacrificed 24 h after trauma. Staining of cerebral coronal slices using TTC, coupled to image analysis software, was used to measure the level of staining. An ultrastructural study of the brain region underneath the impact zone, as well as from the correspondent region of control rats, was also done. The TTC image analysis revealed a significant decrease in the percentage of white area, in traumatized rats (mean +/- SEM 23.93% +/- 2.26, n = 4 for control, 12.13% +/- 1.72, n = 9 for traumatized rats, p <.05). The ultrastructural analysis revealed that the number of axons showing at least one mitochondrion was significantly higher in the trauma group (mean +/- SEM 49.3%, n = 4 rats, 75 photographs, 2443 axons) than in control groups (23%, n = 3 rats, 30 photographs, 6220 axons (p <.001). Another difference observed was the larger mitochondrial size in the axons of traumatized rats (mean diameter +/- SEM 0.520 +/- 0.003 microm) compared to the controlled rats (0.368 +/- 0.006 microm; p <.001). The ultrastructural observation of the traumatized brain revealed a significantly higher number of peroxisomes per photograph (mean number +/- SEM 10.58 +/- 1.18, n = 75) compared to the control group (0.19 +/- 0.08, n = 30, p <.001). The results indicate an increase of mitochondrial and peroxysomal relative mass, with a higher succinate dehydrogenase activity, 24 h after the induction of traumatic brain injury.  相似文献   

16.
Dorsal roots have a limited regeneration capacity after transection. To improve nerve regeneration, the growth-promoting effects of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were evaluated. The proteins were continuously released by synthetic nerve guidance channels bridging a 4-mm gap in the transected dorsal root. Four weeks after lesion, the regenerated nerve cables were analyzed for the presence of myelinated and unmyelinated axons. While BDNF showed a limited effect on axonal regeneration (863 +/- 39 axons/regenerated nerve, n = 6), NGF (1843 +/- 482) and NT-3 (1495 +/- 449) powerfully promoted regeneration of myelinated axons compared to channels releasing the control protein bovine serum albumin (293 +/- 39). In addition, NGF, but not BDNF nor NT-3, had a potent effect on the regeneration of unmyelinated axons (NGF, 55 +/- 1.4; BDNF, 4 +/- 0.3; NT-3, 4.7 +/- 0.3 axons/100 microm(2); n = 6). The present study suggests that synthetic nerve guidance channels slowly and continuously releasing the neurotrophins NGF and NT-3 can overcome the limited regeneration of transected dorsal root.  相似文献   

17.
The axoplasmic transport of somatostatin (SS) and substance P (SP) in the cervical vagus nerve was studied in the rat, guinea pig and cat. In preliminary studies, neuropeptide immunoreactivity (IR-SS and IR-SP) was evaluated in extracts of nodose ganglion and vagus nerve using gel and reverse-phase high-performance liquid chromatography (HPLC). In each species, a single immunoreactive form of SP co-eluted with the synthetic undecapeptide on a Bio-Gel P-10 column. More than 95% of transported vagal IR-SS co-eluted with synthetic SS-14. A small percentage in each species co-eluted with SS-28. No larger form, corresponding to a prosomatostatin, was identified in any of the 3 species. On HPLC, IR-SP and IR-SS co-eluted with their synthetic forms. To quantify neuropeptide transport, the vagus nerve was ligated distal to the nodose ganglion. 24 h later in each species, the content of IR-SS and IR-SP was more than 6 times greater in a 3-mm segment of nerve proximal to the ligature than in equal length segments distal to ligature or in the unligated contralateral nerve. In the proximal segment, the net content of IR-SP (pg/3-mm segment, mean +/- S.E.M.) was 366 +/- 45 in the rat, 2038 +/- 184 in the guinea pig, and 912 +/- 108 in the cat. The content of IR-SS in the same segment was 36 +/- 4, 66 +/- 13, and 575 +/- 59 pg/3-mm, respectively. The apparent transport velocities were similar for each peptide and among species. The contribution of the nodose ganglion to transported neuropeptide was estimated by crushing the vagus above the nodose ganglion and simultaneously ligating the nerve distal to the ganglion. The percent contribution of the ganglion to transported IR-SS following this procedure was 50% in the rat, 73% in the guinea pig, and 16% in the cat. Nodose ganglion contribution to IR-SP transport was 31%, 50% and 74%, respectively. Estimated turnover of IR-SS and IR-SP within the ganglion ranged from 4.1 to 6.8 times per 24 h in each species.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The present work was performed to determine the ability of neurotrophic factors to allow axonal regeneration across a 15-mm-long gap in the rat sciatic nerve. Synthetic nerve guidance channels slowly releasing NGF and GDNF were fabricated and sutured to the cut ends of the nerve to bridge the gap. After 7 weeks, nerve cables had formed in nine out of ten channels in both the NGF and GDNF groups, while no neuronal cables were present in the control group. The average number of myelinated axons at the midpoint of the regenerated nerves was significantly greater in the presence of GDNF than NGF (4942 +/-1627 vs. 1199 +/-431, P < or = 0.04). A significantly greater number of neuronal cells in the GDNF group, when compared to the NGF group, retrogradely transported FluoroGold injected distal to the injury site before explantation. The total number of labelled motoneurons observed in the ventral horn of the spinal cord was 98.1 +/-23.4 vs. 20.0 +/-8.5 (P < or = 0.001) in the presence of GDNF and NGF, respectively. In the dorsal root ganglia, 22.7% +/- 4.9% vs. 3.2% +/-1.9% (P +/-0.005) of sensory neurons were labelled retrogradely in the GDNF and NGF treatment groups, respectively. The present study demonstrates that, sustained delivery of GDNF and NGF to the injury site, by synthetic nerve guidance channels, allows regeneration of both sensory and motor axons over long gaps; GDNF leads to better overall regeneration in the sciatic nerve.  相似文献   

19.
The axonal initial segment is the initiation site of action potentials and is characterized morphologically by a dense undercoating and fascicles of microtubules connected by cross-bridges. In order to analyze subcellular structures in the initial segment, we made serial transverse sections of initial segments of identified chicken motoneurons by retrograde transport of horseradish peroxidase (HRP) injected into the muscle. The mean (+/-SD) length of the initial segment was 28.1+/-2.3 microm (n=6). Mitochondria accumulated in the distal part of the initial segment, which was 1.4-6.9 microm in length (5-23% of the total length of the initial segment). In the transverse section of the distal part, mitochondrial density was 15.8+/-6.2% (n=5), while in the middle and proximal parts it was 6.1+/-1.6% and 5.6+/-1.4%, respectively. Mitochondrial accumulation was observed in common in phasic and tonic motoneurons in the chicken, and also observed in the distal part of the initial segment of the large ventral horn neurons of the chicken without HRP injection. These findings suggest that accumulated mitochondria play an important role in maintaining the physiological function of the distal part of the motoneuron initial segment.  相似文献   

20.
This study investigated the maximum number of collaterals that can be maintained by 1 axon during regeneration of rat peripheral nerve. The tibial nerve was transected, the proximal residual, with its variable number of axons, was fixed to the distal stump and served as the donor nerve. The number of myelinated axons was calculated after 12 weeks. An increasing ratio of distal stump axon numbers to proximal donor nerve axon numbers of 1.0, 1.83, 3.64 and 7.97 yielded ratios of regenerative myelinated axon numbers to proximal donor axon numbers of 0.98, 1.51, 2.39, 2.89, respectively, with an estimated maximum value of approximately 3.3 using the Hill function. The tibial function indexes and nerve conduction velocities of the regenerated tibial nerve were -44.1 +/- 5.1 and 43.2 +/- 5.3 m/s, -57.5 +/- 4.7 and 18.6 +/- 4.3 m/s, -80.2 +/- 7.1 and 12.7 +/- 3.7 m/s, and -85.4 +/- 5.7 and 10.5 +/- 3.9 m/s, respectively. It has been suggested that 1 axon can regenerate and maintain up to 3 or 4 collaterals in regenerated rat peripheral nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号